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Abstract: Since it acquired pandemic status, SARS-CoV-2 has been causing all kinds of damage all
over the world. More than 6.3 million people have died, and many cases of sequelae are in survivors.
Currently, the only products available to most of the world’s population to fight the pandemic are
vaccines, which still need improvement since the number of new cases, admissions into intensive
care units, and deaths are again reaching worrying rates, which makes it essential to compounds that
can be used during infection, reducing the impacts of the disease. Plant metabolites are recognized
sources of diverse biological activities and are the safest way to research anti-SARS-CoV-2 compounds.
The present study computationally evaluated 55 plant compounds in five SARS-CoV-2 targets such
Main Protease (Mpro or 3CL or MainPro), RNA-dependent RNA polymerase (RdRp), Papain-Like
Protease (PLpro), NSP15 Endoribonuclease, Spike Protein (Protein S or Spro) and human Angiotensin-
converting enzyme 2 (ACE-2) followed by in vitro evaluation of their potential for the inhibition of the
interaction of the SARS-CoV-2 Spro with human ACE-2. The in silico results indicated that, in general,
amentoflavone, 7-O-galloylquercetin, kaempferitrin, and gallagic acid were the compounds with
the strongest electronic interaction parameters with the selected targets. Through the data obtained,
we can demonstrate that although the indication of individual interaction of plant metabolites with
both Spro and ACE-2, the metabolites evaluated were not able to inhibit the interaction between
these two structures in the in vitro test. Despite this, these molecules still must be considered in the
research of therapeutic agents for treatment of patients affected by COVID-19 since the activity on
other targets and influence on the dynamics of viral infection during the interaction Spro x ACE-2
should be investigated.

Keywords: new drugs agents; medicinal chemistry; in silico protocols; natural products

1. Introduction

The new coronavirus severe acute respiratory syndrome (syn. SARS-CoV-2) has
rapidly evolved to pandemic status and is being reported rapidly around the world. Since
the beginning of the outbreak in China, more than 594 million cases and 6.4 million deaths
have been reported worldwide (“Coronavirus Disease (COVID-19) Situation Reports,”
[n.d.]), and more than 10% of the deaths occurred in Brazil.

Although the infection was initially classified as zoonotic, during the pandemic it
became clear that human-to-human infection was the most frequent model of transmis-
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sion [1], occurring through the deliberate release of aerosols from SARS-CoV-2 carriers,
mainly in closed environments through the upper airways or ocular mucosa [2,3].

Fever and cough are the most common symptoms, followed by fatigue, sputum
production, and shortness of breath [4]. The groups most susceptible to having severe acute
respiratory syndrome and various complications of COVID-19 are the elderly and those
with metabolic syndromes (diabetes, hypertension, and cardiovascular diseases). If not
treated in time, they may progress to severe acute respiratory syndrome, septic shock, and
general haematological disorders (coagulation and metabolic acidosis), leading to death
within days to a few days [4,5].

The complications of COVID-19 have an aggressive inflammatory character, and corti-
coids are the main tools used. The use of corticosteroids in patients with COVID-19 pneumonia
may modulate the inflammatory response, thereby reducing the risk of the infected develop-
ing an acute respiratory syndrome (ARS), however the use of corticoids presents several side
effects, especially in cases of prolonged use in hospitalized patients [6–10].

In the absence of approved effective drug therapies and vaccines, space opens for
screening new drugs for preclinical studies. Numerous studies have demonstrated the
importance of natural product bioprospecting and molecular docking as alternative tools
for the search of efficient compounds to combat COVID-19 [7,11–13]. The in silico protocols
provide a more promising direction for research involving the study and planning of new
drugs with numerous cases of success in various areas of knowledge [14–16], due they offer
important information about the interactions between molecules and their targets of interest,
presenting expressive results in pharmacological experiments, favouring the experimental
design of pre-clinical trials, allowing more promising experimental approaches [17–19]. In
this perspective, computational methodologies have been employed for the identification
and selection of potential new drugs. This approach allows for subsidizing the planning
and development of bioactive compounds, suggesting which of these compounds may be
used in the prevention, treatment, or cure of diseases [14,15,20,21].

In silico techniques achieve success in identifying and selecting molecules with
bioactive potential as human immunodeficiency virus (HIV) protease inhibitors [22–24].
Other advances are the anti-inflammatory drugs specific inhibitors of the cyclooxygenase-
2 (COX-2) enzyme [25,26], the antigripal Relenza™, specific inhibitor of the viral neu-
raminidase enzyme [27] and the anticancer drug Glivec™, specific inhibitor of protein
tyrosine kinase [28,29], in addition to tirofiban, a fibrinogen antagonist [30], saquinavir,
ritonavir and indinavir, drugs for the treatment of HIV [31], dorzolamide, a carbonic
anhydrase inhibitor [32] and the antihypertensive captopril [33].

When there is a large library of compounds to be evaluated, the classification of these
compounds provided by docking, brings a valuable aid in the identification of new drug
candidates, directing the subsequent experimental research for drug development [34],
allowing a substantial economy of financial resources and enabling the achievement of ef-
fective results, which would allow the research to evolve more quickly to subsequent steps.

In silico, therapeutic targets such as Main Protease (Mpro or 3CL or MainPro), RNA-
dependent RNA polymerase (RdRp), Papain-Like Protease, NSP15 Endoribonuclease, Spike
Protein (or Protein S or Spro) and Angiotensin-converting enzyme 2 (ACE-2) [7], can be
tested in silico with phytoconstituents to evaluate the possible reduction of viral adsorption
or even reduce viral replication, entailing new candidates for in vitro and in vivo studies.

