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1  |  INTRODUCTION

Autophagy, a critical intracellular degradation pathway, is 
indispensable for cellular homeostasis, facilitating waste 
elimination and maintaining cellular functionality. This 
process, vital for cell function, differentiation, and devel-
opment eliminates and recycles damaged or redundant in-
tracellular proteins, organelles, and components, thereby 
modulating numerous physiological and pathological 

events.1–3 Autophagy is classified into three types: mac-
roautophagy, microautophagy, and chaperon- mediated 
autophagy (CMA), based on cargo delivery mechanisms. 
Macroautophagy (hereafter autophagy), a universally con-
served process in eukaryotic cells,4 is extensively charac-
terized in terms of morphology, function, and molecular 
mechanism. The process typically encompasses several 
stages: initiation, elongation, closure, maturation, and 
degradation.5
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Abstract
Autophagy, an intracellular self- degradation process, is governed by a complex 
interplay of signaling pathways and interactions between proteins and organelles. 
Its fundamental purpose is to efficiently clear and recycle cellular components 
that are damaged or redundant. Central to this process are autophagic vesicles, 
specialized structures that encapsulate targeted cellular elements, playing a piv-
otal role in autophagy. Despite growing interest in the molecular components of 
autophagic machinery and their regulatory mechanisms, capturing the detailed 
ultrastructural dynamics of autophagosome formation continues to present sig-
nificant challenges. However, recent advancements in microscopy, particularly 
in electron microscopy, have begun to illuminate the dynamic regulatory pro-
cesses underpinning autophagy. This review endeavors to provide an exhaustive 
overview of contemporary research on the ultrastructure of autophagic processes. 
By synthesizing observations from diverse technological methodologies, this re-
view seeks to deepen our understanding of the genesis of autophagic vesicles, 
their membrane origins, and the dynamic alterations that transpire during the 
autophagy process. The aim is to bridge gaps in current knowledge and foster a 
more comprehensive comprehension of this crucial cellular mechanism.
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Central to this process are autophagic vesicles (includ-
ing autophagosomes, amphisomes, and autolysosomes), 
responsible for isolating, transporting, and degrading in-
tracellular substances.6,7 In normal conditions, autophago-
somes display a unique double- layer membrane structure, 
encapsulating damaged or dysfunctional organelles and 
proteins.8 Upon maturation, these vesicles fuse with en-
dosomes or lysosomes, forming amphisomes or autoly-
sosomes, where degradation occurs.9,10 The degradation 
products, such as amino acids and fatty acids, are reused 
for maintaining cellular health under stress and ensuring 
cell quality control.11–13

Despite decades of research since the initial dis-
covery of autophagic structures in the 1950s,14 the 
ultrastructural composition and transformation of au-
tophagic vesicles during autophagosome biogenesis 
remain elusive.15 High- resolution nanoscale imaging 
technologies are essential for observing and analyz-
ing these structures.16 A comprehensive understand-
ing of autophagic vesicle formation and maturation 
necessitates integrating complex biochemical and cell 
biology studies,16 considering the dynamic nature of 
their formation and the influence of different cellular 
environments.6,8,14

This review aims to provide an overview of the current 
knowledge on the ultrastructure of autophagic vesicles, 
comparing observational characteristics from diverse tech-
nological approaches to enhance understanding of auto-
phagy mechanisms and transformations. Additionally, it 
endeavors to guide future research and offer insights into 
autophagy's alterations in different physiological and patho-
logical conditions.

2  |  THE CONSTRUCTION AND 
STRUCTURE OF AUTOPHAGIC 
VESICLES

Autophagic vesicles, including autophagosomes, am-
phisomes, and autolysosomes are polymorphic and 
diverse, containing recognizable cytoplasmic compo-
nents.6 Their variations are linked to the autophagy's 
occurrence and progression under different physiologi-
cal and pathological conditions regulated by numerous 
autophagy- related genes.17,18 In response to cellular stress 
or nutritional deficiencies, autophagic vesicles continu-
ously form, mature, and fuse with lysosomes to address 
intracellular demands.8,19 The initiation of autophagy is 
marked by the emergence of a crescent- shaped, single- 
layer membrane structure (phagophore) within the cy-
toplasm. This membrane expands and engulfs cellular 
materials, eventually forming a nearly spherical, bilayer 
autophagosome.20 These substances are isolated within 
the double- membrane structure, preventing contact with 
other intracellular components and directing them for 
degradation. Subsequently, the mature autophagosomes 
then fuse with lysosomes or late endosomes to form autol-
ysosomes/amphisomes,5,6,8 where their contents undergo 
acidic hydrolysis and are recycled into the cytoplasm10 
(Figure 1).

