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Abstract: Osteoporosis is the chronic metabolic bone disease caused by the disturbance of bone
remodeling due to the imbalance of osteogenesis and osteoclastogenesis. A large population suf-
fers from osteoporosis, and most of them are postmenopausal women or older people. To date,
bisphosphonates are the main therapeutic agents in the treatment of osteoporosis. However, limited
therapeutic effects with diverse side effects caused by bisphosphonates hindered the therapeutic
applications and decreased the quality of life. Therefore, an alternative therapy for osteoporosis is still
needed. Stem cells, especially mesenchymal stem cells, have been shown as a promising medication
for numerous human diseases including many refractory diseases. Recently, researchers found that
the extracellular vesicles derived from these stem cells possessed the similar therapeutic potential
to that of parental cells. To date, a number of studies demonstrated the therapeutic applications of
exogenous MSC-EVs for the treatment of osteoporosis. In this article, we reviewed the basic back
ground of EVs, the cargo and therapeutic potential of MSC-EVs, and strategies of engineering of
MSC-EVs for osteoporosis treatment.

Keywords: osteoporosis; mesenchymal stem cells; extracellular vesicles; EV cargo; engineering EV;
osteoporosis medications

1. Introduction

Osteoporosis, a metabolic skeletal disorder that results from the imbalance between
bone formation and bone resorption, generally occurs in postmenopausal women and
older people [1]. The process of bone remodeling is participated by mainly osteoclasts and
osteoblasts, together with other cells including osteocytes, bone lining cells, monocytes,
chondrocytes, hematopoietic stem cells, and mesenchymal stem cells (MSCs) [2–4]. Owing
to the complicated pathology and uninhibited signaling pathway of osteoporosis, the
development of medications is floundering. Nevertheless, various remedies were still
developed for the treatment of osteoporosis such as bisphosphonate, selective estrogen
receptor modulator (SERM), and calcitonin. Among those agents, bisphosphonates (Alen-
dronate, Risedronate, Zoledronic Acid, Ibandronate) are most widely used in preclinical
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and clinical as the first-line therapy for osteoporosis. However, the limited therapeutic
effects with diverse side effects caused by bisphosphonates hindered the therapeutic ap-
plications of osteoporosis [5–8]. The common adverse effects of bisphosphonates include
muscle pain, heartburn, nausea, gastric ulcer, and difficulty swallowing. The medication-
related osteonecrosis of the jaw (MRONJ) is rare but it is the most severe side effect [9].
Therefore, researchers have continued searching for an alternative therapy for osteoporosis
with better efficacy and fewer side effects. One of the opportunities is cell therapy by
mesenchymal stem cells (MSCs). MSCs are multipotent stromal cells able to be isolated
from various tissues including cord blood tissue, umbilical cord, placenta, adipose tissue,
peripheral blood, bone marrow, dental pulp, amniotic fluid, etc. [10–14]. In addition to
the stem cell properties of self-renewal and differentiation, MSCs have also shown great
potential of therapeutic effects in numerous human diseases, such as bone and cartilage
defects, lung diseases, diabetes mellitus, retinal degeneration, stroke, etc. [15–18]. Recently,
MSC-based treatment was even applied on moderate-severe phases of COVID-19 with
promising reports [19]. Given that MSCs possess therapeutic benefits in various human
diseases, the underlying therapeutic mechanisms are still being fully elucidated. Currently,
the mechanisms of MSC-based therapy can be mainly attributed to immunomodulation,
differentiation potential, homing to injured sites, and paracrine effect [20–22]. Notably,
MSC-based cell therapies are recognized as exerting their therapeutic effect in bone re-
generation by paracrine effect rather than their differentiation potential over the past
decades [23]. Paracrine effect is a mechanism in which MSCs release a large amount of
functional molecules that are taken up by damaged tissues or cells, and subsequently
benefits angiogenesis, proliferation, inhibits apoptosis as well as inflammation, and in
the case of osteoporosis, promotes the osteogenesis [24]. The conditioned medium (CM)
of cultured MSCs were widely used to investigate the paracrine effect because a broad
spectrum of beneficial factors could be found in the CM [24,25]. Interestingly, with the
increasing evidence being revealed, the fascinating nanoscale “vesicles” isolated from CM
were proven to carry paracrine factors and predominate the regulation of paracrine effect
in tissue regeneration [26,27].

