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Virtually all age-related neurodegenerative diseases (NDs)
can be characterized by the accumulation of proteins inside
and outside the cell that are thought to significantly contribute
to disease pathogenesis. One of the cell’s primary systems for
the degradation of misfolded/damaged proteins is the ubiq-
uitin proteasome system (UPS), and its impairment is impli-
cated in essentially all NDs. Thus, upregulating this system to
combat NDs has garnered a great deal of interest in recent
years. Various animal models have focused on stimulating 26S
activity and increasing 20S proteasome levels, but thus far,
none have targeted intrinsic activation of the 20S proteasome
itself. Therefore, we constructed an animal model that
endogenously expresses a hyperactive, open gate proteasome in
Caenorhabditis elegans. The gate-destabilizing mutation that
we introduced into the nematode germline yielded a viable
nematode population with enhanced proteasomal activity,
including peptide, unstructured protein, and ubiquitin-
dependent degradation activities. We determined these nem-
atodes showed a significantly increased lifespan and substantial
resistance to oxidative and proteotoxic stress but a significant
decrease in fecundity. Our results show that introducing a
constitutively active proteasome into a multicellular organism
is feasible and suggests targeting the proteasome gating
mechanism as a valid approach for future age-related disease
research efforts in mammals.

Aging is a biological process that happens in all multicellular
organisms over time and is characterized by the chronological
accumulation of cellular damage leading to functional decline
as an organism grows older. Functional decline may be caused
by many coinciding systemic, cellular, and molecular factors,
but one specific inevitability that afflicts humans as we age is
the disruption of cellular proteostasis leading to the buildup of
damaged and aggregate prone proteins (1–3). The buildup of
such non-native proteins is an important hallmark of aging
thought to contribute to organismal decline and has been
linked to several age-related diseases (1, 3–5). Two systems
exist in the cell that are responsible for degrading misfolded
and damaged proteins: the ubiquitin proteasome system (UPS)
and the lysosome (autophagy). The UPS is highly regulated
and is responsible for degrading individual misfolded,
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damaged, or unneeded proteins, while the lysosome is
responsible for degrading larger cargo including organelles and
large protein aggregates. Many age-related diseases, including
virtually all neurodegenerative diseases (NDs), can be charac-
terized by protein misfolding and accumulation, and in many
cases, these diseases have also been shown to have decreased
UPS and autophagic functions (6–13). The definitive cause of
decreased proteasome function has yet to be determined.
However, proteasome activity has been shown to decrease with
age, which could lead to protein accumulation, especially later
in life when NDs primarily occur; a wide range of literature
supports this hypothesis (14–23). In agreement with this
notion, synthetic proteasome impairment alone in mice and
rats has been shown to cause pathologies and symptoms
associated with NDs (24–28). To better understand the po-
tential mechanisms of proteasome impairment in disease,
understanding how the proteasome regulates substrate
degradation is needed.

The 20S proteasome, the proteolytic component, is a
barrel-like structure with four stacked heptameric rings (⍺7,
β7, β7, ⍺7) (29). The ⍺-rings’ N termini form “gates” that
deter nonspecific degradation by interacting with one
another to form a folded structure over the central pore
preventing unregulated substrate entry (30). The gate’s
structural stability is mediated by the evolutionarily
conserved YDR motif (Tyr-Asp-Arg[Ser]), which stabilizes
both the closed and open states of the 20S substrate gate
(29–33). The β-rings house two copies of three distinct
proteolytic sites that cleave after: hydrophobic (chymo-
trypsin-like), basic (trypsin-like), and acidic (caspase-like)
residues. Several different regulatory caps that bind to the
20S proteasome exist in the cell to aid in regulating protein
degradation by the proteasome (i.e., PA200/Blm10, PA28αβ,
PA28γ, 19S), and many of these caps have been extensively
characterized (34–38). The 19S regulatory particle is one of
the primary regulatory caps in the cytosol. It binds to one or
both ends of the 20S proteasome creating the 26S protea-
some. The 19S consists of a base and lid region. The base
consists of a hexameric ring of AAA-ATPases for protein
unfolding, and the lid contains ubiquitin receptors and
deubiquitinases for targeting substrates for degradation
(39–42). The C termini of the ATPase subunits contain a
HbYX (hydrophobic, tyrosine, most amino acids) motif,
which docks into intersubunit pockets in the 20S complex
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causing conformational changes in the 20S α-subunits trig-
gering gate opening (43).

