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Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract
responsible for intestinal lesions. The multifactorial etiology attributed to CD includes
a combination of environmental and host susceptibility factors, which result in an
impaired host–microbe gut interaction. Bacterial overgrowth and dysbiosis, increased
intestinal barrier permeability, and altered inflammatory responses in patients with CD
have been described in the past. Those events explain the pathogenesis of luminal
translocation of bacteria or its products into the blood, a frequent event in CD, which,
in turn, favors a sustained inflammatory response in these patients. In this review, we
navigate through the interaction between bacterial antigen translocation, permeability
of the intestinal barrier, immunologic response of the host, and genetic predisposition
as a combined effect on the inflammatory response observed in CD. Several lines
of evidence support that translocation of bacterial products leads to uncontrolled
inflammation in CD patients, and as a matter of fact, the presence of gut bacterial
genomic fragments at a systemic level constitutes a marker for increased risk of relapse
among CD patients. Also, the significant percentage of CD patients who lose response
to biologic therapies may be influenced by the translocation of bacterial products, which
are well-known drivers of proinflammatory cytokine production by host immune cells.
Further mechanistic studies evaluating cellular and humoral immune responses, gut
microbiota alterations, and genetic predisposition will help clinicians to better control
and personalize the management of CD patients in the future.

Keywords: Crohn’s disease, bacterial translocation, intestinal permeability, dysbiosis, NOD2, inflammatory
response, anti-TNF-α

INTRODUCTION

Crohn’s disease (CD) is a type of chronic idiopathic inflammatory bowel disease (IBD) that may
affect any part of the gastrointestinal (GI) tract and causes inflammatory, stricturing, or penetrating
intestinal lesions (Torres et al., 2017). The prevalence of CD has increased worldwide in the
past 50 years, and it imposes a considerable economic burden on health systems as it requires
new and costly treatment options and trained specialists to manage CD patients (Ng et al., 2017;
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Windsor and Kaplan, 2019). The etiology of CD includes several
aspects involving environmental factors, genetic susceptibility,
and the impaired immune interaction of the host with the
intestinal microbiota (Chang, 2020).

The immune response in CD is induced by different cell
types such as neutrophils and macrophages that act together
with epithelial cells in promoting and generating inflammatory
phenomena by releasing soluble factors as tumor necrosis factor-
alpha (TNF-α) and antimicrobial peptides like defensins and
cathelicidins (Ramasundara et al., 2009; Gutiérrez et al., 2011).
Intestinal bacteria are key contributors to the onset, perpetuation,
and pathogenesis of chronic intestinal inflammation suggesting
a disturbed immune gut response to bacterial antigens. This
hypothesis is supported by several lines of evidence: (1) CD
clinical lesions are mainly located in the distal ileum and
colon, which are regions of high microbial concentration,
(2) several studies demonstrate that luminal bacteria are
necessary for the development of disease in murine models
(Harper et al., 1985; Elson et al., 2005), and (3) CD patients
present dysbiosis or reduced biodiversity in the composition
of their gut microbiota associated with increased bacteria with
proinflammatory properties and less anti-inflammatory bacterial
species (Willing et al., 2010; Chassaing and Darfeuille-Michaud,
2011; Manichanh et al., 2012).

Our gut epithelial cells act as a physical barrier between
the lumen of the GI tract and the inner mucosa contributing
to nutrient and fluid absorption and impeding intact bacteria
penetration. Genetic polymorphisms affecting barrier function or
chronic inflammation may contribute to an abnormal intestinal
permeability and, therefore, favor bacterial translocation (BT)
and aggravate the course of disease. Genes associated with
intestinal homeostasis involve autophagy, innate and adaptive
immune regulation, microbial defense, or barrier function,
among others (Franke et al., 2010; Khor et al., 2011). Some risk
loci might influence immunological function such as nucleotide-
binding oligomerization domain-containing 2 (NOD2), which
encodes an intracellular receptor for muramyl dipeptide (MDP),
a component in bacterial cell walls (Inohara et al., 2003). In
this regard, three common variants of NOD2 loci apparently
confer susceptibility to CD (Hugot et al., 2001) suggesting that
an impaired response to bacterial antigens may contribute, and
further studies indicate that low Foxp3+ regulatory T-cell (Treg)
counts and a variant NOD2 genotype can be markers of loss of
response to anti-TNF-α in CD patients (Juanola et al., 2014).

In this review, we integrate the effect of bacterial antigen
translocation, the host immunologic response, and the genetic
background in the inflammatory response observed in CD.

GUT-DERIVED BACTERIAL ANTIGEN
TRANSLOCATION

Bacterial translocation is known as the passage of bacteria
or its products, such as endotoxins, from the GI tract to
mesenteric lymph nodes and systemic circulation (Alexander
et al., 1990). This event has been demonstrated in CD by several
studies in which the presence of bacteria in the lymph nodes

(Takesue et al., 2002; Peyrin-Biroulet et al., 2012; O’Brien et al.,
2014) or bacterial genomic fragments in the blood (Gutiérrez
et al., 2009, 2011, 2014) are detected. Bacterial passage from
the bowel lumen is a common phenomenon in CD, and it
is involved in the pathogenesis by inducing, perpetuating, or
exacerbating an inflammatory state (Swank and Deitch, 1996).
The risk factors influencing BT are mainly intestinal bacterial
overgrowth or dysbiosis, increased intestinal permeability, and
local and systemic immunological alterations and can be followed
in Table 1.

Human species have evolved with the symbiotic intestinal
microbiota, which is composed of 10 (Franke et al., 2010) to 10
(Inohara et al., 2003) microorganisms including bacteria, fungus,
archaea, and viruses whose total genome represents 100 times
our own genome (Gill et al., 2006). GI microbiota is mainly
composed of four bacterial divisions: Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria, but the composition and
the luminal concentrations of bacterial species may vary in
the different GI tract regions (Eckburg et al., 2005). These
commensal bacteria provide an abundant source of antigens
that can activate pathogenic immune responses resulting in
chronic intestinal inflammation and clinical manifestations of
CD-susceptible patients.