2. MSC-EV with Carried Molecules for Diseases Treatment

Extracellular vesicles (EVs) are lipid bound, nano- to micrometer scaled vesicles
secreted by almost all cell types. They can be divided into three subgroups by size,
biogenesis, release pathways, encapsulated content and function: exosomes (30–200 nm),
microvesicles (MVs, 45–1000 nm), and apoptotic bodies (ABs, 1–4 µm) [28,29].

Based on the guideline of MISEV (minimal information for studies of extracellular vesi-
cles) 2018, “extracellular vesicle (EVs)” is an expert consensus term to describe the vesicles
that have the characteristics as follows: (1) The vesicles cannot replicate. (2) The vesicles
are naturally released from the cell. (3) The vesicles are encapsulated by lipid bilayers.
EVs should be characterized by at least three positive markers (one transmembrane/lipid-
bound protein is included) with one negative marker. The markers like tetraspanins
families (e.g., CD9, CD63, CD81, and CD82), MVB membrane transport (Alix and TSG101),
and heat-shock proteins (Hsp70 and Hsp90) are commonly used as EVs’ markers [30,31].
In particular, MSCs-EVs can reflect the markers from their parental cells by expression of
CD29, CD44, CD73, and CD90. This cell-type fingerprint not only provides the targets for
characterization, but also indicates that MSC-EVs have a similarly potential to MSCs in
the treatment of various disease [32,33]. Among these EVs, exosomes have drawn great
attention due to the therapeutic potential and medical application of exosomes from certain
cell types, such as MSCs or other stem cells. Exosomes are encapsulated by a lipid bilayer
membrane with several types of molecules within the exosomal membrane, including
integrins, adhesion molecules, lipid, and certain receptors. Inside the exosomes, various
types of molecules are encapsulated, including DNA, messenger RNA, microRNA, non-
coding RNA, enzymes, cytokines, as well as many other proteins [14]. All these cargos
are the materials involved in the cell–cell communication through exosomes trafficking
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and uptake by recipient cells. Moreover, different types of cells produce exosomes with
different content of cargo, which have different effects. There has been strong evidence that
exosomes are the main carrier in charge of transporting most of the secreted factors from
cells [15]. Currently, exosomes represent an important mode of intercellular communication
by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids,
and RNA [16].

The therapeutic effect of EVs can be exerted via horizontal transfer of molecules, such
as proteins, lipids and several types of nucleic acids [34–36]. Recently, the therapeutic
potential of noncoding RNAs (ncRNAs) has drawn a lot of attention. These ncRNAs
include microRNAs (miRNAs), Piwi-interacting RNA (piRNA), long non-coding RNAs
(lncRNAs), and others types of secretomes derived from cells. Among these ncRNAs, cer-
tain miRNAs and lncRNAs have shown therapeutic potential in numerous diseases [37–39].
miRNAs are regulatory small RNAs with 21–23 nt that are involved in posttranscriptional
downregulation of protein [40]. They target and inhibit the translation of specific mRNAs
and eventually influence the gene expression profile as well as cellular behavior. As the
result, EVs’ miRNAs are generally considered the crucial therapeutic cargos in the MSC-
EV-based therapy [41–43]. The majority of the mammalian genome is transcribed into
non-protein-coding mRNAs, including lncRNAs [44]. In the cytoplasm, lncRNAs served
as the competing endogenous RNA (ceRNA) to control the binding of miRNA-mRNA,
and mediate the translational regulation of mRNA, as well as function as scaffolds of
RNA-protein complexes [45,46]. Nuclear lncRNAs mainly influence the organization of
chromatin by interacting with related proteins, or prevent the gene loci targeted from
specific chromatin factors [47]. As the potential therapeutic targets, several studies demon-
strated that lncRNAs play an important role in the treatment of cancer, rare diseases, and
infectious diseases [48]. For example, lncRNA H19 carried by MSC-EVs can be transferred
to fibroblasts, upregulates the PTEN signaling pathway, and stimulate wound healing in
diabetic foot ulcers [49]. The protein cargos of MSC-EVs can be associated with several bio-
logical processes of various diseases, particularly with tissue repair and regeneration [50].
EVs derived from WJ-MSCs showed the immunomodulatory capability, mainly through
TGF-β and adenosine carried in the EVs which suppress the activation of CD4-expressing
T-cells and used for the treatment of canine diseases [51]. Overexpression of hypoxia
inducible factor (HIF)-1α in the human dental pulp MSCs promotes the release of EVs, con-
comitantly carrying overexpressed HIF-1α. These EVs promote angiogenesis by interacting
with Notch signaling-rated protein (Jagged1) [52]. Both MSCs and MSC-EVs attenuate
ureteral fibrosis by inhibition of TGF-β1/Smad signaling pathway, whereas the therapeu-
tic effect of MSCs might attribute to EVs, the paracrine factors secreted by transplanted
MSCs [53]. Of note, MSCs and MSC-EVs act as medications for several bone diseases,
such as femur head necrosis, OA, RA, osteosarcoma, and osteoporosis via transferring
therapeutic cargo (Figure 1). Collectively, MSC-EVs have shown the curative potential not
less than that of parental MSCs in the treatment of numerus disease models, indicating that
MSC-EVs is a worth developing medication in the future.
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3. Applications of Modified EVs for Therapy