This study, based on previous data from our studies of anti-inflammatory plant activity,
aimed to evaluate plant metabolites by in silico protocols against SARS-CoV-2 targets and
to evaluate them in vitro for their potential to inhibit the interaction of SARS-CoV-2 Spro
with human ACE-2, thus allowing the prioritization of classes or compounds for further
prospecting studies based on these natural products and providing new data about the
dynamics of inhibition of virus infection in the host cell.
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2. Results
2.1. Molecular Docking

After geometric, electronic, and spatial optimization by Density Functional Theory
(DFT) studies, the 55 plant metabolites selected were evaluated in the six SARS-CoV-2
chosen targets, resulting in a total of 330 molecular docking calculations. In all targets
evaluated, the best electronic affinity parameters, defined by the Gibbs free binding energy*
(∆Gbind; in kcal/mol), were presented by polyphenols and flavonoids amentoflavone,
7-O-galloylquercetin, kaempferitrin, and gallagic acid (Figure 1), for being ranked among
the five compounds with the best electronic affinity parameters in at least four of the six
selected targets (Table 1).
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interaction parameters with SARS-CoV-2 drug targets, through molecular docking.

To validate the molecular docking protocol, the re-docking of native ligands of crystal
structures selected was carried out. As for the Root Mean Square Deviation (RMSD) of the
redocking of the native ligands of the targets, when these were present, the values were all
below 1.76 Å. Values below 2 Å are reported in the literature as indicative of the accuracy
and reliability of the protocol.

For the SARS-CoV-2 main protease (Mpro), the best affinity parameters were presented
by amentoflavone (−8.7 kcal/mol), followed by 7-o-galloylquercetin (−8.6 kcal/mol),
kaempferitrin (−8.6 kcal/mol), digalloylshikimic acid (−8.4 kcal/mol) and gallagic acid
(−8.2 kcal/mol) (Table 1). It is observed that all selected metabolites presented hydrogen
bond-type interactions with important residues of the active site (Cys145) and with residues
in the vicinity of this region (Figure 2).
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Table 1. Free binding energies values obtained by molecular docking of the 55 plant metabolites against SARS-CoV-2 main drug targets.

MainPro RdRp Papain-like Protease NSP15 Endoribonuclease Spike Protein ACE-2

Ligand ∆Gbind * Ligand ∆Gbind * Ligand ∆Gbind * Ligand ∆Gbind * Ligand ∆Gbind * Ligand ∆Gbind *

Amentoflavone −8.7 Amentoflavone −9.4 Amentoflavone −7.7 Gallagic acid −9.3 Amentoflavone −8.7 Amentoflavone −9.1
7-O-

Galloylquercetin −8.6 Kaempferitrin −9.3 Kaempferitrin −7.5 Amentoflavone −9.1 Gallagic acid −8.6 Gallagic acid −8.9

Kaempferitrin −8.6 Gallagic acid −9.0 7-O-
Galloylquercetin −7.4 7-O-

Galloylquercetin −8.3 Kaempferitrin −8.0 Nicotinflorin −8.5
Digalloylshikimic

acid −8.4 7-O-
Galloylquercetin −8.8 Myricitrin −7.3 Alpha-amyrin −8.1 Isoschaftoside −7.7 Digalloylshikimic

acid −8.5

Gallagic acid −8.2 Typhaneoside −8.6 Suspensaside −7.3 Rhamnosylisoorientin −8.1 Vitexin −7.6 7-O-
Galloylquercetin −8.4

Quercetin
7-O-glucoside −8.1 Verbascoside/Acteoside −8.5 Isoquercetrin −7.1 Beta-amyrin −8.0 Orientin −7.5 Rutin −8.2

Luteolin
7-galactoside −8.0 Beta-amyrin −8.3 Afzelin −7.1 Ursolic acid −8.0 Quercetrin −7.4 Ursolic acid −8.2

Quercetrin −7.9 Rutin −8.3 Beta-amyrin −7.0 Isoorientin −7.8 Myricetin −7.4 Myricetin −8.1
Rutin −7.9 Myricetin −8.3 Luteolin

7-galactoside −7.0 Rutin −7.8 7-O-
Galloylquercetin −7.3 Isoorientin −8.1

Myricitrin −7.8 Nicotinflorin −8.2 Gallagic acid −7.0 Digalloylshikimic
acid −7.7 Rutin −7.3 Alpha-amyrin −7.9

Nicotinflorin −7.8 Alpha-amyrin −8.1 Alpha-amyrin −6.9 Ellagic acid −7.7 Verbascoside/Acteoside −7.3 Anthraquinone −7.9

Rhamnosylisoorientin −7.7 Rhamnosylisoorientin −8.0 Digalloylshikimic
acid −6.9 Myricetin −7.7 Isoorientin −7.1 Myricitrin −7.9

Luteolin −7.7 Isoschaftoside −8.0 Quercetin
7-O-glucoside −6.8 Nicotinflorin −7.6 Isovitexin −7.1 Azadiradione −7.8

Quercetin −7.6 Digalloylshikimic
acid −7.9 Verbascoside/Acteoside −6.8 Verbascoside/Acteoside −7.6 Luteolin

7-galactoside −7.1 Ellagic acid −7.8

Isoquercetrin −7.5 Isovitexin −7.9 Orientin −6.7 Anthraquinone −7.5 Beta-amyrin −6.9 Vismione D −7.8
Myricetin −7.5 Azadiradione −7.8 Rutin −6.7 Azadiradione −7.5 Rhamnosylisoorientin −6.9 Quercetrin −7.7
Orientin −7.4 Isoorientin −7.8 Rhamnosylisoorientin −6.6 Isovitexin −7.5 Ononin −6.9 Quercetin −7.7