An increase in the number and/or altered composition
of microbial species in the small bowel is known as small
intestinal bacterial overgrowth (SIBO), which is potentially
caused by fistulae, strictures, a slowed intestinal transit, low
acid gastric secretion, and altered local immune activity such
as common variable immunodeficiencies associated with low
IgA (Pignata et al., 1990; Husebye, 2005; Klaus et al., 2009).
Patients with CD show some of these features, so they are
predisposed to develop SIBO and a complicated clinical course
of CD. Bacterial overgrowth or abnormal microflora (dysbiosis)
within the gut have been described in the past in CD patients
(Manichanh et al., 2006; Lupp et al., 2007; Sartor, 2008),
and they are present in the early stages of CD being further
amplified by antibiotic treatment (Gevers et al., 2014; Kowalska-
Duplaga et al., 2019). Also, healthy first-degree relatives of
CD patients show an altered microbiota suggesting a genetic
predisposition to develop this condition (Joossens et al., 2011).
In addition, there are differences in the diversity of microbiota
depending on disease activity: between inflamed areas in different
IBD phenotypes, and in microbial metabolism (Forbes et al.,
2016; Franzosa et al., 2019; Lloyd-Price et al., 2019). Overall,
the dysbiotic profile in CD patients is characterized by a
decrease in Bacteroidetes and Firmicutes, and an increase in
Enterobacteriaceae microbial populations (Frank et al., 2007;
Kostic et al., 2014; Khan et al., 2019). The decrease in
Faecalibacterium prausnitzii has been widely observed (Hedin
et al., 2016), which is a bacterium with an important role in
the regulation of Th17 cells (Zhang M. et al., 2019). In fact,
this species, together with Lactobacillus and Bifidobacterium,
among others, display a protective role in intestinal inflammation
(Hrdý et al., 2020; Singh et al., 2020). Additionally, reduced
abundance of Lachnospiraceae and Ruminococcaceae families
producing short-chain fatty acids (SCFAs) are associated with
poor response to TNF-α biologic therapy and frequent relapses
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TABLE 1 | Risk factors for bacterial translocation in Crohn’s disease include intestinal dysbiosis, altered intestinal integrity, and immune dysfunction.

Altered parameter Study Observation

Dysbiosis ↓ Bacteroidetes
↓ Firmicutes
↑ Enterobacteriaceae

Kostic et al., 2014 The authors give an overview of the microbial changes observed in IBD.

↓ Faecalibacterium
prausnitzii

Hedin et al., 2016 CD patients show intestinal dysbiosis associated with reduced diversity of
microbiota and lower counts of F. prausnitzii. This bacterial species regulates Th17
responses.

↓ Lactobacillus
↓ Bifidobacterium

Hrdý et al., 2020;
Singh et al., 2020

Treatment with specific Bifidobacterium and Lactobacillus probiotic strains reduce
experimental intestinal inflammation and induce tolerogenic dendritic cells.

↓ Lachnospiraceae
↓ Ruminococcaceae

Yilmaz et al., 2019 Reduced abundance of Lachnospiraceae and Ruminococcaceae families is
associated with poor response to anti-TNF-α and frequent relapses.

↑ Desulfovibrio Metwaly et al., 2020 Enrichment of sulfate-reducing bacteria in active CD patients and mice with
microbiota from CD patients with active disease.

↑ Mycobacterium avium
paratuberculosis

Schwartz et al., 2000;
Naser et al., 2004

Increased counts of the intracellular pathogen MAP have been detected in tissue
and blood samples from CD patients.

↑ Adherent-invasive
Escherichia coli

Darfeuille-Michaud
et al., 2004

High prevalence of adherent-invasive E. coli in the ileal mucosa of CD patients.

↑ Clostridiodes difficile Razik et al., 2016 IBD patients have increased Clostridiodes difficile infections.

↑ Debaryomyces hansenii Jain et al., 2021 Expansion of D. hansenii fungi in inflamed intestinal tissue is associated with
reduced mucosal healing in IBD.

↑ Caudovirales Norman et al., 2015 Increased richness of Caudovirales bacteriophages in fecal samples obtained from
IBD patients.

Intestinal
permeability

↓ MUC-1, 3, 4, 5B Buisine et al., 1999 Reduced gene expression of mucin genes in healthy and inflamed mucosa of CD
patients.

↓ E-cadherin
↓ β-catenin

Kosovac et al., 2010 Patients with CD and NOD2 polimorphisms show increased BT associated an
altered composition of the epithelial barrier.

↑ Claudin-2
↓ Claudin-3, 5, 8
↓ Occludin

Zeissig et al., 2007 The authors describe a barrier dysfunction in active CD patients due to altered
epithelial tight junction structure.

Immune
response

Paneth cells Wehkamp et al., 2005 Reduced secretion of antimicrobial peptides in intestinal mucosal extracts of CD
patients.

Macrophages Kamada et al., 2008;
Smith et al., 2009

Macrophages contributing to chronic intestinal inflammation in CD produce IL-6,
IL-23, TNF-α and INF-y proinflammatory cytokines and display an impaired
clearance of bacteria.

Neutrophils Hayee et al., 2011 Neutrophils from CD patients show reduced respiratory burst and release
extracellular traps which impair intestinal integrity.

Eosinophils Yantiss, 2015;
Click et al., 2017

Increased eosinophilia in mucosal biopsies and peripheral blood in patients with CD.

Dendritic cells Middel et al., 2006;
Baumgart et al., 2009;
Senhaji et al., 2015

Patients with CD have increased amount of mature dendritic cells expressing high
levels of co-stimulatory molecule CD40 and excessive inflammatory response.

ILC1 Bernink et al., 2013 High frequency of IFN-γ-producing ILC1 cells in inflamed intestines of CD patients.

ILC2 Bailey et al., 2012 IL13-producing ILC2 cells contribute to collagen deposition in fibrotic intestinal
samples of CD patients.

ILC3 Geremia et al., 2011 Accumulation of ILC3 cells that produce IL-17, IL-22, and IFN-γ in response to
IL-23 in inflamed intestines of CD patients.

Th1 Fuss et al., 1996;
Monteleone et al.,
1997; Parronchi et al.,
1997; Pizarro et al.,
1999

Crohn’s disease is associated with type 1 T-helper lymphocyte intestinal responses
and secretion of IFN-γ, IL-12 and IL-18.

Th17 Fujino et al., 2003;
Cummings et al., 2007;
Geremia et al., 2011

Immunity mediated by type 17 T-helper responses is relevant in CD as
demonstrated by increased expression of Th17-related cytokines and increased
susceptibility to CD in patients with IL-23R gene variants.

Treg Chamouard et al.,
2009; Hovhannisyan
et al., 2011; Qiao et al.,
2013; Ueno et al., 2013

Reduced tolerogenic regulatory T cell response in CD patients is associated with
reduced expression of regulatory-associated transcription factors and a Th17-like
cytokine profile observed in Tregs.
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in CD (Yilmaz et al., 2019). Also, the altered gut microbiome is
associated with enrichment of sulfate-reducing bacteria in active
CD patients and mice with microbiota from CD patients with
active disease (Metwaly et al., 2020).

