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a b s t r a c t

Statistical shape models of soft-tissue organ motion provide a useful means of imposing physical constraints

on the displacements allowed during non-rigid image registration, and can be especially useful when regis-

tering sparse and/or noisy image data. In this paper, we describe a method for generating a subject-specific

statistical shape model that captures prostate deformation for a new subject given independent population

data on organ shape and deformation obtained from magnetic resonance (MR) images and biomechanical

modelling of tissue deformation due to transrectal ultrasound (TRUS) probe pressure. The characteristics of

the models generated using this method are compared with corresponding models based on training data

generated directly from subject-specific biomechanical simulations using a leave-one-out cross validation.

The accuracy of registering MR and TRUS images of the prostate using the new prostate models was then es-

timated and compared with published results obtained in our earlier research. No statistically significant

difference was found between the specificity and generalisation ability of prostate shape models gener-

ated using the two approaches. Furthermore, no statistically significant difference was found between the

landmark-based target registration errors (TREs) following registration using different models, with a median

(95th percentile) TRE of 2.40 (6.19) mm versus 2.42 (7.15) mm using models generated with the new method

versus a model built directly from patient-specific biomechanical simulation data, respectively (N = 800; 8

patient datasets; 100 registrations per patient). We conclude that the proposed method provides a computa-

tionally efficient and clinically practical alternative to existing complex methods for modelling and predicting

subject-specific prostate deformation, such as biomechanical simulations, for new subjects. The method may

also prove useful for generating shape models for other organs, for example, where only limited shape train-

ing data from dynamic imaging is available.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Statistical shape models (SSMs) of soft-tissue organ motion pro-

vide a useful means of imposing physical constraints on the dis-

placements allowed during non-rigid image registration, which is

especially useful when registering sparse and/or noisy image data

(Hawkes et al., 2005; Heimann and Meinzer, 2009). We have used this

approach successfully in previous work to compensate for prostate

deformation due to transrectal ultrasound- (TRUS-) probe pressure

when registering MR and 3D TRUS images of the prostate in the con-

text of MRI-tumour-targeted biopsy and minimally-invasive surgical
∗ Corresponding author. Tel.: +44 2076790221.
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nterventions (Hu et al., 2012, 2011). A growing body of research has

nvestigated a number of alternative solutions to the problem of non-

igid MR-TRUS registration of the prostate, including (semi-) manual

pproaches (Kuru et al., 2012; Xu et al., 2008), intensity-based ap-

roaches (Mitra et al., 2012; Sun et al., 2013) and surface (feature)-

ased approaches (Narayanan et al., 2009; Sparks et al., 2013; van de

en et al., 2015), which are commonly employed in commercial im-

ge guidance systems (Marks et al., 2013).

In our approach, a 3D finite element model (FEM) of the prostate

s constructed from a segmented T2-weighted MRI scan and biome-

hanical simulations of possible TRUS-probe-induced gland defor-

ations are used to generate subject-specific shape training data for

n SSM that represents the likely variation in prostate shape that

ould occur during a TRUS-guided procedure. The resulting SSM

dopts physically realistic shapes and because the model is highly
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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onstrained, it can be fitted robustly to sparse and noisy organ sur-

ace data (in this case extracted from a 3D TRUS image). Once fitted,

he SSM predicts the displacement of all internal points, thus provid-

ng a full 3D displacement field within the organ of interest that can

e applied to deform the original MR image and, in particular, deter-

ine the location of MR-visible lesions within the TRUS volume that

re then targeted during biopsy or treatment. Information on the size,

hape and location of a target lesion/tumour, as well as additional in-

ormation, such as the location of vulnerable structures or surgical

argins, both of which are important for treatment applications, can

e embedded very naturally within such models by labelling the ele-

ents within the FEM.

