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Abstract: Obesity, characterized by augmented inflammation and tumorigenesis, is linked to genetic
predispositions, such as FOXO3 polymorphisms. As obesity is associated with aberrant macrophages
infiltrating different tissues, including the colon, we aimed to identify FOXO3-dependent transcrip-
tomic changes in macrophages that drive obesity-mediated colonic inflammation and tumorigenesis.
We found that in mouse colon, high-fat-diet-(HFD)-related obesity led to diminished FOXO3 lev-
els and increased macrophages. Transcriptomic analysis of mouse peritoneal FOXO3-deficient
macrophages showed significant differentially expressed genes (DEGs; FDR < 0.05) similar to HFD
obese colons. These DEG-related pathways, linked to mouse colonic inflammation and tumorigenesis,
were similar to those in inflammatory bowel disease (IBD) and human colon cancer. Additionally,
we identified a specific transcriptional signature for the macrophage-FOXO3 axis (MAC-FOXO382),
which separated the transcriptome of affected tissue from control in both IBD (p = 5.2 × 10−8 and
colon cancer (p = 1.9 × 10−11), revealing its significance in human colonic pathobiologies. Further,
we identified (heatmap) and validated (qPCR) DEGs specific to FOXO3-deficient macrophages with
established roles both in IBD and colon cancer (IL-1B, CXCR2, S100A8, S100A9, and TREM1) and
those with unexamined roles in these colonic pathobiologies (STRA6, SERPINH1, LAMB1, NFE2L3,
OLR1, DNAJC28 and VSIG10). These findings establish an important understanding of how HFD
obesity and related metabolites promote colonic pathobiologies.

Keywords: macrophages; FOXO3; obesity; inflammation; tumorigenesis; IBD; colon cancer

1. Introduction

Obesity is characterized by a systemic inflammatory state and augmented tumori-
genesis in various tissues, including the colon [1–3]. In the human population, obesity
is accompanied by genetic predispositions such as polymorphisms of the FOXO3 gene
that lead to its lowered levels [4]. FOXO3, a transcription factor, plays a central role in
diverse cellular functions in colonic and immune cells, including macrophages [5,6]. There-
fore, elucidating how obesity, through loss of FOXO3 in macrophages, promotes colonic
inflammation and tumorigenesis will provide conceptual advances in understanding this
worldwide epidemic and the mechanisms driving these human pathobiologies.

Macrophages are critical for tissue homeostasis and repair [7,8]. Their aberrant function
promotes inflammation and tumorigenesis [9,10]. Depending on the stimuli, macrophages
polarize towards different subpopulations with distinct characteristics and functions [11,12].
Further, tissue microenvironments, such as those found in the adipose tissue of obese individ-
uals and in colon tissue affected by infection, inflammation, and tumorigenesis, contribute to
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the polarization of macrophages [13,14]. Additionally, macrophages release cytokines which
result in tissue damage that exacerbates chronic inflammation [15]. In inflammatory bowel
disease (IBD), aberrant macrophages (enriched for CD68+ and CD14hiCD16+ phenotypes) in
the inflamed intestine promote cytokine production and delayed bacterial clearance, thereby
promoting tissue injury and worsening disease outcome [7,16,17]. Moreover, macrophages
promote tumor progression through angiogenesis, intravasation and metastasis [18,19]. Breast
and pancreatic tumor expansion and metastasis are facilitated by extracellular matrix remod-
eling, mediated by macrophages [20,21]. In colonic tumors, increased macrophage infiltration
with M1/NOS2+ or M2/CD163+ phenotypes is associated with cancer aggressiveness, growth,
and poor survival rates [22,23]. Therefore, it is plausible that with obesity mediators and
metabolites, aberrant peritoneal macrophages are a critical player in promoting colonic in-
flammation and tumorigenesis.

Forkhead Box O3 (FOXO3) transcription factor has diverse cellular functions, including
growth, immune response, and metabolic homeostasis [24–26]. In humans, obesity is asso-
ciated with polymorphisms in the FOXO3 gene [4]. Further, a high-fat diet (HFD) shortens
the lifespan of mice by diminishing FOXO3 levels in the central nervous system [27]. Obesity
mediators and metabolites cause a loss of FOXO3 in colonic cells [28,29], revealing an impor-
tant role of FOXO3 in obesity-mediated changes in the colon. Additionally, in colonic cells,
bacterial products and inflammatory mediators abrogate FOXO3 function to further promote
inflammation [30,31]. Genome-wide association studies (GWAS) identified a polymorphism
in FOXO3 that is associated with IBD severity [32]. FOXO3 also plays a critical role in immune
cells, and its deficiency promotes the activation of T cells and macrophages [33,34]. Moreover,
FOXO3 acts as a tumor suppressor, and its loss of activity has been shown to be closely
associated with cancer initiation and progression [35]. In human colon cancer, markedly
reduced FOXO3 levels correlate to advanced tumors [36]. We have previously shown in mice
that FOXO3 deficiency promotes the development and progression of inflammatory colon
cancer [28,30,31,37,38]. Additionally, the colons of FOXO3-deficient mice have an enrichment
in macrophages and elevated levels of intracellular lipid droplets [29,38]. Therefore, it is
plausible that the loss of FOXO3 in both colonic cells and macrophages may be critical in
driving obesity-mediated colonic inflammation and tumorigenesis.