Decreased complexity and diversity of commensal bacteria
that promote intestinal homeostasis play a critical role in CD due
to the disrupted capacity of the microbiota to exclude pathogens,
which can favor inflammatory responses. Mycobacterium avium
paratuberculosis (MAP) is an obligate intracellular pathogen
detected in intestinal samples of CD patients by different
molecular biology and cell culture techniques (Mishina et al.,
1996; Schwartz et al., 2000). The contribution of MAP in the
pathogenesis of CD was further confirmed by the detection of
cultivable MAP in the blood of patients with CD (Naser et al.,
2004). Therefore, MAP has been proposed as a potential etiologic
infectious agent of CD, although this hypothesis remains to be
validated (McNees et al., 2015). Another microbial pathogen
such as adherent/invasive E. coli has been detected in biological
samples of the ileum in patients with CD (Darfeuille-Michaud
et al., 2004), and more interestingly, there is an increased severity
of CD in those patients with high levels of serum antibodies
detecting porin C present in the outer membrane of E. coli
(Mow et al., 2004). Clostridiodes difficile is also an opportunistic
pathogen in IBD patients frequently causing symptoms ranging
from diarrhea to fulminant colitis and death (D’Aoust et al.,
2017). IBD patients have a higher risk of Clostridiodes difficile
infection, which is associated with longer hospitalization periods
and increased resource costs (Nguyen et al., 2008; Razik et al.,
2016). Despite literature showing a clear perturbation in IBD
microbiota, it is not a clear cause–effect link. It is known that
the inflammatory state in CD affects the microbial composition
(Craven et al., 2012) but also that IBD microbiota can induce
intestinal inflammation (Nagao-Kitamoto et al., 2016). In this
regard, treatments addressed to restore healthy gut microbiota
in IBD, such as administration of prebiotics and probiotics
(Limketkai et al., 2020), antibiotic therapy (Castiglione et al.,
2003), and fecal microbiota transplantation (Britton et al., 2020)
need further investigations.

Antibiotics used on patients with inflammatory intestinal
disease are targeted toward bacteria that, in turn, favor the
colonization of intestinal niches by other members of the
intestinal microbiota. Relevance of fungal microbiota dysbiosis
have been described in patients with CD (Liguori et al., 2016), and
antibodies to anti-Saccharomyces cerevisiae have been detected
in CD (Seow et al., 2009). The interaction between intestinal
fungi and host immune system occurs through receptors of
the host innate immune system such as Dectin-1 (Iliev et al.,
2012). Recently, poor mucosal healing in CD has been associated
with overgrowth of Debaryomyces hansenii underlying that not
only bacteria but also fungi species may modulate the intestinal
inflammatory disease (Jain et al., 2021). Relevance of fungi
in mucosal healing was evidenced in the study of Jain et al.
(2021) by detecting the presence of D. hansenii in intestinal
wounds with impaired healing after antibiotic treatment, whereas
the administration of antifungal amphotericin B reduced fungi
detection and increased wound regeneration. Oral gavage of
D. hansenii altered crypt regeneration in conventional mice not
treated with antibiotics and increased the severity of experimental

colitis. The authors confirmed that macrophages were recruited
in the areas colonized by D. hansenii and that CCL5 and
type I IFN secreted by myeloid cells are required to alter
mucosal healing, supporting CCL5 as a potential target in CD.
Additionally, changes in the enteric virome associated with an
expansion of Caudovirales bacteriophages have been described
in patients with CD (Norman et al., 2015). Viral infection by
the enteric murine norovirus in experimental models carrying
the CD susceptibility gene ATG16L1 is associated with multiple
pathologic abnormalities in the intestine (Cadwell et al., 2010).
Even if increasing knowledge is required to understand the
interactions existing between intestinal microbiota and the host
during CD, we can assume that intestinal microbes play an active
role in the progression of intestinal inflammatory disease.

The intestinal epithelium acts as a physical and antimicrobial
barrier against pathogenic bacteria and environmental antigens
(Okamoto and Watanabe, 2016). When the intestinal barrier
is disrupted, commensal microbiota, which in physiological
conditions exist in a symbiotic relationship with humans, can
cross the epithelium and contribute to intestinal inflammation.
The intestinal mucosal barrier is composed of both the
outer mucus layer, which is comprised by secreted mucinous
and antibacterial components, and the inner subepithelial
elements involving the immune system (Salim and Söderholm,
2011). Epithelial cells together with M-cells, mucus-secreting
globet cells and Paneth cells form a polarized monolayer
structure linked by apical junctions which are formed by
tight junctions and subadjacent adherens junctions (Turner,
2009). The junctional complex is composed of transmembrane
and peripheral proteins including actin, claudins, occludins,
zonula occludens (ZO)-1, and junctional adhesion molecules.
Enteric glial cells located in the intestinal mucosa also regulate
the permeability of the intestinal epithelial barrier in CD by
producing 15-hydroxyeicosatetraenoic acid, a polyunsaturated
fatty acid that increases the expression of ZO-1 (Pochard
et al., 2016). Crucial functions of the intestinal barrier include
maintenance of intestinal homeostasis by allowing the absorption
of essential nutrients, as well as tolerance to commensal
bacteria, and prevention of the entry of injurious bacterial
components. A disturbance in one of the components that
are involved in the epithelial barrier function can increase
its permeability leading to an impaired ability to avoid BT.
Altered expression of mucins 1, 3, 4, and 5B in the ileal
mucosa of patients with CD favor the binding of microbes
to the intestinal surface (Buisine et al., 1999). Additionally,
the protein composition of tight and adherens junctions on
intestinal cell–cell contacts is altered on CD patients (Zeissig
et al., 2007; Kosovac et al., 2010). Disturbances in the permeability
of the intestinal barrier associated with a derangement of the
tight junction were also probed by freeze–fracture electron
microscopic analysis (Marin et al., 1983a,b). Reduced integrity of
the intestinal barrier leads to an increased absorption of luminal
microbial antigens and serum concentrations of endotoxins,
lipopolysaccharide-binding protein (LBP), and CD14s, which
are markers of disease activity in CD (Pastor Rojo et al., 2007;
Lakatos et al., 2011).