The unique ultrastructure of autophagic vesicles is 
rational. Autophagosomes dismantle and eliminate in-
tracellular waste and damaged organelles. Their bilayer 
membranes facilitate formation, fusion, translocation, 
and ultimate degradation. The inner membrane encir-
cles substrates for degradation, establishing an acidic 

F I G U R E  1  Schematic diagram of autophagy in mammals. The process typically includes initiation, elongation, closure, maturation, 
and degradation. The initiation of autophagy is characterized by the emergence of a crescent- shaped, single- layer membrane structure 
(phagophore) within the cytoplasm. This membrane expands and engulfs cellular materials such as damaged or dysfunctional organelles 
and proteins, eventually forming an autophagosome with a nearly spherical bilayer membrane structure. The mature autophagosomes fuse 
with lysosomes to form autolysosomes, where acidic hydrolysis occurs, leading to the recycling of their contents into the cytoplasm.
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microenvironment crucial for lysosomal enzymes. The 
outer membrane maintains structural integrity and aids 
in intracellular navigation and fusion with other cellular 
structures.21,22 Assisted by cytoskeletal elements, such as 
microtubules, the outer membrane enables efficient trans-
port of autophagosomes from their genesis to their fusion 
site, enhancing their efficient union with lysosomes or late 
endosomes. This sequence facilitates the transfer of mate-
rials from the autophagosome to the lysosomes for break-
down and recycling.23,24 This bilayer structure ensures the 
efficient execution of the autophagy process, crucial for 
cellular homeostasis and adaptative to various stresses.

Moreover, another remarkable ultrastructural aspect of 
autophagic vesicles is their capacity to encapsulate diverse 
cellular constituents designated for degradation, includ-
ing defective proteins, organelle fragments, and surplus 
metabolites.25 Historically, autophagy was deemed a non- 
selective degradation pathway, especially under nutrient- 
deficient conditions. Recent advancements, however, have 
introduced the notion of “selective autophagy”, entailing 
targeted degradation processes like mitophagy, lysophagy, 
and ER- phagy.26,27 In this context, receptor proteins such 
as p62 (also known as SQSTM1), TAX1BP1, NDP52 (also 
known as CALCOCO2), etc., target specific cargos, insti-
gating autophagy and orchestrating membrane recruit-
ment, thereby accommodating a variety of substances for 
degradation.28 Consequently, autophagic vesicles demon-
strate a wide range of shapes, sizes, and functionalities 
epitomizing the selectivity, adaptability, and versatility 
inherent in autophagy.

The intricate ultrastructural attributes of autophagic 
vesicles are pivotal in preserving cellular homeostasis, 
eliminating damaged cell components, and providing 
resources during stress. The complexity and dynamics 
of their morphology stem from multilayered and inter-
connected regulatory mechanisms within the autophagy 
process, involving numerous signaling pathways and 
protein interactions. These features are indispensable for 
advancing autophagy research and understanding the 
mechanisms underlying the autophagy process, thereby 
positioning it as a critical field in cell biology and biomed-
ical studies.