The approach outlined above provides a versatile means of captur-

ng patient-specific data on organ motion, pathology, and anatomy,

nd data for surgical planning for a wide range of image-guided

urgery applications. Physical and statistical models have been com-

ined previously, for example, for simulating spatial image deforma-

ions to generate ground-truth data for validating segmentation al-

orithms (Hamarneh et al., 2008) and for image registration (Wang

nd Staib, 2000). In the context of our approach, the limitations

f using an FEM directly to predict tissue motion are overcome by

pplying a statistical approach to handle uncertainty in boundary

onditions (for example, due to different TRUS probe positions and

rientations) and unknown tissue material properties. The need to

stimate these parameters in advance is therefore avoided. Instead,

ultiple biomechanical simulations are performed, each with differ-

nt combinations of parameter values drawn from physically plausi-

le range. However, simulating subject-specific organ motion using

iomechanical modelling efficiently requires specialised software,

ardware (such as graphical processing units (GPUs)), and expertise.

t is also technically demanding and the need to perform many thou-

ands of simulations for each individual subject becomes computa-

ionally expensive, and generating an SSM can take hours in practice

ven if the degree of manual interaction required can be minimised

elatively straightforwardly through the implementation of an auto-

ated pipeline process. Furthermore, although there has been con-

iderable methodological progress to ensure the numerical stability

f FEM methods, it is widely recognised that such methods can fail

o converge under some circumstances, for example due to a poorly

onfigured geometric mesh. Consequently, although integrating such

echnology into existing clinical workflows is not unsurmountable,

here remain a number of significant practical challenges. For this

eason, more convenient, computationally efficient, and numerically

table methods for generating subject-specific SSMs of organ defor-

ation – or training data for building them – are highly desirable

rom the point of view of facilitating clinical adoption.

To date, the popular method described by Cootes et al. (1995) for

enerating low-dimensional, linear SSMs by applying principal com-

onent analysis (PCA) to shape or image training data has been used

ainly to generate models that describe organ shape variation across

population, e.g. (Onofrey et al., 2013; Perperidis et al., 2005; Thomp-

on et al., 2008). PCA and other statistical techniques have also been

pplied to generate subject-specific 4D statistical models for organs

ndergoing respiratory motion (McClelland et al., 2013) or cardiac

otion. Examples include models of the lungs (He et al., 2010; King

t al., 2012), the liver (Preiswerk et al., 2014), and the heart (Perperidis

t al., 2005). Given the considerable effort required to build a model of

rgan motion for an individual subject, a number of researchers have

nvestigated so-called population-based or cross-population models

McClelland et al., 2013; Preiswerk et al., 2014). These enable subject-

pecific organ motion to be predicted using learnt information from

n independent training set. It is possible to build a population-based

SM by combining training data that is subject to both inter- and

ntra-subject organ shape variation, but such models are likely to per-

orm less effectively or efficiently compared with a subject-specific

SM for approximating subject-specific shape/motion. In particular,
uch models usually require additional constraints, such as that pro-

ided by an elastic model (Wang and Staib, 2000), to prevent unreal-

stic or ‘over-generalised’ instantiation of the model because of shape

ariation learnt from other subjects.

Multilinear analysis (Vasilescu and Terzopoulos, 2003) has been

roposed as a method for dynamic modelling of the heart (Zhu et al.,

008) and cardiac valve (Grbic et al., 2012) motion. Importantly, this

pproach enables shape variations due to both geometric differences

etween the organs of different subjects (due to anatomical varia-

ion) and physiological (or externally-induced) organ motion to be

epresented by the same statistical model. However, like many re-

ated methods in the literature, this method requires known inter-

ubject motion correspondence; in other words, organ shapes for dif-

erent subjects must be correlated via an independent signal, such

s an ECG. This is very difficult to establish for organs other than

he heart and lungs where a physiological signal related to motion

s not available or is very difficult to measure. Furthermore, the car-

iac models described in Grbic et al. (2012), Zhu et al. (2008) have

emonstrated only the ability to predict organ shape at relatively

ew timepoints given the dynamic data available over the remain-

er of the cardiac cycle. Klinder et al. (2010) developed a statistical

odel of motion based on a training set of 4D CT images for 10 pa-

ients and used multivariate linear regression to predict lung using

he tracked diaphragm motion. In the remainder of this paper, we

istinguish between motion (or temporal) correspondence and point

orrespondence, where motion correspondence refers to linking dif-

erent shapes of a deforming organ by means of a common timepoint

r physiological event.