Many previous studies have reported that one cause of
proteasomal inhibition in aging and disease states is the
presence of oligomeric proteins and other types of protein
aggregates (10, 44–48). Our lab has recently shown that
conformationally specific oligomeric forms of misfolded
ND-associated proteins (i.e., amyloid-β, α-synuclein, and
huntingtin) can bind to and inhibit 20S proteasome activity
by stabilizing a closed gate conformation even in the pres-
ence of the gate opening HbYX motif (49). However, this
inhibition can be reversed with saturating levels of HbYX
motif peptides, highlighting the potential therapeutic op-
portunity in targeting the proteasomal gating mechanism
(49).

Recent studies have targeted proteasome activation or
upregulation as a type of therapy to combat ND or increase
resistance to cellular stress (50–54). In fact, recent findings
have shown that some FDA approved drugs can alter post-
translation modifications on the 26S proteasome that
modulate its activity (52). Other studies have shown that
overexpression of the 20S β5 subunit increases total protea-
some levels resulting in an increase in lifespan and resistance
to cellular and organismal stressors (55–57). While this
demonstrates the protective effects of increasing proteasome
amounts, we sought to stimulate the intrinsic activity of
endogenous 20S proteasomes. A previous study in yeast has
shown that an 11 residue truncation of the ⍺3’s N terminus
creates a 20S with a constitutively open proteasomal gate,
which leads to dramatically increased 20S peptide hydrolysis
(30). More recently, it was shown that the expression of this
proteasome construct in the mammalian HEK293 cell line
leads to resistance to proteotoxic stress induced by tau
overexpression (58). It is important to note that the trunca-
tion of α3 in HEK293 cells was exogenously overexpressed on
a WT α3 subunit background (58). It was reported that the
modified α3 incorporated into the 20S proteasome well, but
there still may be a small population of WT proteasomes
present. Thus far, no animal model has ever been made with a
similar gate opening mutation. Creating this mutant in a
multicellular organism poses many potential issues, as regu-
lated protein degradation by the proteasome is imperative for
almost every cellular process including immune response,
signal transduction, development, metabolism, and progres-
sion through the cell cycle (59–61). To this point, Bajorek
et al. showed that expression of this open gate proteasome in
yeast hindered exit from stationary phase thereby reducing
population growth following nutrient deprivation. However,
in the logarithmic phase, where nutrients are readily available,
population growth and cell division appear normal (62). In
the present study, we generated the very first multicellular
organism, Caenorhabditis elegans, that expresses an endog-
enous open gate proteasome through direct genome editing.
We examine how this hyperactive proteasome affects
C. elegans biology and impacts its lifespan and resistance to
oxidative and proteotoxic stresses.
2 J. Biol. Chem. (2022) 298(10) 102415
Results and discussion

Mutation design

The seven α-subunits of the eukaryotic proteasome contain
N-terminal regions that fold over the central pore closing it off
to prevent unregulated substrate entry. The N-terminus of
each α-subunit, while highly conserved, differs slightly in
sequence, length, and structure, and therefore, plays a unique
role in regulating gate closure. The N-terminus of α3 is
uniquely important for gating in that it extends across the
length of the entry pore acting as an anchor by providing
hydrogen bonding between the other α-subunit N-termini
resulting in a stable closed gate conformation (29) (Fig. 1A).
Given the high sequence conservation of the α3 N-terminus
among eukaryotes (Fig. 1B), we hypothesized that making this
mutation in nematodes would also induce gate opening and
stimulate proteasome activity as has been shown in yeast and
mammalian cells (30, 58). Using Co-CRISPR Cas9 technology
with the assistance of InVivo Biosystems, we were able to
directly edit the genome of C. elegans to generate a nematode
population with endogenous expression of a hyperactive, open
gate proteasome.