3  |  TECHNOLOGICAL ADVANCES 
FOR THE UNDERSTANDING OF 
AUTOPHAGIC ULTRASTRUCTURE

3.1 | Optical imaging

The field of optical imaging has significantly expanded 
our capabilities to visualize the microscopic realm, 
profoundly impacting the study of autophagy.29 This 

advancement encompasses the use of small molecule 
fluorophores, color fluorescent proteins, and other bioac-
tive compounds often in synergy with various fluorescent 
probes.30 Techniques such as fluorescence imaging, bio-
luminescence imaging, chemiluminescence imaging, and 
Raman imaging have become instrumental. They facili-
tate non- invasive, two- dimensional, or multidimensional 
image data acquisition at both micro and macro scales,31 
enabling detailed characterization of the structural com-
ponents involved in the dynamic autophagy processes.32 
Particularly, fluorescence bioimaging, a subset of optical 
bioimaging, has gained substantial traction in the research 
community. Following Ohsumi's group's initial investiga-
tion of autophagy- related genes in yeast, researchers have 
focused extensively on genes and proteins associated with 
autophagy, especially the Atg family.33,34 Fluorescent la-
beling is pivotal in this context, allowing researchers to 
anchor targeting objects and trace the dynamic interac-
tions between autophagic vesicles and diverse genes, mol-
ecules, or organelles, thereby unraveling the regulatory 
mechanism underlying autophagy.

The dynamic process of autophagy is illuminated by 
leveraging fluorescence signals from specific autophagy 
markers. The microtubule- associated protein 1A/1B- light 
chain 3 (LC3) exists in two forms—LC3- I and LC3- II—
and is integral to the membrane structure of autophagic 
vesicles.35,36 Tracking LC3's transformation and accu-
mulation during autophagy under the light microscope 
reveals multiple bright spot fluorescent signals, aiding 
in evaluating autophagy activity.23,37–39 The GFP fluores-
cent protein's sensitivity to acid, when combined with 
the mRFP- GFP- LC3 dual- fluorescent plasmid detection 
method (Figure  2), provides valuable insights into auto-
phagy dynamics based on fluorescence signal color and 
intensity.40,41 However, the most of real- time imaging 
studies investigating autophagic processes have been con-
ducted using in vitro systems. Recent advancements have 
been made with the development of transgenic mice mod-
els, which incorporate a fluorescent protein, such as GFP 
or Keima, fused to LC3 within their genome and facilitate 
the visualization of autophagy dynamics via time- lapse 
microscopy.42,43 Through the application of these trans-
genic models, researchers are now capable of dynamically 
monitoring and tracking the subcellular localization of 
LC3 in real- time and in situ. Consequently, this enables a 
more delicate understanding of the dynamic changes oc-
curring during autophagy.

However, fluorescence detection methods for LC3 have 
limitations, particularly under conditions where LC3 may 
incorporate protein aggregates, posing challenges in dif-
ferentiating these aggregates from authentic autophago-
somes. Moreover, fluorescence imaging generally limits 
observations to spot fluorescence or signal overlap and 
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contact, obscuring the detailed structure of membrane- 
bound organelles like autophagic vesicles and cytoskeletal 
microfilaments. Here, the nanoscale resolution advantage 
offered by electron microscopy becomes essential for their 
precise identification, often necessitating a combination 
of light microscopy (LM) for specific labeling followed by 
electron microscopy for high- resolution imaging.44–47

3.2 | Electron microscopy

Electron microscopy (EM), renowned for its exceptional 
resolution, magnification, and contrast, has been a clas-
sic and indispensable technique in exploring cellular and 
tissue ultrastructure48–50 (Figure 3). EM's extensive use in 
autophagic research dates back to the 1950s51, with the 
visualization of typical autophagosomes, autolysosomes, 
or other autophagy- related structures by EM remaining a 
reliable standard for autophagy measurement.16

Pioneering studies, such as Sam Clark's documenta-
tion of dense ring- shaped structures housing mitochon-
dria in neonatal mice's proximal tubular epithelium52 
and Alex Novikoff's observation of vacuoles in rat prox-
imal tubules,53 laid the groundwork for understanding 