The importance of genetic background as a contributing
factor to the impaired barrier function in CD comes from
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studies with first-degree relatives of patients with CD showing
that NOD2 3020insC mutation is associated with increased
mucosal permeability (Irvine and Marshall, 2000; Buhner et al.,
2006). Also, a gene polymorphism in adherens junction protein
E-cadherin (CDH1 gene) was observed in some patients with
CD resulting in a cytoplasmic mis-localization of the protein
pointing to a defect in the intestinal barrier structure (Muise
et al., 2009). From a clinical point of view, increased intestinal
permeability has been reported to predict an increased risk of
relapse in CD patients on remission (Arnott et al., 2000; Tibble
et al., 2000) and is considered as a risk factor for CD onset (Turpin
et al., 2020). Serum proteins and antibodies related to immune
responses to intestinal microbiota can predict the development
of CD up to 5 years before the diagnosis (Torres et al., 2020).
Therefore, leaky gut in patients with CD may allow the passage
of intestinal microbes across the intestinal epithelium and drive
local and systemic proinflammatory responses that worsens the
prognosis in patients with CD.

As a consequence of the impaired intestinal integrity, CD
patients need to respond to the frequent bacterial challenges
to which they are exposed to and ensure the clearance of
translocating bacteria. A competent intestinal antimicrobial
peptide response is required to protect host from pathogens
and to provide tolerance to normal flora (O’Neil et al., 1999;
Ramasundara et al., 2009). Several studies have shown that
Paneth cells in CD patients display alterations in the production
and the activity of different antimicrobial peptides such as
cathelicidin (Schauber et al., 2006; Tran et al., 2017), α-defensins
(Wehkamp et al., 2005; Elphick et al., 2008), and β-defensins
(Kocsis et al., 2008; Schroeder et al., 2011), which are detrimental
in the control of BT. Mutations in ATG16L1 and NOD2 in
Paneth cells are associated with abnormalities in packaging
and secretion of antimicrobials (Liu et al., 2014; VanDussen
et al., 2014), therefore, affecting the antibacterial activity of the
intestinal barrier by reduced secretion of mucosal α-defensins
observed in CD (Wehkamp et al., 2004, 2005; Kobayashi et al.,
2005; Petnicki-Ocwieja et al., 2009). Intriguingly, serum levels
of α-defensins, but not β-defensins, are increased in patients
with CD and they have been associated with serum C-reactive
protein and TNF-α (Yamaguchi et al., 2009), while in healthy
donors, peripheral α-defensins remain constitutively expressed
and β-defensins are induced by bacterial-derived products (Fang
et al., 2003). We have demonstrated that bactDNA can modulate
the expression of β-defensin (DEFB) 2 and cathelicidin LL-
37 through the mediation of NOD2 status by the signaling
pathway of nuclear factor (NF)-κB in CD (Gutiérrez et al.,
2011). This evidence suggests that the NOD2 gene regulates
signaling pathways linked to defensins and cathelicidins through
the nuclear factor (NF)-κβ (Wehkamp et al., 2004; Voss et al.,
2006). Consequently, patients with a NOD2 mutation have an
increased likelihood of developing ileal CD, and it is commonly
accepted that an impaired NOD2 function can lead to a poor
host clearance of bacteria, which can promote and perpetuate
intestinal inflammation. A reduction in bacterial clearance has
also been related to polymorphisms in ATG16L1 and IRGM
genes, autophagy genes related to CD susceptibility (Hampe
et al., 2007; Parkes et al., 2007; Rioux et al., 2007). A mutation

on ATG16L1 and IRGM genes induces an injured autophagy
pathway, resulting in a defective elimination of damaged
cellular organelles and long-lived proteins as well as an altered
degradation of intracellular bacteria.

Consequently, increased BT burden and altered microbial
clearance in CD patients will induce sustained intestinal
inflammatory responses that will be the topic addressed in the
following section.

INFLAMMATORY RESPONSE TO
BACTERIAL TRANSLOCATION IN
CROHN’S DISEASE

The GI tract represents the largest surface area exposed to a wide
and heterogeneous community of bacterial antigens. The gut is
strictly regulated by innate and adaptive defense mechanisms,
which altogether interact with commensal bacteria to promote
the maintenance of intestinal homeostasis. Since CD is an
immune-mediated condition triggered by environmental factors
that imbalance the gut microbiota, perturb the intestinal barrier,
and abnormally stimulate the gut immune response, an alteration
in any of these compartments determines how the inflammatory
immune response develops and may predispose to a disturbance
of the bowel, leading to chronic inflammation. Here, we will
describe in each one of the components involved in the process
of BT and its role in the gut immune response and inflammation,
which are summarized in Figure 1.

Intestinal barrier permeability increases the bacterial pressure
to which the immune system needs to respond. When BT
occurs, the first line of defense against microbial pathogens
in the gut is composed of germline-coded pattern-recognition
receptors (PRRs), which belong to the innate immune system
(Medzhitov and Janeway, 2002). These receptors are located
on both the extracellular or the intracellular side, and they
recognize molecular patterns that are conserved in bacteria:
pathogen-associated molecular patterns (PAMPs). PRRs are
composed of transmembrane Toll-like receptors (TLRs), which
have a key role in microbial recognition and induction of
antimicrobial genes, and cytosolic NOD receptors whose main
activity relies on bacterial clearance (Cario, 2005). Bacterial
antigens such as endotoxin, forming complexes with LBP or DNA
can sense and activate monocytes and macrophages via TLR
receptors triggering the release of proinflammatory cytokines and
chemokines TNF-α, IL-6, IL-8, IL-21, or IFN-γ through (NF)-
κβ pathway (Hemmi et al., 2000; Wagner, 2002), similar to what
MDP does via NOD2 (Lala et al., 2003; Eckmann and Karin,
2005) contributing to microbiota dysbiosis and tissue damage.

NLRs are important mediators in the control of intestinal
inflammation, since the presence of gene polymorphisms in
these molecules confers susceptibility to CD (Cummings et al.,
2010). The activation of NLRs by PAMPs or danger-associated
molecular patterns (DAMPs) result in downstream NF-kB
signaling or caspase-1-mediated formation of inflammasomes
(Rubino et al., 2012). NLRP3 inflammasome is activated in
CD (Lazaridis et al., 2017), and its inhibition suppress the
release of proinflammatory mediators (Liu et al., 2017). However,
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FIGURE 1 | Bacterial translocation in Crohn’s disease. Intestinal tolerogenic mechanisms are altered in Crohn’s disease leading to sustained inflammatory status.
Integrity of the epithelial barrier is altered due to reduced expression of tight junction proteins. Increased populations of Enterobacteriaceae and pathogens, as well
as reduced Bacteroidetes, Firmicutes, and populations of bacteria producing short chain fatty acids define intestinal dysbiosis in CD. Paneth cells display alterations
in the production and secretion of antimicrobial peptides that can be explained by the gene status (NOD2). Translocating bacteria or its products can activate antigen
presenting cells as macrophages and dendritic cells. Gene variants in ATG16L1 and NOD2 are associated with abnormalities in the secretion of antimicrobial
peptides by Paneth cells and altered function of intestinal DCs and macrophages. Dendritic cells express higher levels of CD40 leading to increased interactions with
T-lymphocytes and production of proinflammatory cytokines. Low regulatory T-lymphocyte differentiation will favor Th1 and Th17 subsets that will further produce
proinflammatory cytokines. Neutrophils and eosinophils will be recruited to the site of infection and further contribute to induce an inflammatory environment in the
attempt to eliminate translocating bacteria. AMPs, antimicrobial peptides; IgA, Immunoglobulin A; IL, interleukin; TGF, transforming growth factor; TNF, tumor
necrosis factor; IELs, intraepithelial lymphocytes; ILCs, innate lymphoid cells; SCFAs, short chain fatty acids; TJPs, tight-junction proteins; TREG, regulatory T-cells.
This figure has been created using the BioRender platform.