Two identical mutant clones were generated separately to
control for off-target editing resulting in the strains COP1857
pas-3(knu746 [NTD del]) and COP1858 pas-3(knu747 [NTD
del]), which we will refer to as α3ΔN throughout this study. In
these mutants, 36 base pairs were deleted and replaced with 12
base pairs of new coding (for PCR Genotyping) resulting in an
8 residue N-terminal deletion of the α3 subunit including the
YDR motif (Fig. S1, A and B). Whole genome sequencing on
both strains confirmed a successful α3 N-terminal truncation,
and a bioinformatic analysis confirmed no editing in off-target
regions for both clones (Fig. S1C). As determined by Western
blot, native-PAGE showed proper assembly of the α3ΔN 20S
(Fig. S2A), and SDS-PAGE showed no detectible difference in
expression compared to WT (Figs. 1C and S2, B and C). Un-
changed proteasome levels are important to note as any dif-
ferences in proteasome activity detected is not due to major
changes in expression but to the activity of the proteasome
itself.

Proteasome activity

After confirming the successful α3 N-terminal truncation
and unchanged expression levels, we sought to determine
whether this mutation did, in fact, cause increased protea-
some activity in α3ΔN compared to WT. 20S activity can be
measured in vitro using small fluorogenic peptides conjugated
to 7-amino-4-methylcoumarin (AMC), which becomes fluo-
rescent following cleavage from specific 3 to 4 amino acid
peptides. Therefore, activity can be measured by determining
the rate of increased fluorescence over time. Gate opening,
rather than active site activation, can be validated by deter-
mining the stimulation of activity at all three of the 20S’s β
catalytic sites using Suc-LLVY-AMC (chymotrypsin-like),
Z-LLE-AMC (caspase-like), and Boc-LRR-AMC (trypsin-
like). Using the highly proteasome specific substrate,



Figure 1. Generation of C. elegans with open gate 20S proteasome. A, top view of S. cerevisiae 20S (1RYP) α-ring with α3 subunit in blue and its N-
terminal gating residues that were removed by gene editing illustrated in red and cut site marked with a black “X”. B, 20S α3 N-terminal sequence alignment
of C. elegans, H. sapiens, and S. cerevisiae showing homology, the YDR/S motif demarcated between the red lines. Specific residues deleted to form an open
gate α3ΔN-20S in each species is indicated by the dashed line (30, 58). C, SDS-PAGE Western blot probing for 20S α-subunits (antiproteasome α’s1,2,3,5,6,7;
MCP231) using α-tubulin (anti-Tubulin YOL1/34, ab6161) as a loading control (N = 3, p < 0.05). Values given are the average relative proteasome abundance
in each strain relative to tubulin ± SD.
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Suc-LLVY-AMC, and the proteasome inhibitor, MG132, to
normalize to proteasome-specific proteolysis, we observed a
13-fold increase in 20S activity in α3ΔN lysates compared to
WT (Fig. 2A). Z-LLE-AMC and Boc-LRR-AMC were also
hydrolyzed faster by α3ΔN as expected for an open gate
proteasome (Fig. 2, A and B). In fact, α3ΔN lysates were as
much as 50Xs more active than WT (WT was 98% less active
for Boc-LRR-AMC), indicating extensive increase in protea-
somal peptidase activity. Moreover, this result demonstrates
that all three of these peptides are relatively specific for the
proteasome in C. elegans lysates, since the 20S mutation
substantially increased peptide hydrolysis as expected, and
the activity reported was sensitive to the proteasome inhibitor
MG132.