autophagy. Novikoff further scrutinized the characteris-
tics of the Golgi apparatus and mitochondria surround-
ing this structure, coinventing the term “cytolysome” to 
elucidate the nature of this vacuole.54 Researchers like L. 
Schneider, Leonard Napolitano, Harald Moe, and Olva 
Behnke contributed significantly by identifying vacuo-
lar structures containing cytoplasmic elements across 
multiple organisms. L.Schneider meticulously described 
“degradation vacuoles” in irradiated paramecia, which po-
tentially degrade the encapsulated cytoplasm.55 Leonard 
Napolitano observed vacuoles sequestering entire or par-
tial mitochondria in brown adipose cells of rats exposed 
to cold and starvation stress.56 Harald Moe and Olva 
Behnke captured cytoplasmic bodies containing rough 
endoplasmic reticulum (ER), mitochondria, and free ri-
bosomes in the intestinal epithelium of newborn rats.57 
Moreover, based on the observation of these vacuoles 
primarily occurring in pre- lysosome or post- lysosome, 
Leonard Napolitano proposed that these structures would 
gradually break down.56 Thomas and Keith conducted an 
investigation on rat liver to assess the impact of glucagon 
and inferred that during the initial formation of vacuoles, 
the cytoplasmic components surrounding the limiting 
membrane are surrounded and partially isolated from 

F I G U R E  2  Detecting different stages of autophagic vesicles with dual- fluorescent plasmid (mRFP- GFP- LC3). A tandem fusion of mRFP 
and GFP is employed to tag LC3- II for monitoring the autophagy process. LC3- I predominantly localizes in the cytoplasm. Upon initiation 
of autophagy, it undergoes phosphorylation to form LC3- II which translocates to the membrane of autophagosomes. During autophagosome 
formation, multiple bright green or yellow fluorescent spots can be observed. Due to the acid sensitivity of GFP fluorescence protein, upon 
fusion with lysosomes, the acidic environment attenuates the green fluorescence. Following autolysosome formation, green fluorescence 
diminishes completely while red fluorescence remains detectable.
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other intracellular substances.58 In 1963, the process of 
focal degradation of intracellular components was eluci-
dated, involving the formation of vacuoles after the initial 
separation of intracellular components, and ultimately 
evolving into a lysosome- like body.59 The 1963 CIBA 
Foundation Symposium on Lysosomes was a milestone 
where Christian de Duve proposed the term “autoph-
agy” and established the concept of autophagic vesicles60 
(Figure 4).

Since then, EM has been critical in assessing the dy-
namic progression of autophagy, enabling direct visualiza-
tion of morphological alterations in autophagic vesicles 
at various stages. The non- degrading organelle, the au-
tophagosome, with its bilayer membrane structure, was 
formally recognized and studied extensively.61,62 By the 
turn of the 19th century, EM observations of the auto-
phagic vesicles in diverse physiological and pathological 
conditions highlighted the functionality and significance 

F I G U R E  3  Comparison of 
autophagic ultrastructure was observed 
through electron microscopy (EM), 
immunoelectron microscopy (IEM), and 
correlative light and electron microscopy 
(CLEM). EM's exceptional resolution, 
magnification, and contrast are sufficient 
for visualizing the ultrastructure of 
intracellular organelle membranes. IEM 
combines antigen–antibody reactions with 
EM, enabling nanoscale observation of 
specific proteins. For example, Hamasaki 
et al. observed ATG14 and ATG5 
localization at ER and mitochondrial 
contact sites (indicated by arrows). CLEM 
enhances the fluorescence imaging 
capabilities of light microscopy (LM), 
allowing for simultaneous fluorescence 
signal observation and acquisition of high- 
resolution images.

F I G U R E  4  The early events of autophagy investigated by electron microscopy. Initially, vesicles were observed in rat renal tissue 
through EM. Subsequently, numerous researchers have captured similar structures under various tissues and influencing factors. The 1963 
CIBA Foundation Symposium on Lysosomes marked a milestone event, formally introducing the term “autophagy” and providing a defined 
concept for autophagic vesicles.
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of autophagy.63 It's crucial to note that improper fixation 
in EM studies can lead to issues like discontinuity of the 
autophagic vesicle membrane and difficulty in identifying 
specific structures, impeding observation and compari-
son. Thus, proper methodology in EM is vital for accurate 
and insightful studies in autophagy research.