Ellagic acid −7.3 Luteolin
7-galactoside −7.8 Ononin −6.6 Luteolin

7-galactoside −7.5 Protocathecuic
acid −6.9 Luteolin

7-galactoside −7.6

Anthraquinone −7.2 Orientin −7.8 Ursolic acid −6.6 Quercetrin −7.5 Typhaneoside −6.9 Chrysoeriol −7.6
Afzelin −7.2 Isoquercetrin −7.7 Vitexin −6.6 Afzelin −7.4 Ellagic acid −6.8 Afzelin −7.5

Vitexin −7.2 Vitexin −7.7
Isoorientin

7,3′-dimethyl
ether

−6.5 Luteolin −7.4 Quercetin
7-O-glucoside −6.8 Kaempferitrin −7.5

Diosmetin −7.1 Quercetin
7-O-glucoside −7.6 Isovitexin −6.5 Orientin −7.4 Alpha-amyrin −6.7 Ononin −7.5

Isoorientin
7,3′-dimethyl

ether
−7.1 Quercetrin −7.6 Nicotinflorin −6.5 Diosmetin −7.3 Afzelin −6.7 Isovitexin −7.5

Azadiradione −7.0
Isoorientin

7,3′-dimethyl
ether

−7.5 Quercetrin −6.5 Ononin −7.3 Vismione D −6.7 Quercetin
7-O-glucoside −7.4

Beta-amyrin −7.0 Myricitrin −7.5 Typhaneoside −6.5 Vitexin −7.3 Digalloylshikimic
acid −6.6 Rhamnosylisoorientin −7.4

Isoorientin −7.0 Ononin −7.5 Quercetin −6.4
Isoorientin

7,3′-dimethyl
ether

−7.2
Isoorientin

7,3′-dimethyl
ether

−6.5 Orientin −7.4

Isovitexin −7.0 Afzelin −7.4 Azadiradione −6.3 Carajurin −7.1 Ursolic acid −6.5 Kaempferol −7.4
Ononin −7.0 Ursolic acid −7.3 Chrysoeriol −6.2 Chrysoeriol −7.1 Azadiradione −6.4 Rhamnocitrin −7.4

Ursolic acid −7.0 β-sitosterol −7.2 Ellagic acid −6.2 Isoquercetrin −7.1 Chrysoeriol −6.4 Protocathecuic
acid −7.4

β-sitosterol −6.9 Diosmetin −7.0 Isoorientin −6.2 Isoschaftoside −7.1 Glucogallin −6.4 Beta-amyrin −7.3
Alpha-amyrin −6.9 Ellagic acid −7.0 Isoschaftoside −6.2 Myricitrin −7.1 Nicotinflorin −6.4 Naringenin −7.3
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Table 1. Cont.

MainPro RdRp Papain-like Protease NSP15 Endoribonuclease Spike Protein ACE-2

Ligand ∆Gbind * Ligand ∆Gbind * Ligand ∆Gbind * Ligand ∆Gbind * Ligand ∆Gbind * Ligand ∆Gbind *

Kaempferol −6.9 Glucogallin −6.9 Luteolin −6.2 Naringenin −7.1 Myricitrin −6.3 Luteolin 7.3
Rhamnocitrin −6.9 Quercetin −6.8 β-sitosterol −6.1 Typhaneoside −7.1 β-sitosterol −6.2 Vitexin −7.2
Chrysoeriol −6.8 Chrysoeriol −6.7 Anthraquinone −6.1 Kaempferitrin −7.0 Luteolin −6.2 Diosmetin −7.2
Glucogallin −6.8 Kaempferol −6.7 Diosmetin −6.1 Quercetin −7.0 Diosmetin −6.1 Verbascoside/Acteoside −7.1

Naringenin −6.8 Protocathecuic
acid −6.7 Naringenin −6.0 Kaempferol −6.9 Isoquercetrin −6.1

Isoorientin
7,3′-dimethyl

ether
−7,0

5,7-
Dimethoxyluteolin −6.7 Anthraquinone −6.6 Glucogallin −5.9 Quercetin

7-O-glucoside −6.9 Naringenin −6.1 Isoquercetrin −6.9
Verbascoside/Acteoside −6.7 Luteolin −6.6 Kaempferol −5.9 Rhamnocitrin −6.9 Quercetin −6.1 β-sitosterol −6.9

Vismione D −6.6 Rhamnocitrin −6.6 Protocathecuic
acid −5.9 Protocathecuic

acid −6.8 Rhamnocitrin −6.1 Glucogallin −6.9

Protocathecuic
acid −6.5 Naringenin −6.5 Rhamnocitrin −5.8 Vismione D −6.7 Anthraquinone −6.0 Isoschaftoside −6.6

Isoschaftoside −6.2 Carajurin −6.3 5,7-
Dimethoxyluteolin −5.7 5,7-

Dimethoxyluteolin −6.6 Kaempferol −6.0 5,7-
Dimethoxyluteolin −6.6

Carajurin −6.0 5,7-
Dimethoxyluteolin −6.2 Carajurin −5.6 Glucogallin −6.5 5,7-

Dimethoxyluteolin −5.9 Carajurin −6.5

Typhaneoside −6.0 Vismione D −6.0 Vismione D −5.6 Caffeic acid −6.2 Carajurin −5.9 Beta-
caryophyllene −6.5

Caffeic acid −5.5 Gallic acid −5.9 Beta-
caryophyllene −5.5 β-sitosterol −6.1 Gallic acid −5.7 Elemol −6.5