results from experimental models show controversial results
since adverse and protective roles for NLRP3 have been reported.
Attenuated colitis was described in both NLRP3-deficient mice
(Bauer et al., 2012) and after selective blockade of NLRP3
(Perera et al., 2018) in different animal models of intestinal
inflammation, whereas inflammatory progression associated with
altered intestinal integrity and increased mortality have also been
outlined in NLRP3 knockout mice with experimental colitis (Zaki
et al., 2010). It seems that the contribution of NLRP3 to the
pathogenesis of IBD is highly influenced by the environment,
including intestinal microbiota, as this molecule not only controls
potential invading pathogens (Song-Zhao et al., 2014) but also
participates in an inflammatory lytic cell death of innate immune
cells mediated by caspase-1, known as pyroptosis (Fink and
Cookson, 2006). NLRC4 is another relevant member of the NLR
family able to detect flagellin and components of the type III
bacterial secretory apparatus. NLRC4 inflammasome expressed
in intestinal phagocytes seems to become relevant in the
discrimination of pathogen and commensal microbiota through
the production of IL-1β (Franchi et al., 2012). Additionally,
NLRC4-deficient mice were more susceptible to experimental

colitis associated with increased mortality following flagellated-
Salmonella infection (Carvalho et al., 2012). Recent studies
demonstrated that NLRP6 inflammasome can be activated either
by lipoteichoic acid from Listeria monocytogenes (Hara et al.,
2018) or via interaction with LPS and ATP (Leng et al.,
2020). NLRP6 not only becomes relevant in the host immune
response to microbial infections through the production of IL-
18 but also mediates the secretion of mucins by globet cells
(Wlodarska et al., 2014). Indeed, NLRP6-deficient mice showed
more severe experimental colitis associated with a thinner mucus
layer, susceptibility to bacterial infections, and altered intestinal
microbiota (Elinav et al., 2011; Wlodarska et al., 2014). AIM2
belongs to the innate immune receptors sensing self or foreign
cytosolic double-stranded DNA that results in the activation of
caspase-1 mediated by the AIM2 inflammasome and consequent
release of processed IL-1β and IL-18 (Hornung et al., 2009). AIM2
protects against intestinal inflammation induced by experimental
colitis by limiting the growth of E. coli and by affecting to the
production of antimicrobial peptides (Hu et al., 2015).

In this first-line defense system, macrophages and dendritic
cells (DC) play a key role. Alterations in these cell populations
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have been widely studied in the context of human IBD.
Macrophages derived from the peripheral blood monocytes from
CD patients showed impaired secretion of cytokines after E. coli
insult and TLR ligation, contributing to a defective bacterial
clearance (Smith et al., 2009). In addition, these cells showed an
altered expression of surface markers, abundant secretion of IFN-
γ, IL-6, IL-23, and TNF-α (Kamada et al., 2008). TNF-α and IFN-
γ are major contributors to intestinal permeability (Cao et al.,
2013; Xu et al., 2019). Intestinal DC directly samples luminal
bacteria and transfers bacterial antigens to the mesenteric lymph
nodes and Peyer’s patches to recruit neutrophils and eosinophils,
and to modulate the subsequent T-cell responses (Rescigno et al.,
2001; Hart et al., 2005).

Neutrophils recruited to the site of infection phagocyte and
kill invading pathogens through reactive oxygen species (ROS)
production, neutrophil extracellular traps (NETs), and generation
of lytic proteins (Wéra et al., 2016). Neutrophils can also
orchestrate local immune responses by releasing cytokines and
chemokines such as IL-8, CXCL1, CCL3, CCL4, and CCL20
among others, that can interact and recruit leukocytes from
innate and adaptative immune populations including other
neutrophils, basophils, eosinophils, macrophages, monocytes,
DCs, and T cells (Tecchio and Cassatella, 2016). The proper
functioning of neutrophils is crucial to resolve the inflammation
induced by translocating pathogens since the lack of function
or an increased neutrophil activity may be the origin of
intestinal inflammation. While accumulation of neutrophils in
the lamina propria correlates with the activity of the disease
in UC (Bressenot et al., 2015), several research lines report
deficient neutrophil activity in CD. Some studies suggest that
neutrophils from CD patients show impaired ROS generation
(Hayee et al., 2011); however, it is not clear if there exists
an intrinsic failure in neutrophils activity in CD or if this
is due to defective macrophage signaling and consequent
reduced neutrophil recruitment within the inflammatory area
(Segal and Loewi, 1976). Reduced production of the neutrophil
chemokine IL-8 support the abnormal neutrophil chemotaxis
observed in inflammatory lesions during CD (Marks et al.,
2006). The reduced activity of neutrophils against luminal
microbes may partially explain the chronic local and systemic
inflammation underlying CD induced by a permanent activation
of macrophages and T cells (Segal, 2018). On the other hand,
eosinophilia is present in CD mucosal biopsies, and it is specially
abundant in mucosal nerves (Yantiss, 2015). Some clinical studies
suggest peripheral blood eosinophilia as a marker of worse
outcome in CD patients (Click et al., 2017).