In general, the terms “modification” and “engineering” are used to describe the
biotechnologies involved in the alteration of the materials for cells, particles, and vesi-
cles [54–56]. The common materials include chemical linkers, ligands, proteins, lipids,
and nucleic acids. Further, the alteration induced by external pressure such as hypoxia
environment, mechanical force, sonochemical reactions, and voltage operations are rec-
ognized as the approaches of modification or engineering [57–59]. At the genetic level,
the term “genetic modification or engineering” can comprehensively cover the process of
intentional alteration of genes to produce a beneficial characteristic to a targeted organ-
ism [60]. Nevertheless, for the broad spectrum of biomaterials including EVs, nanoparticles
(NPs), liposomes, cells, and tissues, there is no uniform description of “modification” and
“engineering”. In this review, both “modification” and “engineering” are used to describe
the introduction of external materials to EVs or alteration induced by application of pres-
sure. There are a plethora of methods to modify EVs, and loading of exogenous proteins or
nucleic acids into EVs are common methods used to explore the feasibility of modified EVs
for disease treatment. Physical approaches, including saponin permeabilization, extrusion,
sonication, and freeze/thaw cycles, were reported to load hydrophilic molecule (catalase)
into EVs [61]. To increase the quantity of EVs, cells cultured in the hypoxic environment
secreted EVs with 1.5–2 folds more than that of cells cultured normoxia [62]. Other meth-
ods of EV engineering such as surface modification, phospholipid-domain binding, click
chemistry, and hybrid EVs with liposomes are introduced to enhance the ability of binding,
targeting, and stability of EVs and potentiate the therapeutic effect [63–67]. However, the
major challenge of EV engineering is keeping the biological functions of EVs when loading
materials or modifying. Several studies showed that loading of exogenous nucleic acids
into EV by electroporation might induce the aggregation of EVs and the loaded materials,
lower the loading efficiency, and reduce the uptake of EVs by target cells [68,69]. Sonication
is an effective method for active loading of hydrophilic agents or nucleic acids into EVs.
However, cargo of nucleic acids is easily degraded due to their structural nature and the
adverse effect may be resulted by sonication [70,71]. The cargo can be introduced into
EVs by incubating with transfection reagent. However, EV membrane might be altered by
reagent, which might further affect the delivery of EVs [72,73]. Taken together, suitable
modification and engineering of EVs strengthen the therapeutic potential through different
aspects, such as enhanced targeting ability or loading of therapeutic agents. Neverthe-
less, engineering without affecting the bioactivity and function of EVs is always a critical
concern.