Gallic acid −5.3 Caffeic acid −5.4 Elemol −5.3 Elemol −5.8 Beta-
caryophyllene −5.5 Caffeic acid −6.5

Beta-
caryophyllene −5.2 Elemol −5.4 Thymol acetate −5.3 Beta-

caryophyllene −5.7 Caffeic acid −5.4 Cumaric acid −6.2

Thymoquinone −5.1 Beta-
caryophyllene −5.3 Beta-elemene −5.2 Cumaric acid −5.7 Elemol −5.3 Typhaneoside −6.1

Cumaric acid −4.9 Thymol acetate −5.2 Caffeic acid −5.1 Carvacrol −5.4 Beta-elemene −5.1 Linoleic acid −5.9
Elemol −4.9 Thymoquinone −5.2 Carvacrol −4.9 Alpha terpineol −5.3 Thymol acetate −5.1 Carvacrol −5.9

Beta-elemene −4.8 Beta-elemene −5.1 Cumaric acid −4.9 Linolenic acid −5.3 Thymoquinone −5.1 Beta-elemene −5.7
Carvacrol −4.8 Alpha terpineol −4.9 Gallic acid −4.8 Thymol acetate −5.3 Alpha terpineol −5.0 Thymol acetate −5.6

Linolenic acid −4.8 Cumaric acid −4.9 Alpha terpineol −4.7 Beta-elemene −5.2 Cumaric acid −5.0 Linolenic acid −5.6
Thymol acetate −4.8 Carvacrol −4.8 Thymoquinone −4.6 Thymoquinone −5.2 Carvacrol −4.9 Alpha terpineol −5.5

Linoleic acid −4.7 Linoleic acid −4.2 Linoleic acid −4.4 Gallic acid −5.1 Linoleic acid −4.2 Gallic acid −5.4
Alpha terpineol −4.3 Linolenic acid −4.2 Linolenic acid −4.4 Linoleic acid −4.7 Linolenic acid −4.2 Thymoquinone −5.4
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Figure 2. The surface representation of plant metabolites docking positions on the SARS-CoV-2
Mpro active site is shown, with amentoflavone (green), kaempferitrin (blue), 7-O-galloylquercetin
(yellow), and gallagic acid (magenta) (A). Contacts of SARS-CoV-2 Mpro active site residues with
amentoflavone (B), 7-O-galloylquercetin (C), kaempferitrin (D), and gallagic acid (E) are depicted in
a two-dimensional diagram. Dashed black lines indicate hydrogen bonds; full green lines indicate
van der Waals interactions.

For the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), the best affinity
parameters were presented by amentoflavone (−9.4 kcal/mol), followed by kaempferitrin
(−9.3 kcal/mol), gallagic acid (−9.0 kcal/mol), 7-O-galloylquercetin (−8.8 kcal/mol) and
typhaneoside (−8.6 kcal/mol) (Table 1). All the selected metabolites showed hydrogen
bond type interactions and van der Walls interactions with important residues of the active
site (Asp618) and with residues in the vicinity of this region (Figure 3).
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Figure 3. Surface representation of plant metabolites docking positions on the SARS-CoV-2 RdRp
active site, with amentoflavone (green), kaempferitrin (blue), 7-O-galloylquercetin (yellow), and
gallagic acid (magenta) (A). The two-dimensional diagram from contacts of SARS-CoV-2 RDRP active
site residues with amentoflavone (B), 7-O-galloylquercetin (C), kaempferitrin (D) and gallagic acid
(E) Dashed black lines indicate hydrogen bonds; full green lines indicate van der Waals interactions.

In the molecular docking study of the 55 metabolites with the SARS-CoV-2 Papain-like
protease (PLpro), the best electronic affinity parameters were amentoflavone (−7.7 kcal/mol),
kaempferitrin (−7.5 kcal/mol), 7-O-galloylquercetin (−7.4 kcal/mol) and myricitrin and
myricetin (both −7.3 kcal/mol) (Table 1). We also showed that the protocol worked well in
predicting the position of the ligands because they performed their interactions (hydrogen
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bonds, van der Walls interactions, and π-π stacking with Tyr264, the active site residue, as
well as with neighbouring residues (Figure 4).
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Figure 4. Amentoflavone (green), kaempferitrin (blue), and 7-O-galloylquercetin (yellow) docking
positions on the SARS-CoV-2 Papain-like protease (PLpro) active site are shown on the surface (A).
Contacts of SARS-CoV-2 PLpro active site residues with amentoflavone (B), 7-O-galloylquercetin
(C), and kaempferitrin (D) are depicted in a two-dimensional diagram. Dashed black lines represent
hydrogen bonds; full green lines represent van der Waals interactions; and dashed green lines
represents π-π stacking.

For SARS-CoV-2 NSP15 Endoribonuclease, the compound that showed the best
affinity parameter was gallagic acid with −9.3 kcal/mol, followed by amentoflavone
(−9.1 kcal/mol), 7-O-galloylquercetin (−8.3 kcal/mol) and alpha-amyrin and rhamno-
sylisoorientin (both −8.1 kcal/mol) (Table 1). The plant metabolites also interacted (via
hydrogen bonds, van der Walls interactions, and π-π stacking) with His250, an active site
residue, and with neighboring residues (Figure 5).
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Figure 5. Surface representation of plant metabolites docking positions on the SARS-CoV-2 NSP15
endoribonuclease active site, with amentoflavone (green), 7-O-galloylquercetin (yellow), and gal-
lagic acid (magenta) (A). Contacts of SARS-CoV-2 NSP15 endoribonuclease active site residues
with gallagic acid (B), amentoflavone (C), and 7-O-galloylquercetin (D) are depicted in two dimen-
sions. Dashed black lines represent hydrogen bonds, while full green lines represent van der Waals
interactions. dashed green line represent π-π stacking.