To directly confirm the increased activity was due to pro-
teasome activation specifically, we performed an in-gel activity
assay that shows proteasome peptidase activity after separating
the lysate via native-PAGE. Both α3ΔN clones showed dras-
tically higher 20S signal compared to WT, which was hardly
detectable (Fig. 2C). The 26S peptide hydrolysis activity was
also elevated in the α3ΔN clones relative to WT after
normalizing to 26S protein levels observed via immunoblot
(Fig. 2C). After the addition of 0.02% SDS, which induces gate
opening in the WT 20S (43, 63, 64), we observed an equal-
ization of the signal between WT and α3ΔN 20S, further
implicating gate opening as the primary means of activation in
these mutants (Figs. 2C and S3). We also observed a light band
above the 20S likely corresponding to a PA200-20S complex, a
proteasomal activator that has been reported to bind more
readily to open gate proteasomes (65).

To determine the extent to which α3ΔN in C. elegans opens
the 20S gate, we examined the activation capacity of the 26S
proteasome. Typically, the 26S proteasome can be activated by
4- to 5-fold in the presence of ATP (31), which induces gate
opening. When we added ATP to WT or α3ΔN lysates, we
found that it stimulated Suc-LLVY-AMC peptide substrate
entry by 5.5-fold for WT and 2.3-fold for α3ΔN lysates, sug-
gesting that the mutation may not cause completely stable gate
opening in these proteasomes since the α3ΔN 26S can become
more active when saturated with ATP (Figs. 2D and S4). In
agreement, prior studies using the mammalian open gate 20S
also show the 19S bound α3ΔN can reach a higher level of
“full” activation compared to 19S bound to WT 20S (58). The
observation that mutant lysates can be further stimulated by
ATP suggests that α3ΔN proteasomes may still offer a level of
regulation that may contribute to the viability of these mutant
populations. It is possible that a completely open gate would
be lethal in a multicellular organism given the crucial role of
proteasomal regulation during development (see later for
more). Another open gate mutant has been generated in yeast
with a truncation in both the α3 and α7 N termini (α3α7ΔN),
resulting in more extensive activation than α3 truncation alone
(62). We attempted to introduce this construct in C. elegans
and were only able to produce heterozygous populations,
suggesting homozygosity is lethal. This observation is consis-
tent with the hypothesis that our α3ΔN 20S mutant is not fully
open, which may contribute to the successful generation of
this organism.

Thus far, we have shown 20S activity in vitro using only
small fluorogenic peptides, which is useful because it provides
information about degradative capacity and the degree to
which α3ΔN elicits gate opening. However, it does not
necessarily provide direct evidence α3ΔN 20S’s ability to
degrade more physiologically relevant substrates such as
J. Biol. Chem. (2022) 298(10) 102415 3