4. Therapeutic Potential of Exogenous MSC-EVs for Osteoporosis
4.1. Rebalancing the Bone Homeostasis by Regulation of Bone Formation and Resorption

To date, the strategies of using MSCs or MSC-EVs in the treatment of metabolic bone
diseases mainly focus on regulating the bone remodeling by promotion of osteoblasts
and inhibition of osteoclasts. Numerous important molecules are involved in the bone
remodeling and therefore can serve as the markers for the measurement of dynamic
change. These include alkaline phosphatase (ALP), RUNX Family Transcription Factor
2 (RUNX2), collagen, type I, alpha 1 (COL1A1), collagen, type I, alpha 2 (COL1A2), Os-
teopontin (OPN), osteocalcin (OCN, BGLAP), osterix (Osx, SP7), cathepsin K (CTSK),
tartrate-resistant acid phosphatase (TRAP), and calcitonin receptor (CALCR) [74–76]. In ad-
dition to these markers, there are also signaling pathways regulating the bone remodeling,
such as WNT/β-catenin, transforming growth factor-betas (TGF-β), bone morphogenetic
proteins (BMP), insulin-like growth factors (IGF), phosphoinositide 3-kinase (PI3K)/Akt,
and RANKL/RANK/OPG signaling pathways [77–81]. With the examination of these
protein markers or signaling pathways, MSC-EVs are demonstrated to be benefit in the
induction of osteogenesis or suppression of osteoclastogenesis. For instance, treatment of
EVs derived from human dental pulp stem cells (hDPSCs) promoted the osteogenesis of
adipose-derived stem cells (hADSCs) by targeting to MAPK pathway [82]. EVs derived
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from osteogenic differentiated hADSCs showed enhanced ability to induce osteogenesis
of hADSCs. This beneficial loop was verified by upregulated expression of ALP and
RUNX2 [83]. In terms of osteoclastogenesis, EVs derived from gingival tissue-derived
MSCs (GMSCs) was reported to target to Wnt5a-mediated RANKL pathway, and inhibit the
activity and the number of osteoclasts. This therapeutic effect was enhanced after GMSCs
are pretreated with tumor necrosis factor alpha (TNF-α) [84]. Despite the promising results
from these preclinical studies, so far only few clinical trials of MSC-EVs in the treatment of
bone diseases are registered and conducted, as compared with that of MSCs (Table 1). This
suggests that the application of MSC-EVs for bone disorders is still at the initial stage, and
more evidence regarding the therapeutic effect, targeted signaling pathways, and other
mechanisms are needed.
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Table 1. Ongoing clinical trials of MSC and MSC-EVs therapy for bone diseases registered in Clinical Trials.gov. The data were obtained in October 2021.

No. NCT04501354 NCT04499105 NCT04414592 NCT04759105 NCT05066334 NCT04297813 NCT03692221 NCT04735185 No. NCT04849429 NCT04998058
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4.2. miRNAs and lncRNAs Carried by MSC-EVs Serve as Osteoporosis Medications