For the SARS-CoV-2 Spike protein (Spro) receptor-binding domain (RBD), the com-
pound that showed the best affinity parameter was amentoflavone (−8.7 kcal/mol), gallagic
acid (−8.6 kcal/mol) and kaempferitrin (−8.0 kcal/mol) (Table 1). The plant metabolites
also interacted (via hydrogen bonds, van der Walls interactions, and π-π stacking) with
Tyr449 and Gln493 (active site residues), as well as with neighbouring residues involved in
ACE-2 interaction (Figure 6).
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Figure 6. Surface representation of plant metabolites docking positions on the SARS-CoV-2 Spike
protein (Spro) receptor-binding domain (RBD) active site, with amentoflavone (green), kaempferitrin
(blue), and gallagic acid (magenta) (A). Contacts of SARS-CoV-2 Spike protein active site residues
with amentoflavone (B), gallagic acid (C), and kaempferitrin (D) are depicted in a two-dimensional
diagram. Dashed black lines represent hydrogen bonds, while full green lines represent van der
Waals interactions, dashed green line represent π-π stacking.

For human ACE-2, the compounds that showed the best affinity parameters were
amentoflavone (−9.1 kcal/mol), gallagic acid (−8.9 kcal/mol) and 7-O-Galloylquercetin
(−8.4 kcal/mol) in 5th (Table 1). The SARS-CoV-2 spike protein binds to human ACE-2
by a set of residues different from the functional active site of the enzyme. This is in the
region encompassing residues Asp30, Asp32, Gln42, Tyr83, Lys353 and their respective
neighbourhoods. The plant metabolites also performed their interactions (hydrogen bonds,
van der Walls interactions) in this region, as well as with neighbouring residues used for
interaction with ACE-2 (Figure 7).
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Figure 7. Amentoflavone (green), 7-O-galloylquercetin (yellow), and gallagic acid (magenta) docking
positions on human ACE-2 (SARS-CoV-2 RBD spike protein binding site), in surface view (A).
Contacts of SARS-CoV-2 Spike protein active site residues with amentoflavone (B), gallagic acid (C),
and kaempferitrin (D) are depicted in a two-dimensional diagram. Dashed black lines indicate
hydrogen bonds; full green lines indicate van der Waals interactions.

2.2. In Vitro SARS-CoV-2 Spike-ACE2 Interaction Inhibitor Screening Assay

Due to the results obtained with molecular docking, amentoflavone and kaempferitrin
were selected to be evaluated in vitro for their inhibitory potential on the interaction of
SARS-CoV-2 Spro S1 receptor-binding domain (RBD) with ACE-2 through a specific kit.
The probable activities of quercetin, luteolin, quercetin-7-O-glucoside (Quercimeritrin) and
myricetin were also investigated; molecules that are already extensively studied in our
research groups and that also showed considerable results in the molecular docking study.
The 7-O-galloylquercetin and gallagic acid could not be experimentally evaluated because
they were not found commercially, and we did not have conditions to proceed with the
isolation and subsequent chemical analyses. Each of the tested molecules was evaluated
at concentrations of 0.25; 0.5; 1; 2; 4; and 8 µg/mL. Under the test conditions, none of the
selected molecules at any of the tested concentrations was able to inhibit the interaction of
SARS-CoV-2 spike protein (Spro) receptor-binding domain (RBD) with ACE-2.

3. Discussion

Recently, after a period of relative epidemiological comfort due to the use of currently
available vaccines, the number of new cases and deaths has again increased significantly
in many countries, reactivating the concern about this virus and demonstrating that new
types of vaccines and drugs are still urgently needed.

SARS-CoV-2 has a 29.9 kb RNA genome, still with 6 to 11 open reading frames
(ORFs) [10]. The glycoprotein designated Spike (Spro) can bind to human angiotensin-
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converting enzyme 2 (ACE-2) and, from this interaction, viral adsorption is initiated. ACE-2
is present in the human upper respiratory tract and kidneys. Adsorption also depends on a
serine protease, TMPRSS2 (transmembrane protease, serine 2) [35,36]. In addition to Spro,
the virus has an envelope (E), nucleocapsid (N), and matrix (M) protein, as well as other
accessory proteins that participate in modulating the innate host response [10,37].

In general, viral replication starts with the tropism and adsorption of the spike protein
and human ACE-2 receptors. The intermembrane fusion proceeds, and the RNA genome is
released into the cytoplasm of host cells. Initiated by two major non-structural polyproteins,
pp1a and pp1ab, which are essential for viral replication and the formation of the replication
complex (RTC), which in turn gives rise to virus structural proteins [38,39]. Virus assembly
is completed with the formation of genomic RNA, nucleocapsid protein, and envelope
protein. Disruption of the host cell membrane will lead to further infection [40,41]. The
spike protein has two subunits, named S1 and S2, where S1 is responsible for tropism and
range and S2 promotes intermembrane interaction [42].

The main studies are concentrated on the search for vaccines. However, these require
time to be efficient and cannot be used in urgent and/or severe cases, which reinforces the
urgent need for molecules that have the potential to be used as first choice drugs to combat
the virus and the clinical symptomatology caused in the most urgent cases.