Here, we established the significance of the loss of FOXO3-dependent functions of
macrophages in intestinal inflammation and tumorigenesis. These findings will provide
conceptual advances in understanding how obesity (mediators and metabolites) promotes
these colonic pathobiologies.

2. Results
2.1. HFD Obesity in Mice Mediates Increased Presence of Macrophages and Loss of FOXO3
in Colon

Obesity is associated with aberrant macrophages present in different tissues, which
may drive colonic pathobiologies [39,40]. In human populations, obesity is associated with
polymorphisms in the FOXO3 gene [4]. Additionally, obesity mediators and metabolites
cause a loss of FOXO3 in colonic cells [28,29]. Therefore, we hypothesized that the loss of
FOXO3 via obesity contributes to the development of pathobiologies in various tissues,
especially the colon. First, we utilized transcriptomic data obtained from the colon of both
HFD obese mice and mice fed with regular diet (RD) (SRP093363). As we described be-
fore [41], consistent with an obese phenotype, mice on a HFD gained, on average, 54 ± 2 * g,
while mice on a RD gained 33 ± 3 g during a period of 20 weeks (* p < 0.05). From these
mice, we utilized transcriptomes obtained from their colon [41] to assess macrophage levels
with CIBERSORT [42]. This is a platform that employs the transcriptional signatures of
specific immune cells to determine their levels in the tissue. There was an abundance of
macrophages in the colon of HFD obese mice relative to control (RD) (Figure 1A). Moreover,
we assessed scraped mucosa from the colon of HFD obese and RD control mice for FOXO3
status. We found increased phosphorylated (inactive) FOXO3 levels in HFD obese mice
colonic mucosa relative to control (Figure 1B). Therefore, as HFD obesity causes increased
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macrophages as well as loss of FOXO3 in mouse colon, we determined that the loss of
FOXO3 in macrophages contributes to obesity-mediated colonic pathobiology. We obtained
intraperitoneal macrophages [43,44] from FOXO3 knockout (KO) and wildtype (WT) mice
in order to determine systemic transcriptional changes (RNA-seq). The population of these
induced peritoneal macrophages included a slight number of other immune cells [43,45]
which, after further sequencing and bioinformatic analysis, proved to be insignificant.
Transcriptional assessment showed a significant number of differentially expressed genes
(DEGs) in macrophages obtained from FOXO3-deficient mice relative to control (WT).
Among these DEGs, 501 were increased, and 380 were decreased (Figure 1C) (>|1.5|-fold
change, FDR < 0.05). The diseases and functions associated with these DEGs include cancer,
gastrointestinal diseases, inflammatory response, and lipid metabolism (Figure 1D). Further,
pathways associated with these DEGs were compared to transcriptomes obtained from the
colon of HFD obese mice. We found similarities in pathways and upstream regulators of
FOXO3-deficient macrophages with HFD obese mice colon associated with inflammation
(IL-1A, IL-1B, IL-6, IL-8 signaling), growth (ILK signaling, CDK5 signaling, VEGF signaling)
and cancer (cAMP-mediated signaling) (Figure 1E,F). Together, these data revealed that
systemic transcriptional changes, mediated by the loss of FOXO3 in macrophages, are
similar to those seen in the colon of HFD obese mice, which suggests a critical role of the
macrophage-FOXO3 axis in driving obesity-mediated colonic changes.
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Figure 1. High-fat-diet obesity in mice results in an increased presence of colonic macrophages
along with loss of FOXO3. (A) Transcriptomes from colon of high-fat-diet (HFD) obese mice showed
augmented macrophage presence relative to control mice (regular diet, RD) colon (CIBERSORT,
n = 3 per group, ** p < 0.01). (B) Colons of mice fed with HFD showed increased phosphorylation
of FOXO3 compared to colons of control mice (RD). Actin was used as a loading control. Graph
represents pFOXO3 densitometric quantification (n = 3 per group, **** p < 0.0001). (C) Differentially
expressed genes (DEGs) from FOXO3-deficient macrophages relative to control (n = 3 for each group,
FC > |1.5|, FDR < 0.05). (D) Top diseases and pathways affected by FOXO3-deficient macrophages
relative to control (p < 0.05, IPA). (E,F) Top canonical pathways and upstream regulators affected by
FOXO3-deficient macrophages, which are altered in HFD obese mouse colon (SRP093363) (n = 3 per
group, p < 0.05, IPA).
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2.2. FOXO3 Deficiency in Macrophages Is Associated with Colonic Inflammation and Cancer