For the treatment of osteoporosis, several studies have indicated the therapeutic
potential of miRNA in MSC-EVs. A report showed that in the MSC-EVs, 171 miRNAs were
discovered which regulated at least 5481 genes and subsequently influenced numerous
signaling pathways [85]. After OVX-rats were treated with EVs derived from human
bone marrow MSCs (hBMSC-EVs), the study found the increased expression of miR-
551b, miR-1263, miR-181b, miR-144, miR-21, and miR-186 in the bone tissues of OVX-rats.
Among these, miR-186 was verified to inhibit the expression of MOB Kinase Activator 1A
(Mob1) and YAP, which act as the mediators in Hippo signaling pathway [86]. hBMSC-
EVs also showed the therapeutic effect with retardation of osteoporosis, by delivery of
miR-29b to ovariectomized (OVX) mice. According to the report, MSC-EVs isolated from
osteoporotic patients lacked the expression of miR-29b-3p, and therefore the investigators
introduced miR-29b-3p into EVs for the treatment of OVX mice. They found that miR-29b-
3p-encapsulated EVs targeted and suppressed the nuclear factor kappa B (NF-κB) signaling
pathway by inhibiting KDM5A expression, and subsequently improved the osteoporosis
in OVX mice [87]. Similar to EVs from bone marrow MSCs, EVs from Wharton’s jelly
MSCs have strong potential in the treatment of osteoporosis via miRNA cargo. A study
(preprint published on Research Square, DOI: 10.21203/rs.3.rs-37420/v1) proclaimed that
WJMSC-EVs’ miR-328-3p and miR-2110 promoted osteogenesis of osteoporotic mice. The
report also showed that the PPAR (peroxisome proliferator activated receptor) signaling
pathway-associated miR-2110 and let-7c-5p were enriched in WJ-MSC-EVs and regulated
osteoclastogenesis [88]. Except for the OVX mice/rats model, osteoporosis treatment by
MSC-EVs was also effective in the aged male mice model. EVs secreted from human
umbilical cord blood (UCB-EVs) ameliorated bone loss in 16-month-old mice, and it might
attribute to the repression of Homeobox A2 by EVs’ miR-3960. Once Homeobox A2, which
1is known to suppress RUNX2 expression, is downregulated by mir-3960, the promotion of
osteoblast differentiation will be activated [89,90]. Another group showed that treatment
of mouse BMSCs derived EVs had limited benefit in the increase of bone index of healthy
mice, including bone mineral density (BMD), trabecular bone volume (BV/TV), trabecular
bone number (Tb.N), and trabecular separation (Tb.Sp) as examined by microCT. However,
when loaded with miR-29a, these EVs significantly induced osteogenesis in healthy mice.
Further in this study, miR-29a was verified to improve osteoporosis and angiogenesis
by directly target to VASH1 [91]. CBS+/− mice (CBS, Cystathionine β-synthase) tend to
behave metabolic bone loss with increased level of homocysteine (Hcy), which is similar to
the physical condition of osteoporotic postmenopausal women [92]. When osteoporotic
CBS-heterozygous mice were treated with mouse BMSC-EVs, the result revealed that the
angiogenesis and osteogenesis of mice were improved via the regulation by lncRNA-H19
(lnc-H19) in BMSC-EVs. Mechanistically, lnc-H19 bound to and inhibited miR-106, which
was known to downregulated angiopoietin 1 (Angpt1) with the function of bone formation
stimulation [93]. Although the achievement of EVs’ miRNAs and lncRNAs based therapy
for osteoporosis are impressive, several researches revealed contradictory results and
provide another perspective in treatment for diseases by EVs non-coding RNAs cargo.
The investigators isolated the EVs from various tissues including plasma, seminal fluid,
dendritic cells, mast cells, and ovarian cancer cells for miRNAs quantitative assay, however,
most individual EVs did not carry enough amounts of miRNAs to exert their function
(According to the result of that research: 0.00825 ± 0.02 miRNA molecules/EV). Needless
to say, the individual EV unlikely transfer miRNAs to the cells in their vicinity followed
by participating in the down-stream signaling pathway [94]. In addition, a manuscript
published on bioRxiv (DOI:10.1101/2020.05.20.106393) also support the concept, based
on their quantitative experiments, they did not find strong evidence that miRNA cargo
can be delivered by EVs to recipient cells, even engineered EVs could not increase the
ability of uptake by cells [95]. Taken together, although the contradictory studies cause the
low morale of investigators, it allows investigators to carefully considered their findings,
endeavoring in development for EVs’ non-coding RNA based agent for osteoporosis.
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4.3. MSC-EVs’ Protein Act as Therapeutic Cargo in the Treatment of Osteoporosis