Under physiological conditions, DC ensures homeostasis
inducing a tolerogenic intestinal state (Kretschmer et al., 2005;
Tsuji and Kosaka, 2008; Raker et al., 2015). However, the
proinflammatory intestinal milieu in CD hinders the tolerogenic
profile of these cells (Iliev et al., 2009). During inflammation,
there is an increase in the number, maturation, and retention of
DC, contributing to inflammation (Middel et al., 2006; Verstege
et al., 2008). In CD, DC express higher levels of CD40 leading
to increased interactions with T-lymphocytes and the production
of great amounts of proinflammatory cytokines (Senhaji et al.,
2015) such as IL-6 and IL-12, which are related to microbial

changes (Ng et al., 2011) and dysregulation in T-cell apoptosis
(Atreya et al., 2000) and, also, IL-8 and TNF-α (Baumgart et al.,
2009). TNF-α is the key effector cytokine driving tissue injury
during intestinal inflammation (Garrett et al., 2007); it can
modulate intestinal mucus secretion and composition (McElroy
et al., 2011) and the epithelial barrier function (Al-Sadi et al.,
2016; Grabinger et al., 2017). In addition, NOD2 variants, which
are most widely detected genetic risk variants associated with CD
pathogenesis, disturb DC bacterial sensing, cytokine production,
and antigen presentation pathways (Cooney et al., 2010).

Innate lymphoid cells (ILC) cells are also involved in the
innate immune response in CD. Its biological relevance lies in
their capacity to sense environmental signals and to respond
with the secretion of cytokines, producing a profound impact
on epithelial cells (Maloy and Powrie, 2011; Sonnenberg and
Artis, 2012), and conditioning T-cell responses (von Burg et al.,
2015). In CD patients, there is an expansion of an intraepithelial
ILC1 subset that produces IFN-γ in response to stimulation
with IL-12 and IL-15 (Bernink et al., 2013; Fuchs et al., 2013),
possible implication of ILC2 in the development of intestinal
fibrosis through IL-13 secretion (Bailey et al., 2012), and
ILC3 accumulation in inflamed areas, where they contribute
to inflammation through increased IL-17 production and the
recruitment of other immune cells (Geremia et al., 2011).

Mucosal CD4+ T-cells are central players in maintaining a
proinflammatory cytokine response by pushing a predominantly
T-helper type 1 (Th1)-mediated inflammatory state in
environments where IL-12 is released by antigen-presenting cells
(APCs). For many years, it was accepted that CD was mainly
mediated by Th1 cells (Brand, 2009), based on the fact that an
elevation of the Th1 cytokines was observed in CD patients
(Fuss et al., 1996; Monteleone et al., 1997; Parronchi et al., 1997;
Pizarro et al., 1999). However, further studies had led to the
identification of another subset of CD4+ T characterized by
the production of IL-17A, IL-17-F, and IL-22, which mediate
T-helper type 17 (Th17) cells responses in CD (Strober and
Fuss, 2011). An increase in Th17 cytokines produced by Th17
cells in inflamed gut mucosa (Fujino et al., 2003; Nielsen et al.,
2003) as well as isolation and characterization of Th17 cells from
gut mucosa of patients with CD (Annunziato et al., 2007) has
supported the role of this cell population in IBD pathogenesis.
CD displays a complex frame where Th1 and Th17 responses
shift and depend on disease progression (Friedrich et al., 2019).

The differentiation of naïve T cells to Th17 cells is induced
primarily by IL-6 and transforming growth factor (TGF)-
β (Bettelli et al., 2006; Ivanov et al., 2006) and further
reinforced by IL-1β and IL-23 (Langrish et al., 2005; Chung
et al., 2009). IL-23 displays a central role in the maintenance
and terminal commitment of naïve cells (Stritesky et al.,
2008; McGeachy et al., 2009) and is implicated on the
proliferation and expansion of Th17 cell populations (Veldhoen
et al., 2006; Bettelli et al., 2007). IL-23R signaling in T
cells drives the accumulation of intestinal Th17 cells while
reducing the differentiation of tolerogenic FoxP3+ T-cells,
as well as a reduced production of IL-10 by T-cells (Ahern
et al., 2010). IL-23 induces T-cell expression of IL-17A, IL-
17F, TNF-α, and granulocyte macrophage colony-stimulating
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factor (GM-CSF) (Langrish et al., 2005; Tait Wojno et al., 2019).
Increased expression of IL-17A and IL-17F has been detected in
the mucosa of patients with active CD (Fujino et al., 2003; Nielsen
et al., 2003; Hölttä et al., 2008; Seiderer et al., 2008; Geremia
et al., 2011). In addition, genome association analysis has revealed
many IL-23R variants linked with CD (Cummings et al., 2007;
Cotterill et al., 2010), and some IL-23R loss of function mutations
are protective in both UC and CD (Kim et al., 2011). Therapies
targeted to IL-23 and its signaling pathways are promising
approaches in CD treatment as observed in other inflammatory
disorders such as psoriasis or multiple sclerosis (Neurath, 2017;
Visvanathan et al., 2018). Antibodies targeting the IL-23 signaling
are classified in those recognizing the p40 subunit shared by IL-
12 and IL-23 or the p19 subunit unique in IL-23. Ustekinumab
is an anti-p40 antibody with a favorable safety profile due to
low rate of adverse events that shows a high rate of response
and induce remission in moderate to severe CD patients (Feagan
et al., 2016). Results from a phase 2 clinical trial in CD patients
who failed in anti-TNF-α showed that selective IL-23 blockade
using brazikumab, an anti-p19 antibody, was associated with
clinical improvement at weeks 8 and 24, and higher serum
levels of IL-22 (Sands et al., 2017). Similarly, another anti-IL-
23-specific antibody, risankizumab, induced clinical remission in
CD patients with active disease at week 12 (Feagan et al., 2017).
Biological treatments targeting the IL-17 signaling are effective
in psoriasis (Langley et al., 2014). Nevertheless, antibody therapy
against IL-17, secukinumab, and its receptor IL-17R, brodalumab,
have demonstrated unexpected results in CD, since two different
clinical trials reported that the administration of secukinumab
and brodalumab in moderate to severe CD patients were not
effective and reported more adverse events and worsening of CD
(Hueber et al., 2012; Targan et al., 2016).

IL-22 is another Th17-derived cytokine whose implication in
IBD has been controversial. Some studies point to a protective
role in the intestinal epithelium, stimulating the production
of antimicrobial peptides (Okumura and Takeda, 2017), mucus
secretion (Sugimoto et al., 2008), intestinal cell proliferation and
survival (Zhang X. et al., 2019), and mucosal healing (Patnaude
et al., 2021), while others mark that IL-22 may drive intestinal
inflammation and gut epithelial cell death (Zha et al., 2019).
These data suggest that its role during intestinal inflammation
is highly context dependent. In fact, in the presence of
eosinophilia, which is common during intestinal inflammation,
IL-22 protective actions could be insufficient due to an increase
in IL-22-binding protein (IL-22BP) (Martin et al., 2016).