In this paper, an alternative organ motion modelling method is

roposed that is particularly suited to applications such as modelling

rostate deformation where a surrogate motion signal (such as a res-

iratory or cardiac signal) does not exist to establish temporal cor-

espondence between different subjects; the proposed method en-

bles a subject-specific SSM that describes shape variation due to

otion to be built without knowing the motion correspondence be-

ween subject subspaces. It also requires only limited subject-specific

eometric data – for example, a reference shape based on the seg-

entation of a single (static) MR image – to predict the organ mo-

ion for a new (i.e. unseen) subject. The method is also potentially

ery useful when subject-specific shape training data is too expen-

ive or practically difficult to obtain on each new subject. In this case,

he proposed population-based model provides a means of predicting

ubject-specific motion with the only requirement being a single ref-

rence shape that specifies one instance of the shape of the subject’s

rgan. We demonstrate the application of this method for non-rigid

egistration of MR and TRUS images of the prostate. For convenience,

n the remainder of this paper, models that represent physical organ

otion are termed statistical motion models (SMMs) (Ehrhardt et al.,

011; Hu et al., 2011) to distinguish them from the more general SSM

nd statistical deformation models (SDMs) where PCA is performed

n an image deformation field (Onofrey et al., 2013; Perperidis et al.,

005; Rueckert et al., 2003). SMMs may therefore be considered to be

subset of SSMs.

. Methods

.1. Overview

The underlying concept of the proposed method is that variations

n organ shape due to motion can be expressed with respect to a

mixed-subject’ – i.e. population-based – SSM that is built using train-

ng data from multiple subjects and multiple shapes for each sub-

ect. The resulting SSM captures shape variation both between and

ithin individuals. Kernel regression analysis provides a powerful

ethod for expressing the multivariate subject-specific probability

ensity function (SSPDF), which represents the distribution of shape
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Fig. 1. A schematic overview of the proposed method to build a subject-specific SMM.

Fig. 2. An illustration of deformed prostate shapes for I subjects. A reference shape for

each subject is denoted by j = 0. The 3D position and orientation of the TRUS balloon

is represented by a shaded hollow cylinder for each deformed shape instance.
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parameters (also known as component scores or weights) related to

intra-subject organ motion, as a function of the parameters of a pre-

chosen reference shape. Once this relationship has been established,

the SSPDF that describes the expected organ motion for a new (i.e.

unseen) subject can be estimated from new reference shape data for

that particular subject. The resulting SSPDF can then be used to con-

struct a subject-specific SMM for the new subject.

A schematic overview of the method used to build a subject-

specific SMM is shown in Fig. 1. The steps involved are as follows:

1. Build a mixed-subject SSM using all available training data;

2. Obtain the shape parameters for each training dataset with re-

spect to the mixed-subject SSM (e.g. by projection for the case

of a linear model);

3. Estimate the SSPDF for each set of shape parameters corre-

sponding to the different training shapes for each subject. The

SSPDF may itself be expressed in parametric form and repre-

sented by a number of distribution parameters (e.g. the mean

and variance of a Gaussian distribution);

4. Identify a reference shape for each subject. For example, the

reference shape may describe an organ in its ‘resting’, or un-

deformed state, or in general at a time corresponding to a par-

ticular physiological event. The reference shape is then repre-

sented by its shape parameters;

5. Perform kernel regression analysis between the parameters

that characterise each SSPDF and the shape parameters that

specify the reference shape;

6. Given the reference shape for a new (unseen) subject, calculate

the SSPDF for the new subject using regression analysis;

7. Finally, construct a subject-specific SMM for the new subject

by using the predicted SSPDF.