To assess the therapeutic potential of protein carried by MSC-MVs, protein expression
profiling performed by proteomic analysis is a useful tool for researchers. The proteomic
signatures of MSC-EVs were revealed by extracting EVs from human bone marrow samples
at 2012, the study identified 730 EV-carried proteins, and detailed the function into several
pathways including MAPK, TGF-β, PPAR, BMP, Wnt, and GF signaling pathways [96].
Interestingly, most of mentioned pathways are related to the pathology of osteoporosis,
it elucidated that utilized MSC-EVs protein cargo to develop osteoporosis medications
were worthy to pursuit. With increasing studies for proteomic analysis of MSC-EVs, more
than 3000 unique proteins have been identified to date. Although the variation of protein
cargo in individuals might lead to the difficulties in drug development, the identified
cargo still shares similar functional category that provide investigators clear targets to
design MSC-EV’ protein-based pharmaceuticals [97,98]. Therefore, a number of researches
reported the therapeutic potential of using MSC-EV’ protein cargo in treatment of osteo-
porosis. OVX mice were used in evaluation of therapeutic effect of human umbilical cord
mesenchymal stromal cells-derived extracellular vesicles (hucMSC-EVs) for osteoporosis.
A total of 5570 EV-carried proteins were identified by LC-MS/MS analysis, among those
cargo, CLEC11A had the highest E/C ratio (EVs/parental cells ratio), allowing it to be a
potential target in promotion of osteogenesis. Based on the hypothesis, the group success-
fully demonstrated that hucMSC-EVs retarded the osteoporosis via transferring CLEC11A.
CLEC11A transferred by MSC-EVs not only stimulated progenitor cells to differentiate
into osteoblasts, but also participated in regulation of osteoclastogenesis [99]. Moreover,
CLEC11A was verified to bind Integrin α11 (Itga11) to stimulate osteogenic activity; how-
ever, the investigators did not examine whether CLEC11A carried by exogenous MSC-EVs
bind to Itga11 to activate down-stream signaling or not [100]. Moreover, the BMSC-EVs
obtained from SD rats were intravenously injected into OVX rats via the caudal vein.
Significant improvement of BMD, BV/TV, Tb.N, and Tb.Sp values were revealed after
the treatment. The authors further overexpressed the glycoprotein non-melanoma clone
B (GPNMB), which facilitated osteoblast differentiation, in the BMSCs and released the
EVs with high GPNMB expression (GPNMB-EVs). The result showed that GPNMB-EVs
significantly promoted the osteogenesis in vitro and ameliorate the osteoporosis in vivo in
comparison with control group (OVX mice without treatment) and BMSC-EVs transfected
with empty vector group (NC-EVs) [101]. Given that the BMSC-EVs could attenuate os-
teoporosis by targeting to Wnt/β-catenin signaling pathway, the authors extended their
research in exploration of possible mechanisms of treatment by GPNMB-EVs, and found
out that GSK-3β might be the crucial molecule in the treatment. Currently, due to the
obstruction of applying MSC in clinical studies, the alternative source of MSC has been
explored [102]. With the characteristics of a noninvasive, low-cost, simple procedure, and
massive production, the human urine-derived stem cells (USCs) are gradually used in
research of stem cells-based therapy [103]. As the result, the therapeutic potential of USCs
derived EVs (USC-EVs) for osteoporosis was assessed. Through the transfer of collagen
triple-helix repeat containing 1 (CTHRC1) and osteoprotegerin (OPG), USC-EVs effectively
promoted the osteogenesis and suppressed the osteoclastogenesis to avoid OVX-induced
osteoporotic mice from bone loss [104]. Although knockdown of CTHRC1 or OPG did not
totally inhibit the therapeutic effect of USC-EVs due the promiscuous signaling pathway
in bone remodeling, the research provided a strong evidence of using EVs’ protein cargo
as osteoporosis medications despite USCs are not canonical type of MSC. To date, most
studies demonstrated the beneficial effect of MSC-EVs for osteoporosis; however, the
contradictory research showed that BMSC-EVs isolated from maxillary bones enhanced
osteoclastogenesis [105]. According to their conclusion, the osteoclastogenesis was induced
on Raw264.7 cells by treating with BMSC-EVs, whereas the BMSC-EVs were collected
from the rats with bone deterioration might not really reflected the function of BMSC-EVs
from healthy donors, more comprehensive experiments should be performed to verify the
findings. Although non-coding RNAs are widely regarded as most powerful therapeutic
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candidates in MSC-EV-based medications, investigators should not ignore the value of
protein cargo. With the diverse functions and prominent biological activity, protein cargo
carried by MSC-EVs are important for investigators to determine the delivery strategy of
osteoporosis medications.