3.3 | Immunoelectron microscope (IEM)

IEM is a hybrid technique that integrates antigen–antibody 
reactions with electron microscopy, enabling nanoscale 
visualization of specific proteins within autophagic vesi-
cles.22,64 This method allows for precise determination of 
the distribution and exact localization of target proteins 
inside autophagic vesicles (Figure  3). Consequently, it 
provides valuable insights into the origins of the isola-
tion membrane and the dynamic nature of the autophagy 
process.35,65

The research into the origins of the autophagosome, 
prior to its formal recognition as an organelle, primarily 
focused on elucidating the mechanisms of cytoplasmic 
component incorporation and the derivation of the isola-
tion membrane.61,66 Initially, de Duve et al. hypothesized 
that the autophagosome originates from pre- existing or-
ganelles.14 Subsequent electron microscopy studies sug-
gested the potential roles of neighboring organelles, such 
as the ER and Golgi complex, in autophagic vesicle for-
mation.61,67 Since the late 1980s, IEM has shed light on 
the origins of these vesicles. Findings have been mixed: 
some studies indicate an absence of ER- labeled proteins 
in autophagosome membranes,68 while others show pos-
sible modifications by antibodies against ER proteins.22 
Hamasaki et  al. observed ATG14 and ATG5 localization 
at ER and mitochondrial contact sites in starved HeLa 
cells (Figure  3), suggesting a complex origin for the au-
tophagosome membrane.45 These disparate results from 
electron microscopy and IEM studies have led to a lack of 
consensus on the membrane's origin, hinting at the possi-
bility of multiple sources or sequential involvement of dif-
ferent organelles in its formation.69 Another theory posits 
that autophagosome formation is an emergent process, 
beginning with a nascent core membrane and expanding 
through vesicular additions.70

IEM also facilitates the classification of autophagic 
vesicle subtypes. For instance, the sequential degradation 
of SOD and CAIII in rat liver sections provided insights 
into the formation and maturation of these vesicles.71,72 
However, the identification of these vesicles under the 
microscope heavily relies on expert interpretation, un-
derscoring the potential for frequent misidentification 
errors.73

3.4 | Correlative light and electron 
microscopy (CLEM)

CLEM combines the target- specific imaging capabilities 
of LM with the high- resolution structural analysis offered 
by electron microscopy (EM)74 (Figure 3). Although con-
ceptualized over 50 years ago, its application in autophagy 
research has only gained momentum recently. CLEM is 
technically demanding, requiring sophisticated optical 
systems, meticulous sample preparation, and the integra-
tion of various detector types.

Hanson et al. developed an efficient CLEM technique, 
capturing nearly all GFP- LC3- labeled organelles in a sam-
ple.75 Their approach involved laser scanning confocal 
microscopy followed by transmission electron microscopy 
(TEM), conducted on the same dish, significantly enhanc-
ing the accuracy of autophagosome identification in cell 
cultures. CLEM's recent advancements have enabled live 
cell imaging combined with fluorescent labeling, advanc-
ing the study of autophagosome biogenesis and matura-
tion.76 However, GFP fluorescence decreases in degrading 
autophagic vesicles, suggesting the use of tandem flu-
orescence proteins like mRFP- GFP for comprehensive 
analysis77 (Figure 2). CLEM has also elucidated the role 
of specific molecules and organelles in autophagy. For 
example, Orsi et  al.'s investigation into the role of Atg9 
protein in autophagy initiation and progression revealed 
its localization to tubular- vesicular membranes originat-
ing from vacuolar structures, highlighting its importance 
but not as a structural component of autophagosomes.78 
Microautophagy, characterized by autophagic membrane 
formation within lysosomes, has also been visualized 
using CLEM, as demonstrated by Omari et  al. in their 
study of misfolded procollagen molecule degradation.79

Despite its potential, the broader application of CLEM 
in life sciences is hindered by complex sample preparation 
requirements and the need for compatible integration of 
light and EM technologies. Further, distinct labeling stud-
ies are necessary to unravel the complexities of autophagy 
at various stages.