Computational predictions and the pharmacological properties of natural compounds
have become promising against COVID-19. Using SARS-CoV-2 protein targets, many
studies have focused on identifying possible phytochemical compounds with therapeutic
potential against the virus through in silico assays [43–45]. Among the classes of natural
compounds identified with antiviral action on SARS-CoV-2, we can highlight the flavonoids,
alkaloids, and terpenes, including natural products from marine sources [46,47]. Sepay
et al., [48] verified through DFT analysis, docking, and ADMET properties that benzyli-
denechromanones, a natural flavone-like compound, can inhibit proteins and important
receptors for replication and transcription of SARS-CoV-2. Joshi et al., [45] found similar
results after conducting an in silico screening to identify phytochemicals with antiviral
properties. Ten compounds inhibited the Mpro, an essential enzyme from viral metabolism,
and the ACE-2 enzyme, which the virus uses to enter the cell.

In our in silico study, amentoflavone, 7-O-galloylquercetin, kaempferitrin, and gallagic
acid performed metabolically important chemical interactions such as hydrogen bonds,
van der Walls interactions, and π-π stacking with active site amino acid residues and their
neighbourhoods in the six targets evaluated, and thus were prioritized for being among
the five best ranked compounds, demonstrating the best electronic affinity parameters in at
least four of the six selected.

Amentoflavone, an apigenin-dimer, was evaluated in vitro against respiratory syncy-
tial virus (RSV) showing great activity [49]. Significant activity has also been demonstrated
against influenza A (subtypes H1N1 and H3N2) and B viruses, as well as moderate activity
against herpes viruses (HSV-1 and HSV-2) [50], HSV-1 susceptible and acyclovir-resistant
strains [51], and potential inhibition of replication of Coxsackie virus B3 (CVB3) [52], Hep-
atitis C virus (HCV) [53] and HIV-1 [54]. When evaluated in vitro against the SARS-CoV,
amentoflavone was highly successful in inhibiting the SARS-CoV 3CLpro (syn. Mpro)
main protease, showing an IC50 value of 8.3 µM, being 35-fold more efficient than its
monomer, apigenin. The docking result also showed the highest affinity parameters from
amentoflavone with the SARS-CoV Mpro structure [55]. These results were according to our
results (−8.7 kcal/mol) from docking between amentoflavone and SARS-CoV-2 (COVID-19)
Mpro, according to [56], the SARS-CoV-2 Mpro three-dimensional structure is highly similar
to that of the SARS-CoV Mpro with 96% sequence identity.

Amentoflavone was also assessed in vitro at 40 µM against SARS-CoV with and
without Triton X-100 to evaluate the influence of this non-ionic surfactant in their biological
activity. When Triton X-100 was present, amentoflavone showed no antiviral activity,
but it showed the highest activity without Triton use [44]. It was reported that dimethyl
sulfoxide (DMSO) did not neutralize the activity of the molecule [57]. We believe that a
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possible explanation for this is that Triton X-100 can cleave amentoflavone, generating two
apigenins, which, as observed by Ryu et al., [55], has no activity against SARS-CoV in
low concentrations. Structural–activity relationships (SARs) also performed indicate that
the absence of methoxy groups (that do not occur in amentoflavone) increases inhibitory
activity against SARS-CoV 3CLpro, while the other tested molecules that present the
referred groups in their structures were less potent, yielding inferior results to that of
amentoflavone. This molecule also inhibits SARS-CoV-2 Mpro in a fluorescence-based
Mpro substrate cleavage assay, with an IC50 of 8.6 µM and was also able to inhibit the
activity of protein disulphide-isomerase (PDI), whose activity is essential for thrombus
formation [58].

For the first time, amentoflavone was reported on Arrabidaea chica (Bignoniaceae)
(syn. Fridericia chica) by [59]. According to the in silico results, inside A. chica metabolites,
amentoflavone was the compound that showed the best affinity parameters between all
metabolites, being suggested as the major molecule that efforts to A. chica antinocicep-
tive and anti-inflammatory activity were found in this study. According to the authors,
amentoflavone may inhibit the phospholipase A2 and cyclooxygenase pathways [60]. Con-
cerning analgesic activity, amentoflavone acts as in vitro antagonists for kappa (κ), (mu)
µ, and (delta) δ opioid receptors, being more than 10-fold selective for the κ over the δ
opioid receptor [61]. When compared to other flavonoids, amentoflavone inhibited mast
cell histamine secretion the most [62].

Amentoflavone also showed potential anti-diabetic activity by regulating glucose and
lipid metabolism by decreasing levels of glucose, total cholesterol, triglyceride, low-density
lipoprotein cholesterol (LDL-C) and glucagon, and increasing levels of high-density lipopro-
tein cholesterol (HDL-C) and insulin [63] in addition to promoting protective effects against
cardiovascular dysfunction and liver damage in rats with induced metabolic syndrome.
It was verified that these cardio and hepatoprotective effects are due to inhibition of the
renin-angiotensin system and reduction of oxidative stress caused by amentoflavone [64].
Thus, we demonstrate that amentoflavone, besides the activity on SAR’s virus and ac-
tivity against SARS-CoV-2, presents anti-nociceptive and anti-inflammatory activity at
central and peripheral levels and antithrombotic activity, and may be considered a lead
compound due to their potential therapeutically usefulness to eliminate SARS-CoV-2 from
the organism of the patients as well as in the symptoms of acute disease.

We have previously reported through in silico studies the anti-inflammatory and
analgesic activity of kaempferitrin, a kaempferol glycoside, which was identified in the
hydroethanolic extract of the pollen collected by the stingless bee Scaptogrinona aff pos-
tica [19]. Kaempferitrin was experimentally evaluated about their potential analgesic and
anti-inflammatory, with expressive results for both activities [65,66]. Furthermore, the
inhibitory potential of kaempferitrin against lipopolysaccharide (LPS) and interferon (IFN)-
gamma-induced nitric oxide (NO), and cytokines [tumour necrosis factor (TNF)-alpha and
interleukin (IL)-12] in a dose-dependent manner was reported [67]. The potential activity of
kaempferitrin on the central nervous system was assessed and evidenced that this molecule
showed an antidepressant-like effect as a selective 5-HT1A agonist [68].