5. Modification of MSC-EVs in Osteoporosis Therapy

Although MSC-EVs are able to promote angiogenesis, suppress immune response,
and support progenitor cell via intracellular delivery of beneficial cargo, other factors
such as in vivo stability, targeting ability, and heterogeneous populations might affect
the therapeutic effects [106–110]. Nevertheless, studies have shown that the therapeutic
efficacy of EVs can be augmented through proper engineering or modifications [111,112].
A number of effective approaches have been applied for the modification of MSC-EVs.
For instance, MSC-EVs bound with RGD (Arg-Gly-Asp) peptides hydrogels can boost the
effect of acute kidney injury (AKI) repair. After intrarenal injection, the engineered MSC-
EVs avoided rapid clearing from circulation in vivo in comparison with non-engineered
MSC-EVs, indicating that the RGD modification significantly elevated the stability and
prolonged the retention of MSC-EVs [113]. Another group isolated the MSC-EVs from the
cells pretreated with lipopolysaccharide (LPS pre-Exo), and examined their therapeutic
effect using a cutaneous wound model of diabetic rats. The result showed that LPS pre-Exo
enhanced the cutaneous wound healing in diabetic rats. Unique expression of let-7b in
LPS pre-Exo induced macrophage polarization by activation of TLR4/NF-κB/STAT3/AKT
signaling pathway. Titanium dioxide (TiO2) nanotubes (TNT) are able to promote the cell
elongation and differentiation of MSCs. In this report, MSC-EVs were hybridized with
TNT (EV-hybrid TNT) for subsequent cell treatment. The result showed that the migratory
ability and osteogenic differentiation of hBMSCs were increased by treatment of EV-hybrid
TNT. The effect might attribute to the regulation of BMP-2-related signaling pathway
due to the finding of upregulated expression of BMP-2 in hBMSCs [114,115]. In another
report, Alendronate–extracellular vesicles (Ale-EVs) were synthesized by conjugation of
Alendronate–azide group (Ale-N3) and EVs-alkynyl group (EVs-DBCO). Ale-EVs showed
the enhanced bone-targeting ability and curative effect for osteoporosis. Meanwhile,
MSC-EVs, without Alendronate modification, failed to target to bone tissues of OVX
mice. Interestingly, the value of BMD, TV/BV, Tb. Th, Tb. N, and Tb. Sp examined
by microCT did not improve by injection of unmodified MSC-EVs in OVX mice, despite
that the upregulation of ALP and RUNX2 were noted [116]. Another study showed
that conjugation of mouse BMSC-derived EVs with a BMSC-targeting aptamer enhanced
the in vivo accumulation in bone tissues. Aptamers are nucleic acids or peptides that
target to the specific molecules, and broadly used in basic research, biosensors, molecular
imaging and drug delivery [117,118]. MSC-EVs without modification was able to induce
in vitro osteoblastic differentiation of BMSCs, while the effect was inefficient to retard the
progression of osteoporosis in OVX mice in vivo. However, systemic administration of
aptamer-conjugated MSC-EVs, the osteogenic activities of OVX mice were enhanced and
osteoporosis was significantly ameliorated. This curative effect might be exerted through
the enriched miR-26a carried by MSC-EVs which specifically accumulated in the bone
tissue [119]. Together, these results showed the enhancement of curative potential of MSC-
EVs after suitable modification. With the increase of studies demonstrates the effective
strategies of utilizing naïve MSC-EVs/engineering MSC-EVs cargo for osteoporosis, the
downstream signaling mechanisms induced by exogenous MSC-EVs are gradually clarified
(Table 2).
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Table 2. A summary of in vitro and in vivo studies of exogenous MSC-EVs for treating osteoporosis.

Animal
Model Terminology Source of EVs Administration

Route EVs Cargos Duration of
Treatment

Time Point of
Sacrifice Target Refs.

In vitro
(steroid-
related

osteoporosis)

EVs AFSCs In vitro model Not revealed 4 days
(Dose not revealed) Not applicable

Related proteins
(SIRT1, FoxO,

Nrf2, p21,
Galectin-3, AP-1

complex)

[120]

OVX mice
Aptamer-

functionalized
exosomes

BMSCs IV injection miR-26a
100 µg EVs, once

per week for
2 months

endpoint of
treatment Not revealed [119]

Healthy mice Exosomes BMSCs IV injection miR-29a
100 µg EVs, twice

per week for
2 months

endpoint of
treatment VASH1 [91]