To determine whether FOXO3 deficiency in macrophages contributes to colonic in-
flammatory and tumorigenic processes, we assessed publicly available transcriptomes
obtained from mouse colon with inflammation and dysplasia. Pathways and upstream
regulators representing transcriptomes of FOXO3-deficient macrophages showed strong
similarity to those related to inflammation and tumorigenesis in mouse colon (GSE31106)
(Figure 2A–D). Next, we assessed publicly available transcriptomes from IBD and colon
cancer patient cohorts to determine the significance of FOXO3-deficient macrophages
in human colonic inflammation and tumorigenesis. We found that transcriptomes of
FOXO3-deficient macrophages represented similar alterations in pathways and upstream
regulators as those seen in IBD (GSE4183) and colon cancer (GSE4183, GSE141174). Specif-
ically, these shared pathways with IBD were linked to inflammation (TNF, IL-1A, IL-1B,
NFkB, IL-6) and growth (TREM1, TGFB1) (Figure 3A,B), while other pathways shared with
colon cancer were associated with colorectal metastatic signaling, growth (TREM1, NFkB
and HMGB1) and inflammation (IL-8, IL-6) (Figure 3C,D). These data demonstrated that
FOXO3 deficiency in macrophages is associated with colonic inflammatory and tumorigenic
pathobiologies.
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Figure 2. FOXO3 deficiency in macrophages links to mouse colonic inflammation and dysplasia.
(A,B) Top canonical pathways and upstream regulators affected by FOXO3-deficient macrophages
which are altered in mouse inflamed colonic tissue (n = 3, GSE31106, p < 0.05, IPA). (C,D) Top
canonical pathways and upstream regulators affected by FOXO3-deficient macrophages which are
altered in mouse dysplastic colonic tissue (n = 3, GSE31106, p < 0.05, IPA).
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Figure 3. Transcriptome of FOXO3-deficient macrophages is significantly prevalent in IBD and human
colon cancer. (A,B) Similar pathways and upstream regulators associated with DEGs representing
FOXO3 deficient macrophages and IBD (n = 23, GSE4183, p < 0.05, IPA). (C,D) Similar pathways and
upstream regulators associated with DEGs representing FOXO3-deficient macrophages and human
colon cancer relative to normal colon (n = 29, GSE4183, GSE141174, p < 0.05, IPA).

2.3. FOXO3-Deficient Macrophage Signature Is Prevalent in Human Colonic Inflammation
and Cancer

Next, to determine the significance of the macrophage-FOXO3 axis in colonic pathobiolo-
gies, we established a transcriptional signature for FOXO3-deficient peritoneal macrophages.
A transcriptional panel of DEGs from FOXO3-deficient macrophages relative to control
(WT) was generated by calculating fold change between the 2 groups, meeting stringent
differential expression and statistical thresholds of log2 fold-change > |1.5| and an adjusted
p-value < 0.001. The panel was comprised of 82 DEGs (MAC-FOXO382), among which 65
were upregulated and 17 were downregulated in FOXO3-deficient macrophages relative to
control (Table 1). Principal component analysis (PCA) showed that MAC-FOXO382 separated
the transcriptomes from IBD samples according to their inflamed and control (non-inflamed)
states with high significance (p = 5.2 × 10−8) (GSE4183, Figure 4A). Further, unsupervised
hierarchal clustering of MAC-FOXO382 separated transcriptomes from IBD samples into in-
flamed and non-inflamed groups (Figure 4B). Additionally, MAC-FOXO382 separated cancer
samples from normal with a high significance, as shown by PCA (p = 1.9× 10−11) and unsu-
pervised hierarchal clustering (TCGA, Figure 4C,D). In colon cancer patients, Kaplan–Meier
estimates showed that increased MAC-FOXO382 presence is associated with poor survival
rates, increased risk of cancer recurrence, and distant metastasis (TCGA, Figure 4E). Together,
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these data demonstrated that the macrophage-FOXO3 axis is associated with both human IBD
and colon cancer.

Table 1. Differentially expressed genes of MAC-FOXO382 in FOXO3-deficient mouse macrophages
relative to control (n = 3, FC ≥|1.5|, p < 0.001).