Figure 2. The nematode α3ΔN proteasome is hyperactivated in vitro. All activity assays were performed using nematode lysates from synchronized
young adult populations. All quantitative data shown are normalized to MG132 inhibition. A, raw kinetic data of Suc-LLVY-AMC hydrolysis by lysates
prepared using 20S lysis buffer. Fluorescence (ex/em: 380/460 nm) was measured every 60 s for 2 h (1 h shown). Values shown are average relative
fluorescence units (RFUs) at each time point ± SD normalized to MG132 inhibition (N = 3). B, quantified peptidase activity using fluorogenic substrates
targeted to all three proteasomal active sites: chymotrypsin-like (Suc-LLVY-AMC), caspase-like (ac-LLE-AMC), trypsin-like (Boc-LRR-AMC). Data are shown as
percentage of mean α3ΔN activity ± SD normalized to MG132 inhibition (N = 3). C, native-PAGE (4%–8% Tris-acetate gel) of lysates from day 1 adults
showing in-gel peptidase activity after incubation with 50 μM Suc-LLVY-AMC in 26S activity buffer (includes ATP) (left), peptidase activity after incubation
with 0.02% SDS to induce gate opening (middle) and immunoblot for 20S α-subunits (antiproteasome α’s1,2,3,5,6,7; MCP231) (right). Experiments were
performed in triplicate and images shown include 1 replicate of each strain (WT, α3ΔN1, α3ΔN2). Arrows indicate suspected PA200-20S band. D, quantified
peptidase activity (Suc-LLVY-AMC hydrolysis, rfu/min) using lysates with and without ATP. Values shown are average degradation rate ± SD normalized to
MG132 inhibition (N = 3). Unnormalized data shown in Fig. S4. E, fluorescence polarization (FP) of FITC-casein over 4 h using 5 μg lysate from each strain in
the presence of ATP (100 μM MG132 used to inhibit proteasome activity). Values are the second order smoothing of the raw FP at each time point (N = 3). F,
total change in FP (ΔmP) of FITC-casein after 4 h. Values represent the average ΔmP ± SD after normalizing to MG132 inhibition (N = 3). G, exponential
decay curve of ub4(lin)-GFP-35 degradation with half-life (t1/2) and R2 value labeled for each curve, normalized to MG132 inhibited. Unnormalized data
shown in Fig. S4. (N = 3). All experiments were performed in triplicate at least twice and error bars represent ±SD; **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
AMC, 7-amino-4-methylcoumarin.
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intrinsically disordered proteins (IDPs) and polyubiquitinated
proteins. Protein degradation increases the mobility of fluo-
rescently labeled peptides that can be measured with fluores-
cence polarization (FP) by assessing the rotational rates of the
fluorophore. We used FP to monitor degradation of the of the
unstructured FITC-casein. With ATP, we observed a 4-fold
higher change in FP in α3ΔN compared to that of WT
(Fig. 2, E and F), demonstrating an increased capacity of α3ΔN
lysates to degrade IDPs (i.e., casein) under physiologic condi-
tions. When the identical experiment was repeated without
ATP, FITC-casein degradation was undetectable in WT, while
4 J. Biol. Chem. (2022) 298(10) 102415
degradation was clearly visible in α3ΔN (Fig. S4B), demon-
strating that the free α3ΔN 20S (ATP-independent activity)
has increased IDP degradative capacity as expected. While
enhanced degradation of unfolded substrates is expected with
a more open proteasome gate, it is not expected that α3ΔN
proteasome would stimulate degradation of folded substrates
since folded domains must be unfolded by 19S ATPases before
entering the 20S, which is known to be rate limiting. To assess
ubiquitin-dependent degradation capacity, we used ub4(lin)-
GFP-35, which contains an N-terminal linear tetraubiquitin
chain fused to a circularly permuted GFP with a 35 residue
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unstructured initiation site on its C-terminus (42). Surpris-
ingly, the α3ΔN lysates unfolded and degraded this substrate
nearly twice as fast as the WT lysates (Figs. 2G and S4C). In
agreement with these findings, open-gate 20S expression in
mammalian cells (in a WT proteasome background) also
showed enhanced ubiquitin-dependent degradation of a pro-
tein substrate (58). These combined findings in two very
different systems provide compelling evidence that gate
opening can enhance ubiquitin-dependent protein degrada-
tion. While the mechanism behind this observation is not
understood, perhaps enhanced substrate entry into the 20S
during initial unfolding events contributes, as previously sug-
gested (58).
Lifespan and other notable phenotypes