CBS+/−

heterozygous
mice

Exosomes BMSCs IV injection lnc-H19
100 µg EVs, 3 times

per week for
2 months

endpoint of
treatment

miR-
106a/Angpt1 [93]

OVX rat Exosomes BMSCs IV injection miR-186
1013/mL EVs, once

per week for
1 months

endpoint of
treatment

Hippo signaling
pathway [86]

In vitro Exosomes BMSCs In vitro model Not revealed Not revealed Not revealed MAPK signaling
pathway [121]

OVX rat
GPNMB-
modified
BMSC-EV

BMSCs IV injection GPNMB
100 µg EVs, once

per week for
2 months

endpoint of
treatment

Wnt/β-catenin
signaling
pathway

[101]

Aged male
mice

(16 months
old)

EVs hUCB IV injection miR-3960
100 µg EVs, once

per week for
8 weeks

1, 2 and
8 weeks after

the first
treatment

HOXA2 [89]

OVX mice EVs hucMSCs IV injection CLEC11A
100 µg EVs, once

per week for
2 months

endpoint of
treatment Integrin α11 [99]

In vitro

EVs isolated
from OVX
mice with

agomiR-miR-
29b-3p

injection

BMSCs In vitro model miR-29b-3p Not revealed Not applicable KDM5A/NF-kB
pathway [87]

OVX mice Exosomes WJ-MSCs IP injection miR-328-3p,
miR-2110

0.5 mg/kg EVs,
every 3 days for

6 weeks

endpoint of
treatment CHRD, TNF [88]

OVX rat sEV BMSCs Not revealed miR-
20a/BAMBI

3 weeks
(Dose not revealed)

endpoint of
treatment BAMBI [122]

Abbreviation: OVX, ovariectomized; sEV, small extracellular vesicles; AFSC, amniotic fluid stem cells; BMSCs, bone marrow mesenchymal
stem cells (BMSCs); hUCB, human umbilical cord blood; hucMSCs, human umbilical cord blood-derived mesenchymal stem cells; WJ-MSCs,
Wharton’s jelly mesenchymal stem cells; SIRT1, Sirtuin 1; FoxO, class O of forkhead box transcription factors; Nrf2, nuclear factor erythroid
2-related factor 2; AP-1, activator protein 1; VASH1, vasohibin 1; Angpt1, angiopoietin 1; MAPK, mitogen-activated protein kinases; GPNMB,
glycoprotein non-melanoma clone B; HOXA2, homeobox A2; CLEC11A, C-Type lectin domain containing 11A; KDM5A, lysine-specific
demethylase 5A; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; CHRD, chordin; TNF, tumor necrosis factor; BAMBI,
BMP and activin membrane bound inhibitor.

6. Conclusions and Prospects

In summary, osteoporosis occurs commonly in older populations with an increased
risk of fracture and decreased quality of life (QOL). Despite being the first-line medication
for osteoporosis treatment, the balance of curative effect and adverse effects of bisphospho-
nates therapy is not satisfying. MSC therapy is now extensively tested in several diseases
in clinical trials, including osteoporosis. MSC-derived EVs offers a strategy of cell-free
MSC therapy, exerting the better therapeutic potential in comparison with their parental
cells with lower risk of malignant transformation. In this article, we reviewed a number
of published references to describe the promising therapeutic effects of MSC-EVs such
as promotion osteogenesis and inhibition of osteoclastogenesis in vitro, and retardation
of osteoporosis in vivo. Nevertheless, issues such as nomenclature, characterization, the
ability scale-up production, and robust quality should be addressed as soon as possible. To
accelerate the development of MSC-EV-based medications for osteoporosis, the underlying
molecular mechanisms, potential therapeutic targets, timesaving methods, and precise
animal models are also needed for better understanding and exploration. Currently, the
application of exogenous MSC-EVs in the treatment of osteoporosis is still in the initial
stage as compared with that in the treatment of cardiovascular diseases, cancers, lung
diseases, kidneys injury, wound healing, and other orthopedic disorders. In recent years,
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research of cell-free stem cell therapy using MSC-EVs is rapidly advancing, and it may turn
into a realistic clinical therapy for osteoporosis in the near future.
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