Gene Gene Name FC p-Value

1 Stfa1 Stefin-A 1 225.6 4.8 × 10−8

2 Entpd3 Ectonucleoside Triphosphate Diphosphohydrolase 3 113.6 3.0 × 10−9

3 Amer2 APC Membrane Recruitment Protein 2 67.7 7.6 × 10−10

4 S100a9 S100 Calcium Binding Protein A9 66.7 1.1 × 10−4

5 Mrgpra2b MAS Related GPR Family Member X2 35.3 2.4 × 10−4

6 Asprv1 Aspartic Peptidase Retroviral-like 1 33.9 7.5 × 10−18

7 Sycp2 Synaptonemal Complex Protein 2 30.2 1.6 × 10−13

8 Chil1 Chitinase 3-like 1 29.5 1.4 × 10−6

9 Olfm4 Olfactomedin 4 24.3 6.2 × 10−8

10 Cxcr2 C-X-C Motif Chemokine Receptor 2 21.5 8.4 × 10−35

11 Catspere2 Catsper Channel Auxiliary Subunit Epsilon 18.6 9.7 × 10−5

12 Il1f9 Interleukin 1 Family, Member 9 13.6 5.9 × 10−13

13 Amd2 Adenosylmethionine Decarboxylase 1 Pseudogene 2 11.8 2.6 × 10−34

14 Alas2 5′-Aminolevulinate Synthase 2 10.1 1.9 × 10−5

15 S100a8 S100 Calcium-binding Protein A8 9.9 4.9 × 10−7

16 Steap4 Six-Transmembrane Epithelial Antigen Of Prostate 4 8.0 2.1 × 10−12

17 Il1r2 Interleukin 1 Receptor Type 2 7.9 6.6 × 10−8

18 Hba-a2 Hemoglobin Subunit Alpha 2 7.7 3.1 × 10−6

19 Slc38a4 Solute Carrier Family 38 Member 4 7.7 3.9 × 10−8

20 Stra6 Stimulated By Retinoic Acid 6 7.2 3.7 × 10−5

21 Col24a1 Collagen Type XXIV Alpha 1 Chain 6.7 9.3 × 10−6

22 Hba-a1 Hemoglobin Subunit Alpha 1 5.9 1.7 × 10−7

23 Trem1 Triggering Receptor Expressed On Myeloid Cells 1 5.7 1.2 × 10−15

24 Lin28a Lin-28 Homolog A 5.6 1.5 × 10−4

25 Il1b Interleukin 1 Beta 5.4 1.5 × 10−9

26 Ambp Alpha-1-Microglobulin/Bikunin Precursor 5.1 2.3 × 10−4

27 Ifitm1 Interferon-induced Transmembrane Protein 1 5.1 5.8 × 10−5

28 Nfe2l3 Nuclear Factor, Erythroid 2-like 3 4.9 1.9 × 10−5

29 Kirrel Kin Of Irregular Chiasm-like Protein 1 4.9 9.2 × 10−5

30 Lamb1 Laminin Subunit Beta 1 4.3 6.0 × 10−7

31 Serpinh1 Serpin Peptidase Inhibitor, Clade H, Member 1, 4.0 1.7 × 10−6

32 Adamts1 ADAM Metallopeptidase With Thrombospondin Type 1 Motif 1 3.9 1.8 × 10−4

33 Pkhd1l1 Polycystic Kidney and Hepatic Disease 1-like 1 3.8 1.8 × 10−4

34 Fads2 Fatty Acid Desaturase 2 3.7 6.2 × 10−6

35 Col1a1 Collagen Type I Alpha 1 Chain 3.6 2.5 × 10−4

36 Dmkn Dermokine 3.6 4.0 × 10−5

37 Rbp1 Retinol-binding Protein 1 3.5 7.2 × 10−5

38 Tcaf1 TRPM8 Channel Associated Factor 1 3.4 9.0 × 10−8

39 Hpgd 15-Hydroxyprostaglandin Dehydrogenase 3.4 2.1 × 10−7

40 septin3 Neuronal-specific Septin-3 3.4 6.2 × 10−5

41 Nr4a3 Nuclear Receptor Subfamily 4 Group A Member 3 3.3 5.8 × 10−7

42 Ccl2 C-C Motif Chemokine Ligand 2 3.3 3.1 × 10−5

43 Ltbp2 Latent Transforming Growth Factor Beta-binding Protein 2 3.3 1.6 × 10−4

44 Dclk1 Doublecortin-like Kinase 1 3.2 3.6 × 10−6

45 Map1b Microtubule Associated Protein 1B 3.2 2.2 × 10−4

46 Wt1 Wilms Tumor 1 3.2 4.1 × 10−5

47 Col1a2 Collagen Type I Alpha 2 Chain 3.1 1.9 × 10−4

48 Ptprf Protein Tyrosine Phosphatase Receptor Type F 3.0 2.2 × 10−4

49 Krt19 Keratin 19 2.9 1.0 × 10−4

50 Arhgef17 Rho-specific Guanine-Nucleotide Exchange Factor 2.8 1.5 × 10−4

51 Il1r1 Interleukin 1 Receptor Type 1 2.7 6.3 × 10−5

52 Treml4 Triggering Receptor Expressed On Myeloid Cells-like 4 2.7 1.9 × 10−4
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Table 1. Cont.