After confirming the viability and proteasome activation in
α3ΔN, we sought to characterize their phenotypic differences
relative to WT. As mentioned previously, a wide range of
literature reports that proteasome activity declines with age in
many model systems (14–23), and its inhibition leads to a
dramatically decreased lifespan in C. elegans (66). In addition,
many long-lived nematode mutants are characterized by
increased proteostasis (67), which has been linked in some (i.e.,
dnj-21 and glp-1) to increased UPS activity (68, 69). Thus, we
asked if hyperactivation of the proteasome core particle could
impact lifespan. Visualized using a Kaplan–Meier curve, we
found that open gate mutants have a median lifespan of
20 days compared to 17 days for WT nematodes corre-
sponding to a 20% lifespan extension for α3ΔN (Fig. 3A, p <
0.0001). This is consistent with previous studies where pro-
teasome upregulation increases cellular viability in mammalian
Figure 3. Lifespan extension in α3ΔN and other notable phenotypes. A, Ka
test, p < 0.0001). B, average number of hatched progenies for each strain (N
development showing lethargus and peak activity for each larval stage. Data r
average length measurements throughout development to day 8 of adultho
arrest ± SD (N = 12). F, pharyngeal pumping (pumps/min) during the first 5 d
dependent experiments. Error bars represent ±SD; **p ≤ 0.01, ***p ≤ 0.001, **
systems (70) and extends the lifespans of C. elegans and
Drosophila melanogaster (56, 57). However, the mechanisms
of activation studied in the context of C. elegans and
D. melanogaster lifespan extensions have relied on β5 subunit
overexpression to increase total proteasome levels, not acti-
vation of the proteasome itself. The data shown here confirms
that intrinsic proteasome activation via gate opening can also
extend lifespan.

While open gate proteasome expression resulted in no
obvious physical abnormalities and an increased lifespan, we
did notice a slower population growth in α3ΔN. To investigate
this, we calculated the average number of viable offspring per
nematode and found a >90% decrease in fecundity for α3ΔN
compared to WT (Fig. 3B). This contrasts with a previous
study showing that increased proteasome levels (20S and 26S)
in C. elegans elicited a 12% increase in fecundity (56). This
dichotomy demonstrates that upregulation of proteasome
amounts with fully intact gating residues is not physiologically
analogous to proteasome activation via gate opening. Clearly,
the loss of the ability to close the proteasome gate has a
negative impact on reproductive and/or developmental sys-
tems; however, the disruptions are limited as some embryos do
survive to adulthood. This decrease in fecundity could
potentially contribute to the increased lifespan seen in α3ΔN
as fertility and lifespan are typically inversely related (71).

Slower development is also associated with increased life-
span in many strains (72) so we sought to determine if α3ΔN’s
developmental timeline was delayed. C. elegans pass through
four larval stages (L1-L4) before reaching adulthood, each of
which consisting of a “lethargus” period, where feeding and
locomotion are transiently arrested during the molting process
(73). Using a specially designed nematode wMicrotracker
plan–Meier curve of survival for α3ΔN (N = 139) and WT (N = 121) (logrank
= 4, p < 0.0001). C, activity counts from wMicroTracker throughout larval
epresent a second order smoothing of activity counts over 72 h (N = 12). D,
od (N ≥ 3) ± SD. E, daily consumption of OP50 E. coli (ΔA600) following L1
ays of adulthood (N = 15). The data are representative of two or more in-
**p ≤ 0.0001.
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(InVivo Biosystems) to detect nematode activity levels in liquid
culture, we found no significant developmental timeline dif-
ferences between α3ΔN and WT with both strains going
through their developmental “lethargus” periods synchro-
nously and reaching adulthood within 50 h (Fig. 3C). In
addition to identical developmental progression, we also found
that the two strains remained the same length to each other
and grew at the same rate through each developmental stage
measured, which further supports the consistent develop-
mental timeline. However, after reaching adulthood and
throughout the gravid period, α3ΔN remained consistently
shorter in length than WT (Fig. 3D). The precise reason for
this in unclear but could be attributed to fewer eggs present in
α3ΔN as described previously or a decreased cell size due to
differences in overall food consumption. We calculated
Escherichia coli (OP50) consumption rates by measuring daily
changes in A600 and found that α3ΔN consumed less than WT
(Fig. 3E). We then measured pharyngeal pumping (pumps/
min) to determine if this correlated with α3ΔN’s decrease in
overall food consumption and found that α3ΔN had consis-
tently lower pumping frequency compared to WT over the
first 5 days of adulthood (Fig. 3F). It is tempting to draw
connections between reduced caloric intake (potentially due to
increased satiation or pharyngeal pumping defects) and
increased lifespan, as this is a constant theme in other studies
and model systems (74), including humans. For example,
mutations in eat-2 cause decreased food consumption by
directly decreasing pharyngeal pumping rates and thus food
consumption that leads to a significant increase in lifespan (75,
76). However, the pharyngeal pumping rates are �90% lower
in the eat-2 mutants (76) compared to WT, while the α3ΔN
pumping rates are only �10% lower than WT (Fig. 3F).
Therefore, it is unlikely that the slight decrease in pharyngeal
pumping rates in the α3ΔN is causing a caloric restriction
phenotype. Nonetheless, the data presented here demonstrate
that expression of an open gate proteasome in C. elegans is
viable, increases lifespan, and the only “major” physiological
deficiency found is decreased fecundity as the other pheno-
typic differences shown here are relatively small, even though
statistically significant.
Resistance to paraquat