Intensive research aiming to elucidate the contribution of
Th17 responses to IBD have reported that IL-17 may exacerbate
(Zhang et al., 2006) or protect (Yang et al., 2008; O’Connor
et al., 2009) against intestinal inflammation depending on the
experimental model studied. Results from Zhang and colleagues
showed that IL-17R knockout mice presented reduced activity of
experimental colitis induced by trinitrobenzenesulfonic (TNBS)
acid. In line with this, the treatment with a soluble IL-17
receptor IgG fusion lessened intestinal inflammation induced by
TNBS. On the other hand, studies conducted in animal models
of colitis induced either by dextran sulfate sodium in IL-17
knockout mice or by CD45RBhi adoptive transfer using IL-17
or IL-17R-genetically deficient T-cells revealed an accelerated

disease, therefore suggesting a protective role of IL-17 in those
experimental systems. In order to determine the contribution of
both Th1 and Th17 responses in CD, Sakuraba et al. isolated
dendritic cells and lymphocytes from mesenteric lymph nodes
of patients with CD. The authors observed that isolated CD4+

T-cells were producing increased levels of IFN-γ and IL-17,
but isolated dendritic cells were activating CD4+T-lymphocytes
toward the production of IFN-γ (Sakuraba et al., 2009). Taken
together, these evidences suggest that BT might contribute to
modulate the inflammatory response in CD via enhancing a
Th1/Th17 response associated with the presence of bacteria or
their products, which perpetuates the progression of the disease
in a subgroup of patients.

The intestinal Treg population is relevant in the inflammatory
responses to BT in CD, as they oversee tissue repair and
immunological tolerance toward food antigens and microbiota
in the gut, contributing to intestinal homeostasis (Kim et al.,
2016; Tanoue et al., 2016; Xu et al., 2018). They belong to CD4+

lymphocytes and can suppress the immune response interacting
with different components of the innate and adaptive immune
response. Treg cells are highly heterogenous and express different
lineage-specific transcription factors and cellular markers in
different scenarios (Zhang et al., 2020). Treg cell populations
produce IL-10 and TGF-β, and they can be naturally synthesized
through thymic selection or induced after antigenic stimulation
outside the thymus (Roncarolo et al., 2006; Sakaguchi et al.,
2010), also in the gut by mucosal CD103+ dendritic cells via
a TGF-β and retinoic acid-dependent mechanism (Coombes
et al., 2007). Treg secretion of IL-10 is important to control
the gut balance. In fact, intestinal Th1-mediated inflammatory
responses result in spontaneous colitis in IL-10-deficient mice
(Davidson et al., 1996), and polymorphisms in the human
IL-10R result in exacerbated intestinal immune responses
(Glocker et al., 2009).

Changes in the percentage of Treg cells in patients with IBD
have been reported (Maul et al., 2005), and a decreased number
of CD4+ CD25+ FoxP3+ Treg cells have been observed in
the lamina propria of patients with CD-related NOD2 variants
(Rahman et al., 2010). Also, mutations in FOXP3 gene are
related to the development of IBD (Okou et al., 2014). In the
inflammatory milieu of CD, some groups have reported an
enhanced recruitment of Treg cells in mucosal areas, suggesting a
deficient suppressive activity during inflammation (Chamouard
et al., 2009). These could be explained through changes in its
cytokine profile similar to Th17 cells in the context of IBD
(Hovhannisyan et al., 2011; Ueno et al., 2013) and also a
diminished expression of transcription factors involved in Treg
regulation in CD (Qiao et al., 2013). On the other hand, recently,
a subset of Treg CD161+ cells has been found highly enriched in
the mucosa of CD patients, which are involved in wound healing
and associated with reduced inflammation (Povoleri et al., 2018).
All of these suggest that different Treg subsets could behave
differentially in IBD. Due to its immunomodulatory capacity,
therapies targeting this cell population are being assessed with
promising results (Desreumaux et al., 2012; Trotta et al., 2018;
Clough et al., 2020).

The microbiome is key in the equilibrium between Treg and
Th17 in the gut (Lochner et al., 2011; Ohnmacht et al., 2015;
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Sefik et al., 2015). Microbiota from IBD donors into germ-
free mice reduced the presence of RORγt+ Treg cells but
increased Th17 and Th2 populations (Britton et al., 2019).
On the other hand, commensal microbiota can promote
CD4+ CD25+ FoxP3+ Treg cells in vivo, which control
the innate inflammatory cascade to translocating microbes by
reducing proinflammatory cytokine production, reducing T-cell
proliferation, reducing dendritic cell co-stimulatory molecule
expression, and attenuating (NF)-κβ activation (O’Mahony
et al., 2008). SCFAs produced by Bifidobacteria and Clostridia,
like butyrate, cause inhibition of histone deacetylase (HDAC),
promoting FoxP3 expression (Arpaia et al., 2013) and production
of retinoic acid (Smith et al., 2013; Schilderink et al.,
2016) polysaccharide A of Bacteroides fragilis induces an
intestinal tolerogenic environment by promoting the IL-10-
producing Foxp3+ Treg population (Round and Mazmanian,
2010), and indole-3-aldehyde, produced by Lactobacillus reuteri,
is a tryptophan precursor involved in the plasticity of T
cells (Lamas et al., 2016). In addition, Clostridiodes spp.
mixture transplantation is also associated with increased
counts of intestinal Treg cells in mice (Atarashi et al., 2013;
Narushima et al., 2014).

EFFICACY OF ANTI-TNF-α TREATMENT
IN PATIENTS WITH BACTERIAL
TRANSLOCATION

Biologic treatments including anti-TNF-α, adhesion molecule
inhibitors, and p-40 IL-12/23 inhibitor, ustekinumab, are effective
therapies for patients with moderate to severe IBD (Katsanos
et al., 2019). Anti-TNF-α monoclonal antibodies were the first
biologic agents that demonstrated effectiveness in the treatment
of CD (Rutgeerts et al., 1999; Hanauer et al., 2002; Sands et al.,
2004; Xiao et al., 2016) as TNF-α is increased in the intestinal
mucosa of IBD patients (Breese et al., 1994; Dionne et al., 1997).
Increased intestinal TNF-α could be directly involved in BT, as
it can disrupt intestinal epithelial integrity (Al-Sadi et al., 2016;
Grabinger et al., 2017) and mediate tissue injury (Garrett et al.,
2007). However, it is known that 30–40% of patients with IBD
under anti-TNF therapy show a primary non-response, and up
to 50% may present adverse events or develop secondary non-
response over time (Ben-Horin and Chowers, 2011; Papamichael
et al., 2017). Focusing on the efficacy of anti-TNF-α therapy,
further research has also found that undetectable serum through
concentration of anti-TNF-α levels (Maser et al., 2006) and
decreased free TNF-α binding capacity of anti-TNF-α drugs
(Ainsworth et al., 2008) are predictors of poor response to anti-
TNF-α treatment of patients with CD. Even if serum levels of
TNF-α have also been proposed to predict the efficacy of anti-
TNF-α in CD patients (Martínez-Borra et al., 2002), several
studies have reported that serum TNF-α is not a good predictor
of clinical response to anti-TNF-α therapy (Ogawa et al., 2012).
Besides clinical factors and the development of antibodies against
anti-TNF-α agents (Baert et al., 2003), several other factors such
as BT and a susceptible genotype, intestinal dysbiosis, and even
the Treg population may have a role in this loss of response.