Gene Gene Name FC p-Value

53 Vcan Versican 2.5 1.3 × 10−5

54 Klrb1b Killer Cell Lectin-like Receptor B1 2.4 2.9 × 10−5

55 Olr1 Oxidized Low Density Lipoprotein Receptor 1 2.1 2.8 × 10−4

56 Pram1 PML-RARA Regulated Adaptor Molecule 1 2.1 2.2 × 10−5

57 Ccnb1 Cyclin B1 2.1 1.9 × 10−4

58 Npl N-Acetylneuraminate Pyruvate Lyase 2.0 6.2 × 10−5

59 Cdk1 Cyclin-dependent Kinase 1 1.9 1.5 × 10−4

60 Tbc1d16 TBC1 Domain Family Member 16 1.8 7.4 × 10−5

61 Dab2 DAB Adaptor Protein 2 1.8 3.1 × 10−7

62 Nfil3 Nuclear Factor, Interleukin 3 Regulated 1.8 2.9 × 10−5

63 Tbc1d4 TBC1 Domain Family Member 4 1.7 1.2 × 10−4

64 Samsn1 SAM Domain, SH3 Domain And Nuclear Localization Signals 1 1.5 2.6 × 10−5

65 Kcnk13 Potassium Two Pore Domain Channel Subfamily K Member 13 1.5 1.4 × 10−4

66 Fmo5 Flavin Containing Dimethylaniline Monoxygenase 5 −1.6 1.2 × 10−4

67 Ip6k1 Inositol Hexakisphosphate Kinase 1 −1.6 8.4 × 10−5

68 Wdr45 WD Repeat Domain 45 −1.7 2.2 × 10−5

69 Serinc5 Serine Incorporator 5 −1.7 3.2 × 10−5

70 Mrgprx2 MAS-Related GPR Family Member X2 −1.9 3.7 × 10−1

71 Maml2 Mastermind-like Transcriptional Coactivator 2 −1.9 7.2 × 10−5

72 Vsig10 V-Set And Immunoglobulin Domain-containing 10 −2.2 4.5 × 10−5

73 Dnajc28 DnaJ Heat Shock Protein Family (Hsp40) Member C28 −2.2 7.9 × 10−7

74 Rab6b RAB6B, Member RAS Oncogene Family −2.5 2.5 × 10−5

75 Ypel3 Yippee Like 3 −2.9 4.2 × 10−19

76 Armc2 Armadillo Repeat-containing 2 −3.1 2.8 × 10−6

77 Cdkn2a Cyclin-dependent Kinase Inhibitor 2A −5.5 8.4 × 10−6

78 Slc15a2 Solute Carrier Family 15 Member 2 −6.6 1.0 × 10−4

79 Clec2g C-Type Lectin Domain Family 2 Member D −8.9 2.1 × 10−20

80 Camk2b Calcium/Calmodulin-dependent Protein Kinase II Beta −9.4 3.2 × 10−11

81 Slc25a27 Solute Carrier Family 25 Member 27 −9.4 4.3 × 10−6

82 Foxo3 Forkhead Box O3 −22.0 8.1 × 10−43Metabolites 2022, 12, × FOR PEER REVIEW 8 of 18 
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of inflamed IBD and matched non-inflamed control transcriptomes with the MAC-FOXO382 signature
was performed to estimate variation between samples. Two-axis values of the PCA showed the
MAC-FOXO382 significantly differentiated inflamed IBD from matched non-inflamed control tissue.
DEGs representing MAC-FOXO382 signature on y-axis and IBD samples on x-axis (n = 23, GSE4183,
p = 5.2 × 10−8). Hierarchical clustering, as shown by representative heatmap, revealed two distinct
clusters of IBD samples separated by MAC-FOXO382, differentiating between inflamed IBD and
matched non-inflamed control transcriptomes. DEGs representing MAC-FOXO382 signature on x-axis
and human IBD samples on y-axis (n = 23, GSE4183). (C,D) Principal component analysis (PCA)
of human colon cancer and matched normal (control) colonic tissue transcriptomes with the MAC-
FOXO382 signature was performed to estimate variation between samples. Two-axis values of the
PCA showed MAC-FOXO382 significantly differentiated human colon cancer from matched normal
(control tissue) (n = 498, TCGA, p = 1.9 × 10−11). Hierarchical clustering, as shown by representative
heatmap, revealed two distinct clusters of human colon cancer samples separated by MAC-FOXO382

differentiating between human colon cancer and matched normal control transcriptomes (n = 498,
TCGA). (E) Increased MAC-FOXO382 signature presence in colon cancer patients is associated with
poor survival rates (p = 0.0148), increased risk of cancer recurrence (p = 0.0499), and distant metastasis
(p = 0.003) (Kaplan–Meier survival analysis).

2.4. Expression of Select FOXO3-Dependent Genes in Peritoneal Macrophages

Next, we identified the top DEGs specific to FOXO3-deficient peritoneal macrophages
relative to control shown in a heatmap, Figure 5A, many of which are also represented in
MAC-FOXO382. These DEGs were validated in FOXO3-deficient macrophages (vs. WT)
by qPCR, and their status was determined in publicly available transcriptomes of IBD
and human colon cancer cohorts. It is important to consider that these DEGs may vary
in expression in different subtypes of macrophages or in other cell types. We found these
DEGs with established roles in human colonic inflammation and tumorigenesis such as
Interleukin 1 Beta (IL-1B), C-X-C Motif Chemokine Receptor 2 (CXCR2), S100 Calcium-
binding Protein A8 (S100A8), S100 Calcium-binding Protein A9 (S100A9), and Triggering
Receptor Expressed On Myeloid Cells 1 (TREM1) to be significantly increased in FOXO3-
deficient macrophages (Figure 5B). Similar alterations in these DEGs were also seen in
publicly available transcriptomes from human IBD and colon cancer (Figure 5C,D). These
findings reveal that FOXO3 deficiency in macrophages significantly contributes to systemic
transcriptional alteration found in IBD and colon cancer.

Furthermore, we validated DEGs in FOXO3-deficient macrophages, whose role in
IBD and colon cancer is not yet well understood, including Stimulated By Retinoic Acid
Gene 6 Protein Homolog (STRA6), Serpin Family H Member 1 (SERPINH1), Laminin
Subunit Beta 1 (LAMB1), Oxidized Low-Density Lipoprotein Receptor 1 (OLR1), Nuclear
Factor, Erythroid 2-like 3 (NFE2L3), DnaJ Heat Shock Protein Family (Hsp40) Member C28
(DNAJC28) and V-Set And Immunoglobulin Domain-containing 10 (VSIG10) (Figure 6A).
These novel DEGs showed similar alterations in transcriptomes of human IBD and colon
cancer, suggesting that they may play a role in these human pathobiologies (Figure 6B,C).
These data establish loss of FOXO3-dependent novel genes in macrophages that may
regulate these human pathobiologies.
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IBD and colon cancer. (A) Validation of select FOXO3-dependent STRA6, SERPINH1, LAMB1, OLR1,
NFE2L3, DNAJC28 and VSIG10 transcripts in macrophages (qPCR, n = 3, * p < 0.05, ** p < 0.01).
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IBD and colon cancer patient transcriptomes (n = 23, GSE4183; n = 498, TCGA, * p < 0.05, ** p < 0.01,
*** p < 0.001).
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3. Discussion