Paraquat is a potent herbicide, which produces reactive
oxygen species in eukaryotes through mitochondrial disrup-
tion (77) and has been used in studies with eukaryotes
including C. elegans as a toxin induced Parkinson’s disease
model (78–80). In the context of proteostasis, oxidative stress
has been observed to cause the dissociation of 19S from the
20S (54), and several studies have shown that both the 20S (54,
81–84) and 26S (85, 86) are responsible for the degradation of
oxidatively damaged proteins. With this in mind, we sought to
determine whether our open gate strain displayed resistance to
paraquat. We exposed our nematode population to 100 mM
paraquat on solid NGM agar and found that after 25 h, 75% of
the α3ΔN population survived, whereas only 30% of the WT
population survived (Fig. 4A). These results clearly
6 J. Biol. Chem. (2022) 298(10) 102415
demonstrate that this gate opening mutation in C. elegans
provides protection from the oxidative toxin. In addition, a
native-PAGE immunoblot for 20S and 26S after 20 mM
paraquat treatment showed that paraquat reduced 26S levels
in both WT and α3ΔN but that the 20S levels only increased in
the WT (Fig. 4B). This result further indicates a reduced
physiological response to paraquat in α3ΔN. Taken together,
the resistance of α3ΔN to paraquat is consistent with previous
reports that showed oxidative stress resistance when protea-
some amounts are increased (55–57) and adds to the field that
intrinsic proteasome activation via proteasomal gate opening
is also protective against the oxidative stress–inducing toxin,
paraquat.
Resistance to heat shock

Elevated temperatures destabilize protein tertiary structure
causing unfolding, protein aggregation, and a cellular heat
shock (HS) response. The role of the proteasome in the HS
response in multicellular organisms is poorly understood.
Although, recent evidence suggests that the 26S proteasome
becomes stably activated during HS (87). Nevertheless, given
that α3ΔN expression during oxidative stress is protective,
we sought to determine whether its expression is also pro-
tective under heat-induced stress. The HS was performed by
shifting synchronized young adults from 20 �C to 37 �C for
2 h or 2.5 h with a 17 h recovery period followed by survival
and paralysis scoring. After the 2 h HS, �30% of the WT
population was paralyzed while the mutant strain remained
largely unaffected (Fig. 4C) (p < 0.001). When combined with
survival data (Fig. 4D), 36% of the WT population was
adversely affected by a 2 h HS compared to only 2% of α3ΔN
(Fig. 4C). Since 2 h at 37 �C was not sufficient to cause
significant death in either strain (Fig. 4C, p < 0.05), we
increased the HS by 30 min and repeated the analysis. After
2.5 h at 37 �C, α3ΔN paralysis increased slightly to �5%, and
paralysis of the WT population remained similar to the 2 h
exposure (Fig. 4C) (p = 0.0017). The mortality rate, however,
was more significantly impacted; 50% WT population died
compared to only 20% of the α3ΔN population (Fig. 4C) (p <
0.0001). Taken together, the 2.5 h HS adversely impacted
75% of the WT population but only 25% of the mutant
population (Fig. 4D).