The resulting subject-specific SMM is an alternative to a subject-

specific SMM built directly from training data available for this sub-

ject (including image-based and simulated training data). Therefore,

the subject-specific SMM estimated using this method can be com-

pared directly with one generated using the conventional method.
n the following sections, an illustration of implementing these steps

s provided using the example of building a subject-specific SMM of

he prostate that captures deformation caused by the placement of a

RUS probe in the rectum.

.2. Construction of a mixed-subject statistical shape model

Fig. 2 shows a schematic of the shapes of the prostates of I sub-

ects, each represented by triangulated mesh. The shape of each mesh

as been simulated using FEM to predict the new deformed shape re-

ulting from the physical deformation of a reference shape. Without

ssuming an equal number of shapes per subject, varying the pose

f the TRUS probe and the diameter of the water-filled balloon sur-

ounding the probe in each simulation results in Ji (i = 1, 2, . . . , I)
redicted deformed shapes. As described in Hu et al. (2012, 2011),

ther unknown parameters, such as tissue elastic properties, may

lso be included as variables in the simulations to reflect uncertainty
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Fig. 3. A graphical representation of the factorised probability density P(Bil) for three different subjects, each represented by a dashed ellipse containing different data points

labelled ◦, ×, and +, and for two principal components of the mixed-subject SSM. The curves shown on each axis represent the factorised probability densities, whereas the ellipses

represent confidence regions of the SSPDFs, P(Bi) (see text for details).
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1 The multivariate Gaussian assumption and the independence approximation have

been discussed extensively in the literature (e.g. see Shlens, 2005). We report a max-

imum correlation of 0.36 for all of the individual subjects, with no significant correla-

tion observed, based on data in this study. It is noteworthy that a more complicated,

non-Gaussian distribution, such as a non-unimodal mixture model, or a full covariance

matrix, may be considered when necessary (e.g. to describe certain pathological shape

variations). The impact of the independence approximation is dependent on the ap-

plication and here is assessed by the cross validation and image registration accuracy.

In practice, this approximation reduce the degrees of freedom of the covariance ma-

trix but maintains the modelling generalisation ability as demonstrated in the cross

validation (see Section 3).
n these properties. For each subject, the first shape, denoted by j = 0,

s the reference shape and the remaining j ( j = 1, 2, . . . , Ji) shapes are

eformed instances of the reference shape. In this example, the ref-

rence shape represents the prostate in the “resting state”, obtained

y segmenting a T2-weighted MR image that was acquired without

n endorectal coil (or any other rectal insertion) in place (Hu et al.,

012).

Group-wise surface registration of the meshes can be performed

o that: (i) point correspondence between each deformed shape and

he reference shape is established for each subject, and (ii) the point

orrespondence between the reference shapes of different subjects is

stablished. Where FE simulations are performed to synthesise the

raining dataset, the point correspondence between each deformed

hape is known implicitly. Details of the algorithm used in this

tudy to determine cross-patient point correspondence are given in

ection 2.7. Once the correspondences are established, the training

hapes can be iteratively rigid-aligned to the mean shape. This en-

ures that intra- and inter-subject variances, such as shapes and sizes,

re both preserved.

The mixed-subject SSM can be constructed by applying PCA

o G = I + ∑I
i=1 Ji training shape vectors, sg = [xg1, yg1, zg1, xg2, yg2,

g2, . . . , xgN, ygN, zgN]
T

, g = 1, 2, . . . , G, which each contain the 3D co-

rdinates of N points that describe the gth shape. The shape vectors

ay define either a 3D surface or a volume, for example, represented

y the nodes (vertices) of an FE mesh. Taking advantage of dimen-

ionality reduction by excluding components that explain less vari-

nce in the training data, the resulting shape model is approximated

y the linear equation using L ≤ G principal components (Cootes

t al., 1995):

g = s̄ +
L∑

l=1

bglel = s̄ + [e1, e2, . . . , eL][bg1, bg2, . . . , bgL]
T

= s̄ + Ebg (1)