Obesity is a chronic inflammatory state associated with increased risk and progression
of colon cancer [1–3]. Here, we demonstrated that the loss of FOXO3 in macrophages
plays a critical role in obesity-mediated inflammation and tumorigenesis in the colon. We
identified that the transcriptome of FOXO3-deficient peritoneal macrophages, similar to
the transcriptome from mouse HFD obese colon, shared pathways with colonic inflam-
mation and tumorigenesis. Furthermore, we showed the significance of a MAC-FOXO382
transcriptional signature in human colonic inflammation (seen in IBD) and tumorigenesis
(in colon cancer). Ultimately, we identified differentially expressed genes from FOXO3-
deficient macrophages with established roles in both IBD and colon cancer, as well as
novel genes whose roles in these colonic pathobiologies are not well understood. Together,
these findings establish the significance of the loss of FOXO3 in macrophages in colonic
pathobiologies and provide conceptual advances in our understanding of how obesity, via
both its mediators and metabolites, promotes these disease processes.

We identified, in macrophages, alterations in gene expression dependent on the loss of
FOXO3 that are associated with colonic inflammation and tumorigenesis. Macrophages
play a central role in tissue homeostasis, including the colon [8,46]. Their polarization is
accompanied by metabolic reprogramming, such as the pro-inflammatory subtype mainly
shifting to glycolysis, whereas the anti-inflammatory subtype shifts to mitochondrial ox-
idative phosphorylation [47]. Furthermore, altered lipid metabolism in macrophages is
associated with their inflammatory response [47], supporting their direct contribution to
the immune-metabolic axis within tissues. Indirectly, these macrophages, by releasing
cytokines and metabolites, can further facilitate colonic cells’ inflammatory and tumori-
genic responses [8,46,48]. Increased malate, fumarate, citrate and glutamate metabolites in
macrophages [47] can augment the immuno-metabolic axis in tissue. Moreover, as FOXO3
emerges as an important regulator of macrophage function [6,49] and controls metabolism
in various cells [25,26], it is plausible that FOXO3 plays a central role in metabolic repro-
graming in macrophages. This critical immuno-metabolic function of FOXO3 is also seen
in colonic cells [30,31]. Further, altered macrophages can impair barrier function, as seen
in IBD, in addition to promoting the tumor microenvironment [16,50]. Our study showed
that obesity mediators and metabolites lead to diminished levels of FOXO3 and increased
macrophages in the colon, suggesting a central role of FOXO3 in metabolic reprogramming
of both macrophages and intestinal epithelial cells. Consequently, macrophage metabolism
is often abnormal in disease states, and their loss of FOXO3-mediated metabolic reprogram-
ming presents a potential therapeutic target for colonic inflammation and tumorigenesis
facilitated by obesity.

We validated select differentially expressed genes of FOXO3-deficient macrophages
with established roles both in IBD and colon cancer. Increased IL-1B, a potent inflammatory
mediator, is associated with promoting colonic inflammation and tumorigenesis [51,52].
In human cartilage, IL-1B causes a loss of FOXO3 [53], which suggests feedback between
IL-1B and FOXO3. Further, CXCR2, essential for the maintenance, survival, and self-
renewal of hematopoietic cells [54], is elevated with FOXO3 deficiency in macrophages.
CXCR2 contributes to inflammation and tumorigenesis in several tissues, including the
colon [55,56]. Additionally, S100A8/A9 plays a significant role in colonic inflammatory
response and tumorigenesis [57,58]. Their high levels in inflamed tissue position them as a
potential biomarker for IBD [59]. Further, TREM1, a membrane receptor in macrophages,
drives the innate immune response against bacterial products, thus worsening the course of
IBD [60]. In lung and colon cancer, increased TREM1 promotes tumorigenesis [61,62]. These
findings establish a critical role of FOXO3 in macrophages, driving colonic inflammation
and cancer.

We also identified several differentially expressed genes in FOXO3-deficient macrophages
with unexamined roles in colonic inflammation and tumorigenesis. STRA6 regulates the
homeostasis and uptake of retinol [63]. HFD-induced STRA6 expression in adipose tissue
increases the secretion of inflammatory mediators [64]. As retinoic acid is important for
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immune cells associated with IBD [65], STRA6 is a novel regulator in these inflammatory
processes. Further, polymorphisms in the STRA6 gene are associated with increased inci-
dences and aggressive courses of non-small cell lung cancer [66]. One study shows that
in mouse colon, HFD-mediated increased STRA6 may promote tumorigenesis via cancer
stem cell populations [67]. Moreover, SERPINH1 is important in the regulation of the extra-
cellular matrix [68]. Recent studies showed that in mouse models of colonic inflammation,
SERPINH1 is expressed in infiltrating immune cells and plays a role in extracellular matrix
remodeling that promotes colon cancer progression [69]. Additionally, LAMB1 is a member
of laminins important for the integrity of the epithelial-stromal network. A genome-wide
study (GWAS) identified LAMB1 as a possible driver in IBD pathogenesis through impaired
barrier function [70–72]. One study showed increased blood levels of LAMB1 in colon
cancer patients relative to controls, highlighting its potential biomarker properties [73].
Another FOXO3-dependent gene in macrophages, the transcription factor NFE2L3 [74], is
implicated in colonic inflammation and tumorigenesis. Increased expression of NFE2L3
is seen in ulcerative colitis and colon cancer [75–77]. Furthermore, OLR1, a low-density
lipoprotein receptor with immune response function, is found to be expressed in human in-
testinal epithelial cells and is involved in the regulation of barrier function [78,79]. Increased
expression of OLR1 in pancreatic and colon cancer has been associated with metastasis and
poor prognosis [80–82]. Furthermore, the roles of VSIG10 and DNAJC28, which may be
involved in stem cell function [83,84], in IBD and colon cancer, remain unknown. These
novel FOXO3-dependent genes in macrophages provide a basis for conceptual advances in
diagnostic medicine and targeted therapy in human pathobiologies.