In addition to the phenotypic analysis, we also analyzed the
accumulation of polyubiquitinated proteins by Western blot.
We quantified the high molecular weight (MW) chain den-
sities after 2 and 2.5 h of HS at 37 �C and normalized each
strain to non-HS control. Interestingly, HS increased the high
MW chains by 1.95-fold in the WT but only 1.25-fold in the
α3ΔN at 2 h. Likewise, the 2.5 h HS induced high MW chains
to 1.66-fold in the WT but only 1.30-fold in the α3ΔN
(Fig. 4E). The two strains are statistically significantly
different at 2 h (p = 0.027), but these data did not reach
significance at the 2.5 h time point (p = 0.177), though the
trend was consistent (Fig. S5). The differences seen in poly-
ubiquitin chain accumulation suggest the open gate strain
may degrade polyubiquitinated proteins more efficiently. This
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is consistent with observations seen in mammalian cells
where expression of α3ΔN in HEK293 cells showed enhanced
ubiquitin-dependent degradation of transiently overexpressed
Ub-GFP (58). It is also plausible that heat-induced unfolding
could allow for ubiquitin-independent degradation by the
α3ΔN-20S, preventing the need for polyubiquitination. The
ubiquitin blots also showed comparatively more monomeric
ubiquitin present in α3ΔN after HS, further indicating a
reduced amount of polyubiquitinated species in α3ΔN post
HS.
Conclusion

In this study, we successfully generated a C. elegans animal
model endogenously expressing a hyperactive, open gate
proteasome. Using CRISPR, we generated the open gate pro-
teasome by making an 8 residue deletion from the N-terminal
gating region of pas-3, which encodes the 20S α3 subunit. The
mutation resulted in an open gate proteasome with at least a
13-fold increase in peptide substrate entry and had substan-
tially increased capacity to degrade unstructured and ubiq-
uitinated proteins. Increased degradation of both peptide and
protein substrates is consistent with previous studies exam-
ining this mutant in yeast and mammalian cells (30, 58). The
strain expressing hyperactive proteasomes had a 20% increase
in lifespan compared to WT, and the adult nematodes spe-
cifically had surprisingly few detrimental phenotypes. The
most striking phenotype appeared to be related to embryo-
genesis causing a substantial reduction in fecundity. Our data
also showed that the open gate strain is significantly more
resistant to oxidative stress and heat exposure compared to
WT. This gate opening mutation also resulted in reduced
polyubiquitin accumulation after HS, suggesting that the
α3ΔN-26S can degrade ubiquitinated proteins more efficiently
J. Biol. Chem. (2022) 298(10) 102415 7
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than WT or that the α3ΔN-20S is capable of degrading pro-
teins that are misfolded by heat prior to ubiquitination. In
addition, our previous studies have also shown that this open
channel proteasome mutant is completely resistant to inhibi-
tion by some pathological oligomers that can be found in
various NDs (49). Future studies currently underway will seek
to verify this finding in nematodes in addition to analyzing
global proteomic and mRNA expression changes caused by
proteasome hyperactivation. Together, the data presented here
have shown that expression of a hyperactive, open gate pro-
teasome in a simple multicellular organism is not only feasible
but also increases lifespan and resistance to proteotoxic stress.
Therefore, these findings support the hypothesis that acti-
vating proteasome function via gate opening could be a viable
and useful approach to increase proteostasis and to potentially
treat NDs whereby proteostasis and protein degradation are
perturbed.

Experimental procedures

Detailed materials and methods including proteasome ac-
tivity assays, C. elegans phenotype analyses, and immuno-
blotting are provided in the supporting information.
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