The high kaempferitrin activity against Bacillus cereus and Enterococcus faecalis was
reported with minimum inhibitory concentration (MIC) activity values of 8.5 µg/mL and
3.9 µg/mL, respectively, besides presenting antimicrobial activity on Shighella flexinerii,
Salmonella typhimurium and Acinetobacter calcoaceticus [69] and against Artemisia salina L. [70].
Regarding kaempferitrin’s anti-viral activity, this flavonoid showed potent activity against
influenza A viruses H1N1, A/PR/8/34, and H3N2 [71]. Even with these activities against
several microorganisms, kaempferitrin did not show mammalian toxicity, as it has a median
lethal dose (LD50) > 2 g/kg in mice when administered intraperitoneal [72] and has not
demonstrated acute toxicity or gastric damage to orally treated animals with 50 mg/kg of
kaempferitrin [66].

Kaempferitrin also demonstrated a strong reducing effect on blood glucose levels in di-
abetic rats and stimulated glucose uptake as effectively as insulin in normal rat muscles [73].
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Tzeng and co-authors [74] demonstrated a double effect of kaempferitrin, reporting that it
improves insulin resistance by activating the classic insulin transduction pathway and in-
creasing adiponectin secretion. The diuretic effect—and consequent antihypertensive effect
of this molecule—is also reported, suggesting that it should be considered in the search
for new treatments for renal and cardiovascular disorders [75]. These data reinforce that
kaempferitrin is a lead compound for active drug research on COVID-19 because among the
risk groups that can be more severely affected by COVID-19 are the diabetics who usually
suffer severe consequences of this infection. Kaempferitrin presented data indicating that
SARS-CoV-2 has a high potential to act on several targets of this organism, in addition
to having anti-inflammatory activity, low toxicity to vertebrates, and anti-hyperglycemic
activity, making it a promising alternative for research.

Although it is commonly reported in the chemical composition of Punica granatum
L. (pomegranate) and in Terminalia spp., studies on gallagic acid alone are rare. This
molecule was reported to possess antioxidant activity (Dichloro-dihydro-fluorescein diac-
etate method), comparable with vitamin C, reducing the production of reactive oxygen
species (ROS) and good antiplasmodium activity against Plasmodium falciparum and antimi-
crobial activity on Pseudomonas aeruginosa, Cryptococcus neoformans (also inhibiting growth),
Escherichia coli, and methicillin-resistant Staphilococcus aureus [76].

As also gallagic acid, 7-O-galloylquercetin has few experimental studies regarding
its bioactivity. However, it was investigated by Roubalová et al., [77] whose findings
suggest that in vitro activation of Nrf2 in RAW264.7 cells is mediated by increased reactive
oxygen species (ROS) production and activation of p38 mitogen-activated protein kinase
(MAPKs) and increases the activity of antioxidant enzyme NAD(P)H: quinone oxidore-
ductase 1 (NQO1) and protein levels of heme oxygen 1 (HO-1) and Glutamate-cysteine
ligase regulatory subunit (GCLM) in Hepa1c1c7 cells. We previously reported through an
in silico screening study that both amentoflavone and 7-O-galloylquercetin (syn quercetin-
o-gallate) showed large affinity parameters with the COX-2 structure, suggesting that the
anti-inflammatory activity of Arrabidaea chica Verlot extract may be associated with the
presence of these molecules in this plant [59].

The development of a vaccine is long, slow and requires very high financial costs, in
addition to after administration of the vaccine, considerable time is needed until the com-
plete establishment of the humoral response, which will provide immunity. The molecules
presented in the present study are molecules found in many plant species worldwide, thus
being sources of these compounds, but they can also be obtained synthetically without
great difficulties, thus being able to be used in acute cases or in immediate need of an
effective therapy against SARS-CoV-2.

More in-depth or robust assays involving SARS-CoV-2 are still not feasible in many
laboratories due to structural and financial limitations, including the inability to guarantee
the necessary biosafety conditions for researchers.

The in vitro assay evaluates the potential of molecules to inhibit the interaction of
SARS-CoV-2 Spro with human ACE-2. It is widely recognized that the principal route of
cell invasion of SARS-CoV-2 into human cells occurs through the interaction of SARS-CoV-2
Spro with ACE-2, which is present in pneumocyte II-type and human kidney cells.

The assay performed allowed us to demonstrate that, although the in silico indication
of interaction of plant metabolites with both Spro and ACE-2 is favourable and very likely,
these compounds were unable to inhibit the interaction of Spro with ACE-2.

As can be seen from an analysis of the crystallographic structures of the Spro x ACE-2
complexes, the interaction between these structures is complex and involves dozens of
amino acid residues in both. We hypothesize that the relatively small spatial volume of
the compounds is not sufficient to prevent the electronic interaction between all residues
of Spro with human ACE-2, thus maintaining the interaction even in the presence of the
compounds.

Despite the non-inhibition of the SARS-CoV-2 Spro interaction with ACE-2, these
compounds should not be disregarded in studies for potential treatments for patients with
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COVID-19 as further more robust evaluations, such as: can these molecules interfere or
prevent with the penetration of viral genetic material during Spro x ACE-2 interaction, thus
preventing intracellular parasitism, or the activity on the other selected targets of SARS-
CoV-2, such as main protease and RdRp that participate in the replication/transcription of
SARS-CoV-2, are extremely necessary, since the indicative activity is relevant, the literature
already reports activity of these molecules on other viruses, including the Coronaviridae
family.