Obesity, associated with systemic inflammation and increased risk and progression of
colon cancer, is increasingly prevalent both in the industrialized and developing world [1–3].
Obesity mediators and metabolites affect immune cell populations such as macrophages,
thereby promoting inflammation and providing a niche for tumor progression [18,19,39,85].
Additionally, obesity has a wider implication in metabolic disorders such as type II diabetes,
hypertension and coronary artery diseases in which macrophages play a significant role
in the development of inflammatory response and insulin resistance [39,40,86]. Here we
showed that obesity, whether directly or indirectly, drives colonic inflammation and tumori-
genesis through the inactivation of FOXO3 in macrophages. Additionally, we established
the significance of the macrophage-FOXO3 axis in both IBD and colon cancer. In future
studies, the novel differentially expressed genes that we have identified, which are FOXO3-
dependent in macrophages, will be examined for their roles in these colonic pathobiologies.
Moreover, as macrophage subpopulations vary in different tissue, it is important to note
that this macrophage-FOXO3 axis can be extrapolated to other macrophage subtypes in
obesity-related disorders. Further findings would expand our understanding of mech-
anisms involved in obesity-related disorders mediated by the macrophage-FOXO3 axis,
help us identify key regulators of other metabolic disorders and develop individualized
treatment options.

4. Materials and Methods
4.1. Human IBD and Colon Cancer Samples

Publicly available transcriptomes obtained from inflammatory bowel disease included
control and inflamed colon samples (n = 23; GSE4183). Additionally, publicly available
transcriptomic data was obtained from colon cancer patients from two cohorts, including
normal colon and tumors (n = 29, GSE4183, GSE141174). Moreover, publicly available
transcriptomic data of colon cancer patients, including normal controls, were utilized
(n = 498, TCGA). These data are acquired using NCBI’s GEO2R.

4.2. Mice

Mice, strain C57BL/6, male and female, were housed in microisolator cages under
pathogen-free conditions at Tulane University School of Medicine. Both wildtype (WT)
and FOXO3 knockout (FOXO3 KO) [87] mice had free access to standard chow diet and
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water. All littermates were genotyped to identify homozygous WT and FOXO3 KO [87],
according to the guidelines of Tulane Institutional Animal Care and Use Committee.

Additionally, mice (57BL/6 strain) obtained from Jackson laboratory (6 weeks old)
were housed at Tulane University School of Medicine. One group of mice were maintained
on a standard chow diet and the other on a high-fat chow diet, 60% kcal/fat (D12492). For
a period of 20 weeks, mice from both diet groups consistently gained weight; however,
the weight of mice on a high-fat diet was more than 50% higher than mice on a regular
diet [41]. Colons from these mice were utilized for protein extraction and transcriptomic
analysis. Transcriptomes, previously acquired [41], from colons of high-fat-diet obese mice
compared to regular diet (n = 3 for each group) are available through NCBI’s Sequence
Read Archive (SRP093363).

Moreover, publicly available transcriptomes obtained from mice with colonic inflam-
mation (n = 3) and dysplasia (n = 3) were utilized (GSE31106).

4.3. Mouse Peritoneal Macrophage

Experimental mice (six- to eight-weeks old) were injected intraperitoneally with 3%
thioglycollate solution (Thermofisher, Waltham, MA, USA), which causes a peritoneal
inflammatory response that allows for macrophage maturation [43,44]. After four days,
mouse peritoneal cells, predominantly macrophages [43,88], were harvested from the
abdominal cavity and pelleted (4 ◦C for 10 min).

4.4. RNA Isolation and cDNA Synthesis

Total RNA from harvested macrophages was isolated using the miRNeasy kit (Zymo
Research, Irvibe, CA, USA), following the manufacturer’s instructions. RNA was assessed
for quality by Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Samples
having RNA integrity numbers (RIN) more than 7 were utilized. RNA was then reverse
transcribed to cDNA with qScipt cDNA SuperMix (Quantabio, Bevely, MA, USA).