In the past, we investigated the effects of different gene
variants and BT in the efficacy of anti-TNF-α therapy in CD.
We identified a subgroup of CD patients characterized by
the presence of a variant NOD2 genotype, in combination
or not with a variant ATG16L1 genotype, who may need
an intensified anti-TNF-α drug schedule since they showed
increased bactDNA translocation, augmented inflammatory
response, and increased risk of relapse. In detail, the presence
of a variant NOD2 genotype, either alone or combined with
ATG16L1 variant genotype, was associated with increased
bactDNA translocation, and the presence of serum bactDNA
was associated with relapse at 6 months. Patients with bactDNA
showed increased proinflammatory cytokines response that was
further augmented in patients who were also carrying combined
NOD2/ATG16L1 variants. A variant NOD2 genotype correlated
with reduced phagocytic and bactericidal activities in neutrophils
and exacerbated in vitro TNF-α secretion in response to E. coli,
suggesting that neutrophils from CD patients carrying a variant
NOD2 genotype have altered bacterial clearance. Evaluation
on anti-TNF-α therapy on patients carrying NOD2/ATG16L1
combined genotypes revealed that most of these patients were
on an intensified anti-TNF-α drug schedule. Moreover, free anti-
TNF-α levels were significantly decreased in the serum of patients
with bactDNA translocation and a variant NOD2 genotype and,
especially, in patients with a combined NOD2/ATG16L1 variant,
suggesting that increased drug consumption is necessary on these
patients to promote an adequate tolerogenic response (Gutiérrez
et al., 2014). We further demonstrated that the presence of
bactDNA in CD patients is a significant independent risk factor
of short-term relapse in those in remission, especially in the ones
with mucosal lesions, suggesting that the presence of mucosal
damage is not essential for BT, but it contributes to it, in
synergy with bactDNA (Gutiérrez et al., 2016). In line with this,
we observed that the increase in bactDNA and TNF-α in CD
patients could be related with a variant in IL-26 gene. This
variant was associated with an impaired antibacterial clearance,
increased inflammatory cytokines, and an increment in anti-
TNF-α consumption in CD patients (Piñero et al., 2017). This
also contributes to explain why SNPs in IL-26 gene confer
genetic susceptibility to CD (Silverberg et al., 2009). All these
findings suggest that BT aggravates the inflammatory response
and predisposes to risk of relapse and need of intensified anti-
TNF-α drug therapies in susceptible CD patients.

It is well-known that levels of anti-TNF-α determine
the treatment response (Moore et al., 2016), but recent
studies manifest that intestinal dysbiosis might also play
a role in the efficacy of the biologic therapy. Therefore,
initial gut microbial composition and cytokine profile
before anti-TNF-α therapy, as well as anti-TNF-α-induced
microbial changes during the treatment are key in the
achievement of clinical remission (Jones-Hall and Nakatsu,
2016; Franzin et al., 2021) and IBD patients with greater
gut dysbiosis achieve clinical remission later (Aden et al.,
2019). The treatment with anti-TNF-α improves the intestinal
dysbiosis in CD by increasing SCFAs producing bacteria
like Anaerostipes, Blautia, Coprococcus, Faecalibacterium,
Lachnospira, and Roseburia (Kowalska-Duplaga et al., 2020;
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Seong et al., 2020) and decreasing bacterial species associated
with mucosal damage (Busquets et al., 2015; Ribaldone et al.,
2019). The relevance of intestinal microbiota in the efficacy of
current IBD treatments is certainly an open research field that
deserves more in-depth investigations.

Finally, the Treg population has been shown to actively
participate in the loss of response to anti-TNF-α. An increased
peripheral blood Treg cell population after anti-TNF-α therapy
administration is related with increased serum levels of TGF-
β and IL-10 and with the clinical improvement observed in
patients with CD (Di Sabatino et al., 2010; Guidi et al., 2013).
Indeed, we have also reported that Treg population is susceptible
to significantly increase after anti-TNF-α administration in CD
patients bearing a wild-type NOD2 genotype. Nevertheless, CD
patients carrying a polymorphism in NOD2 have lower available
serum levels of anti-TNF-α and an impaired capacity to induce
the Treg population. Altogether, these results suggest an impaired
immunological function in this subgroup of CD patients, as
demonstrated by increased serum levels of TNF-α. Accordingly,
most of these patients were on anti-TNF-α intensified therapy
and showed a more aggressive CD phenotype. Furthermore,
we found that CD patients showing perianal lesions had lower
circulating Treg population. Thus, immunophenotyping Treg
cells in blood of patients with CD can be a fast and helpful
methodology to anticipate not only the clinical response to
biological therapy but also a more aggressive phenotype of CD
(Juanola et al., 2014).

FUTURE DIRECTIONS

To predict CD behavior is a topic of strong interest that
would greatly improve the welfare of patients. The multifactorial
etiology of the disease makes it necessary to consider several
aspects from genetic to environmental factors in an attempt to
determine the risk of relapse (Timmer et al., 1998; Tibble et al.,

2000; Beaugerie et al., 2006; Takeuchi et al., 2006). However, the
clinical value, so far, is limited due to lack of specificity.

As shown in this review, many lines of evidence point to
the translocation of bacterial products as an important player
leading to uncontrolled inflammation in CD patients. Even if the
question still arises about BT as the cause or the consequence of
intestinal inflammation, it is widely accepted that host–bacterial
interactions influence CD. Therefore, evaluating the presence
of gut bacterial antigens at a systemic level may constitute a
new marker for increased risk of relapse among CD patients.
Of particular interest is the combination of BT and CD-related
susceptibility genes such as NOD2, which probably facilitates the
translocation of bacterial antigens; this is worth exploring in the
context of response to TNF-α antagonists and risk of relapse.

Further studies aimed at understanding the interaction
between the immune system, both at systemic and mucosal level,
gut microbiota, and genetic predisposition will help clinicians to
better control and individually treat CD patients in the future.
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