3.5 | Cryo- electron microscopy 
(Cryo- EM)

Cryo- EM, an advanced iteration of traditional TEM, 
incorporates low- temperature transmission and anti- 
contamination systems. It allows in- situ freezing biologi-
cal structures, preserving their natural states and enabling 
atomic- level observation.80 Cryo- EM encompasses single- 
particle analysis and Cryo- electron tomography (Cryo- ET) 
as primary imaging methods.
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Cryo- EM has proven instrumental in elucidating cel-
lular architecture,81 especially in studying the dynamics 
of autophagy, such as autophagosome assembly and deg-
radation. In- situ Cryo- ET (Table 1), for example, has pro-
vided insights into the unique interactions of phagophores 
with vesicles and the ER during starvation.15

Single- particle Cryo- EM has been pivotal in un-
derstanding the structure and function of autophagy- 
associated complexes. Studies like those by Ma et al. on 
PI3KC3 complexes and Ciuffa et  al. on the autophagy 
receptor p62 have offered profound insights into the mo-
lecular architecture and functional dynamics of these 
complexes.82,83 Single- particle Cryo- EM provides ground-
breaking insights into the initiation, expansion, and 
substrate- targeting processes underlying autophagosome 
formation.

However, the advancement of Cryo- EM technology 
and equipment requires interdisciplinary expertise span-
ning multiple technical fields. Despite significant prog-
ress, further enhancements in resolution continue to pose 
a challenge, indicating a possible plateau in Cryo- EM 
development.

3.6 | Optical imaging technology: 
Surpassing resolution limitations

The direct observation of LC3 expression through fluores-
cent probes, commonly used for autophagy assessment, 
is limited by the resolution constraints of traditional op-
tical imaging. This necessitates the utilization of super- 
resolution fluorescence imaging for characterizing the 

ultrastructure of autophagic vesicles and associated pro-
teins and organelles.32 Technologies like confocal mi-
croscopy, multiphoton microscopy, and super- resolution 
microscopy have expanded our understanding of 
autophagy.

Advanced optical imaging technologies have en-
abled detailed analysis of autophagy in specific cells. 
For example, Changou et al. used high- resolution three- 
dimensional fluorescence imaging to investigate whether 
autophagosomes must reach a critical size for lysosomal 
fusion.84 Similarly, Ligeon et al.'s application of structured 
illumination microscopy (SIM) provided remarkable in-
sights into protein localization on organelles with 100- nm 
resolution.85 While SIM has significantly advanced our 
understanding of autophagy, its limitations in ultrastruc-
tural observation necessitate the concurrent use of tech-
niques like Cryo- EM.86

3.7 | Volume electron microscope: 
observing 3D spatial structures

EM, with its nanoscale resolution, is crucial for observing 
the ultrastructure of autophagic vesicles. However, tra-
ditional EM is confined to two- dimensional projections, 
which may obscure the comprehensive understanding of 
autophagic vesicle volumes and dimensions within cells.51 
Volume electron microscopy (vEM), in contrast, allows 
for creating detailed 3D models by amalgamating images 
from successive sectioning.87–89

TEM, augmented by tomography, has emerged as 
a pivotal tool in delineating the genesis of autophagic 

T A B L E  1  Volume electron microscopy reveals autophagic ultrastructure.

Technology Research objective Observation result Implications Reference

Electron 
tomography

Relationship of the 
phagophore membrane 
and ER

Connections between the 
phagophore/autophagosome 
membrane and the closely 
located ER cisternae

Origin of autophagosome 
membranes;

Mechanism of phagophore 
membrane extension

88

Electron 
tomography

Association of isolation 
membranes (IMs) and ER

ER–IM complex being a subdomain 
of the ER

Origin and source of 
autophagosomal 
membranes

89

Cryo- electron 
tomography

Structural progression of 
autophagosome biogenesis

Contact sites between the 
phagophore and organelles, 
such as the vacuole and ER

Contribution of different 
membrane sources; 
Forces shaping and 
driving phagophores 
toward closure

15

Correlative light 
and electron 
microscopy 
with array 
tomography

Contact between organelles 
and autophagic 
ultrastructure

Association of phagophores and 
ER; ER is the most frequently 
engulfed organelle

Systematic spatiotemporal 
analysis of inter- 
organelle relationships 
during autophagy