4.5. qPCR

cDNA was generated from macrophages and used for qPCR as described previ-
ously [41]. The primers used for amplification of mouse cDNA are as follows: (mIL-1B-FOR
5′-TGCCACCTTTTGACAGTGATG-3′, mIL-1B-REV 5′-TTCTTGTGACCCTGAGCGAC-3′,
mCXCR2-FOR 5′-GCTCACAAACAGCGTCGTAG-3′, mCXCR2-REV 5′-ATGGGCAGGGC-
CAGAATTAC-3′, mS100A8-FOR 5′-ATCCTTTGTCAGCTCCGTCTTC-3′, mS100A8-REV 5′-
CTTCTCCAGTTCAGACGGCA-3′, mS100A9-FOR 5′-CTGCATGAGAACAACCCACG-3′,
mS100A9-REV 5′-TCCCTTTAGACTTGGTTGGGC-3′, mTREM1-FOR 5′- ACAGAGGCAG-
TCGTTGGAG-3′, mTREM1-REV 5′-AGTGAACACATCTGAAGAACCTGAG-3′, mSTRA6-
FOR 5′-GGTTCTTAAAGCAGGTGTGGG-3′, mSTRA6-REV 5′-ATGCTCCAGCTCTTCTTC-
CTAAC-3′, mVSIG10-FOR 5′-GGTTGAGTGTGAAAGAACCGC-3′, mVSIG10-REV 5′-GCG-
GTCTAAGTTCCCGTTGA-3′, mSERPINH1-FOR 5′-CCCGGCCCAGAATGAAAAAG-3′,
mSERPINH1-REV 5′-TGGCTTTACCACCCAGTGAC-3′, mLAMB1-FOR 5′-GTGAGGAGA-
ACAAAGTAGTTAAGCG-3′, mLAMB1-REV 5′-TGCCTGTCTTTTCTTCGGGT-3′, mNFE2-
L3-FOR 5′-TCTGTTGAGCTTGGTAGGGC-3′, mNFE2L3-REV 5′-CGAAGCCGAGAAGGG-
GTTAG-3′, mOLR1-FOR 5′-TGAAGCCTGCGAATGACGAG-3′, mOLR1-REV 5′-GGTTGG-
GAGACTTTGGAGGG-3′,mDNAJC28-FOR 5′-CCCATCACGTCTGTGAAGATCA-3′, mDN-
AJC28-REV 5′-GTTGGCGAAGAACTCCCTC-3′. The comparative Ct method was used to
determine mRNA levels with GAPDH as a housekeeping control. cDNA was quantified
using the C1000 Thermal Cycler system (Bio-Rad, Hercules, CA, USA) and PerfeCTa SYBR
Green FastMix (Quantabio, USA).

4.6. Protein Extraction and Immunoblot

Protein extraction and immunoblots were performed as described previously [30,31,41].
The following specific antibodies against proteins were used: phosphorylated FOXO3
(Ser253) (Cell Signaling, Danvers, MA, USA) and β-actin (Cell Signaling). IRDye conjugated
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secondary antibodies (LI-COR, Lincoln, NE, USA) were used for protein visualization
through the ChemiDoc MP imaging system (Bio-rad).

4.7. RNA Sequencing and Differential Expression Testing

RNA sequencing (RNA-seq) was performed as described before [38,41]. The sequenc-
ing data and the experiment design have been submitted to NCBI’s Sequence Read Archive,
which are publicly available under study accession number GSE198058.

4.8. Transcriptome and Pathway Analysis

Data analysis for RNA-seq was performed using Ingenuity Pathway Analysis (IPA)
(Qiagen, Germantown, MD). Differentially expressed genes (DEGs) meeting an expression
threshold of >|1.5|-fold change relative to control and a false discovery rate (FDR) of less
than 0.05 were entered into IPA. Clustered heatmaps of z-scaled transcripts per million
(TPM) values for the top genes across all samples were generated using a Python data
visualization package (Seaborn). TCGA network data was utilized for the expression of
select transcripts (https://cistrome.shinyapps.io/timer, accessed on 10 October 2021) [89].

4.9. Hierarchical Clustering

Hierarchical clustering of transcriptomes from FOXO3-deficient macrophages rela-
tive to other experimental groups was performed using an uncentered correlation as a
symmetric matrix, Pearson correlation for the similarity measure and complete linkage
using Cluster3 software 38. The heatmaps were visualized with JavaTree software 39 (1.2.0
version, https://sourceforge.net/projects/jtreeview/files/jtreeview/1.2.0/ accessed on 10
October 2021).

4.10. Principal Component Analysis and Transcriptional Signature score

Principal component analysis (PCA) of FOXO3-deficient macrophage signatures with
IBD (GSE4183) and human colon cancer (TCGA) transcriptomes was performed by Fac-
toMineR R package with the PCA function. Percentage of variation and the first two
coordinates of the above-mentioned samples were plotted. The following formula was
utilized for the summary of multicohort signature in a single value:

Score = mean[log2(x + 1 m)]

where ‘x’ represents the expression of transcript, and ‘m’ represents the median of tran-
scripts [90].

4.11. CIBERSORT

For quantification of macrophages in mouse colonic tissue, a computational method
(CIBERSORT) was utilized for the assessment of RNA-seq [42]. For this purpose, mixture
files of transcript per million from RNA-seq data were created, followed by generation
of a specific murine immune cell and colonic cell signature along with phenotype files
and reference in accordance to CIBERSORT specification (http://cibersort.stanford.edu,
accessed on 10 May 2021) by employing the RNA-seq run accession numbers as previously
described [38]. Values with a significance threshold (p < 0.05) were included in the analysis.

4.12. Statistical Analysis

All results are represented as means ± S.E. The statistical analysis of experiments was
carried out by Student’s unpaired t-test or through ANOVA for one-war analysis of variance
as well as Student–Newman–Keuls post-test in Graph Pad Software. A p-value of <0.05 was
considered significant.

https://cistrome.shinyapps.io/timer
https://sourceforge.net/projects/jtreeview/files/jtreeview/1.2.0/
http://cibersort.stanford.edu
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