The use of natural products in the clinical routine of patients affected by COVID-19 is
already a reality, where, in general, patients who received pharmacological treatments with
natural products or those associated with synthetic drugs showed a much better clinical
outcome than patients who received only treatment with traditional drugs, by delaying
disease progression and reducing mortality rates [78–82].

Finding a bioactive chemical alone is a difficult task; developing novel therapeutic
solutions is more difficult given the pressing need for new medications to be widely ac-
cessible worldwide. Even though there are various vaccines available to protect against
SARS-CoV-2, additional therapies are still critically required to prevent the pandemic be-
cause many nations are unable to access any vaccine. Natural products are being researched
as instruments to produce novel treatments since phytomedicine is more widely accepted
by society than synthetic pharmaceuticals, mostly due to its excellent safety and the fact
that its side effects tend to be less.

4. Materials and Methods
4.1. Choice and Preparation of the Structures of the Compounds

The 55 plant metabolites used in the present study were selected from our previous
studies of anti-inflammatory activity [19,59,83–85] and were structurally schematized in
three dimensions (3D) with the software GaussView 5.0.8 [86] and had their geometric and
vibrational properties calculated (optimized) in vacuum at the density functional theory
(DFT) level using the hybrid B3LYP functional combined with the 6–31 ++ G (d, p) basis
with the Gaussian 09 software [87] to obtain the atomic and molecular electronic properties
that correlate with possible biological activity.

4.2. Target Structures

The structures of macromolecule drug therapy targets of SARS-CoV-2 were used being:
main protease (Mpro, 3CLpro) (PDB ID 6M03), RNA-dependent RNA polymerase (RDRP)
(PDB ID 6M71), papain-like protease (PLpro) (PDB ID 6W9C), NSP15 Endoribonuclease
(PDB ID 6VWW), SARS-CoV-2 RBD S1 Spike Protein (S Protein) and human angiotensin-
converting enzyme 2 (ACE-2) (PDB ID 6M0J) available in the Protein Data Bank (PDB).

4.3. Molecular Docking

Docking was performed with the AutoDock Vina package [88]. The AutoDock Tools
1.5.7 module was used to prepare and analyse the computational calculations. After
optimization, the structures of the plant metabolites were positioned in the central portion
of the respective catalytic site of each selected target (Cys145 to Mpro, Asp618 to RdRp,
Tyr264 to PLpro, His250 to NSP15, Gln493 to RDB Spro and Arg273 to ACE-2). Gasteiger
charges and polar hydrogens, required for potential calculations, were added after removal
of water molecules, drugs and/or artefacts from the target structures [89]. The targets
macromolecules structures were kept rigid, while the ligands did not have their mobility
restricted, remaining free. The size of the grid box was set to 22.5 Å for each axis. The
number of modes was set to 50, and the exhaustiveness was set to 24. The conformations
of the best interaction energy of the ‘ligand + receptor’ complexes identified in molecular
docking were selected based on free energy of binding, by visual inspection and analysis of
residues that best interacted with the ligand [19,20,90]. Molecular analyses and complex
representations were obtained using the UCSF Chimera package [91] and PoseView [92].
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4.4. In Vitro SARS-CoV-2 Spike-ACE2 Interaction Inhibitor Screening Assay

A specific SARS-CoV-2 Spike-ACE2 Interaction Inhibitor Screening Assay Kit (Item
No. 502050; Cayman Chemical®, Ann Arbor, MI, USA) was used to assess the inhibitory
potential of the recombinant SARS-CoV-2 Spro S1 RBD interaction with recombinant ACE-2.
Amentoflavone, kaempferitrin, quercetin, luteolin, quercetin-7-O-glucoside (Quercimer-
itrin) and myricetin were obtained commercially (Sigma-Aldrich St. Louis, MO, USA;
analytical grade 93–99%) and evaluated each at concentrations of 0.25; 0.5; 1; 2; 4, and
8 µg/mL. The test was prepared according to the manufacturer’s guidelines and read at
450 nm (Synergy™ H1, Biotek/AGILENT TECHNOLOGIES, Santa Clara, CA, USA).

5. Conclusions

The natural products are characterized as lead compounds in the anti-COVID19 drugs
research since these substances have demonstrated the capacity to inhibit viral invasion
and replication and modulate the immune-inflammatory response.

Computational protocols are important tools for the research of new therapeutic
agents as they direct the search to more promising results. Our results show favourable
interactions of amentoflavone, kaempferitrin, 7-O-galloylquercetin and gallagic acid with
all the targets evaluated (Main Protease (Mpro or 3CL or MainPro), RNA-dependent RNA
polymerase (RdRp), Papain-Like Protease (PLpro), NSP15 Endoribonuclease, Spike Protein
(Protein S or Spro) and human Angiotensin-converting enzyme 2 (ACE-2).

Through the data obtained, we can demonstrate that although the indication of in-
dividual interaction of plant metabolites with both Spro and ACE-2 is very probable, the
metabolites evaluated were unable to inhibit the interaction between these two structures.
Despite this, these molecules still must be considered in the research of therapeutic agents
for treatment of patients affected by COVID-19 since their activity on other targets and
influence on the dynamics of viral infection during the interaction Spro x ACE-2 should be
investigated.

In addition, there is robust literature indicating that these molecules have activity
on several types of viruses and microorganisms, being mildly toxic to vertebrates and
presenting activity on the complications of the disease, suggesting their potential that is
worthy of further investigation.
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