90
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vesicles in mammals (Table 1). Pioneering this approach, 
Yla- Anttila and colleagues undertook EM tomography 
to scrutinize rat kidney cells under serum and amino 
acid deprivation. They meticulously captured dual- axis 
tilt image series from sequential 250 nm sections. Their 
focus was particularly riveted on a hypothesized linkage 
between the autophagic vesicle membrane and the ER. 
Through the reconstruction of 3D tomograms, they elu-
cidated a predominant mode of connection between the 
phagophores/autophagosomes and adjacent ER cisternae. 
This connection manifested as a slender extension from 
the phagophore/autophagosome toward the ER, often 
with the ER encompassed within the autophagosome.90 
Similarly, Mitsuko et al. utilized EM tomography to exam-
ine mammalian cultured cells, uncovering a correlation 
between early autophagic structures, termed isolation 
membranes (IMs), and the ER. Their findings suggest that 
these IMs, emerging as ER subdomains, encase the IMs, 
forming a structural cradle.91

Addressing the challenge of misidentification in EM 
studies of autophagy, Kit Neikirk and team have intro-
duced a robust method to discern subcellular structures 
implicated in autophagy (Figure  5). Their technique 
combines serial block- face scanning EM with Amira 
software, allowing for a 3D visual representation of 
the degradation process.25 Extending this approach, 
Satoru Takahashi and his team implemented three- 
dimensional CLEM coupled with array tomography 
(Table 1). This method was applied to cells subjected to 
30- minute starvation, with a focus on the spatiotempo-
ral interplay among organelles during autophagy. Their 
comprehensive analysis revealed consistent associations 
of all phagophores with the ER, noting a decrease in ER 
contact area as phagophores mature into autophago-
somes and autolysosomes. Furthermore, they conducted 

an in- depth examination of the contents within phago-
phores and autophagosomes, observing frequent target-
ing of the ER.92

4  |  CONCLUSION AND 
PERSPECTIVE

In summary, the integration of classical and advanced im-
aging methodologies stands as a cornerstone for the de-
tailed exploration of autophagy's dynamic nature and its 
regulatory mechanisms. This fusion of technologies not 
only enables a deeper understanding of the intricate pro-
cesses governing autophagy but also promises to uncover 
the underlying mechanisms essential for novel therapeu-
tic strategies in diseases where autophagy plays a pivotal 
role. Advanced imaging techniques such as EM, IEM, 
and CLEM have significantly expanded our knowledge 
of autophagic vesicle architecture. Despite these advance-
ments, considerable challenges remain, notably in our 
comprehension of the selective and heterogeneous nature 
of autophagy.

Critical areas that require further investigation in-
clude cargo recognition and binding mechanisms encap-
sulated within the “cargo- ligand- receptor” paradigm.93,94 
Elucidating these interactions demands the refinement 
and application of sophisticated imaging methods that 
can accurately depict the complex interplay between 
autophagic components and other cellular structures. 
Furthermore, the study of microautophagy, hindered by 
the absence of standardized methods and appropriate 
models,95 underscores the necessity for innovative experi-
mental designs, particularly utilizing gene knockout mice 
to probe the regulatory pathways governing autophagy's 
various forms. Additionally, although technologies like 

F I G U R E  5  Serial block- face scanning electron microscopy (SEM) combined with Amira software for 3D visualization of autophagy 
process. SEM captures sequential images of target structures by continuous slicing. Then, these images are combined into a comprehensive 
database in Amira. Subsequently, the contours of the target structure are segmented manually or automatically on a layer- by- layer basis, 
ultimately resulting in the generation of a precise 3D model. ER, endoplasmic reticulum; M, mitochondria; P, phagophore.
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Cryo- ET offer lower resolution compared to Cryo- EM, 
they provide invaluable insights by preserving the near- 
physiological state of cells and tissues.96 This approach, 
especially when combined with transgenic mouse models, 
allows for the in situ observation of autophagic structures, 
thereby enriching our understanding from a unique, phys-
iologically relevant perspective.

In conclusion, it is imperative to leverage these tech-
nological advancements not only to dissect the nuanced 
details of autophagy but also to facilitate the development 
of therapeutic interventions where modulation of autoph-
agy can yield significant clinical benefits. The continuous 
evolution of cellular imaging techniques will undoubtedly 
broaden the horizons for research in cellular biology, of-
fering unprecedented spatial and temporal resolution that 
could revolutionize our understanding of cellular dynam-
ics and disease pathology.
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