here s̄ is the mean shape vector; el is the eigenvector of the covari-

nce matrix of the (mean-subtracted) training shape vectors corre-

ponding to the lth largest eigenvalue, σ 2
l

; and bgl is a scalar shape

arameter; the vector bg contains the shape parameters that collec-

ively describe the gth organ shape. Eq. (1) models mixed-subject in-

ividual and motion variations learned from all the training data. An

SM generated in this way is referred to hereon in as a mixed-subject

SM.
.3. Subject-specific PDF calculation

The subject-specific probability density for the ith subject is de-

oted by P(Bi : Bi ∈ �i), where Bi is a multivariate random variable

f the vector shape parameters and �i ∈ �L denotes the ith subject

ubspace. Rearranging (1) we have:

i j = ET (si j − s̄) (2)

In (2) bij contains the shape parameters of the training data by

rojecting the coordinates sij for the jth shape belonging to the ith

ubject. Both sij and sg are training shape vectors with different sub-

cripts that denote differently grouped data.

P(Bi) may be simplified by the independence approximation1

herein this multivariate probability density is approximated as a

actorised joint probability density, i.e., P(Bi) ∼= ∏L
l=1 P(Bil), where

i = [Bil]
T
l=1,2,...,L

. This has the effect of excluding information on cor-

elation between shape parameters. Expressing the probability in this

ay enables us to draw an informative plot of the distribution in

erms of individual distributions of the scalar random variable Bil for

he lth shape parameter (corresponding to the lth principal compo-

ent). An example is shown in Fig. 3. The scalar shape parameters

i jl, j = 1, 2, . . . , Ji are Ji samples of the random variable, Bil.

Similarly, the probability density of all the training data that builds

he mixed-subject SSM is denoted by P(Bg : Bg ∈ �g), where the ref-

rence space �g is the union of all the subject subspaces. This can

e factorised in the same way such that P(Bg) = ∏L
l=1 P(Bgl). Fig. 4

hows some examples of these factorised probability densities using

he histograms of the samples {bij} from the prostate shape data.

By inspection of the plots in Fig. 4, the following two observa-

ions can be made immediately: First, P(Bil) is different between sub-

ects and is different from P(Bgl) corresponding to the mixed-subject
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Fig. 4. Examples of estimated factorised probability densities P(Bil), represented by histograms for the prostate shape data (see text). Each column (from left to right), corresponds

to each of the first four principal components (l = 1, 2, 3, 4) of the mixed-subject SSM. The first three rows from top represent the first three subjects (i = 1, 2, 3). The bottom row

represents the population probability densities P(Bgl) computed over the entire training data.
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SSM. This provides a potential means to decompose the whole mixed-

subject space into motion- and subject subspaces by modelling the

SSPDFs. Second, all of the sample distributions have a consistently

bell-like shape with different widths and centre positions. Following

the independence approximation, the SSPDF may be parameterised

by a multivariate Gaussian PDF1 N (Bi;μi, diag(σ2
i
)), where the dis-

tribution parameters, μi and diag(σ2
i
), represent the mean vector and

the L × L diagonal covariance matrix, in which the diagonal entries are

the component variance vector σ2
i

= [σ 2
il

]
T

l=1,2,...,L
, respectively. This

PDF is considered as a parametric example of the SSPDF for ith sub-

ject, and is entirely characterised by the distribution parameters μi

and σ2
i
.

2.4. Parameter estimation using kernel regression analysis

The distribution parameters may be estimated given a set of sam-

ples, {bi j, j = 1, 2, . . . , Ji}. The corresponding maximum likelihood es-

timators are then given by:

μ̂i = 1

Ji

Ji∑
j=1

bij (3)

and

σ̂
2
i = 1

Ji − 1

Ji∑
j=1

(
bij − μ̂i

)2
(4)

Without loss of generality, we now assume that a (nonlinear) re-

lationship exists between the distribution parameter θi = [μ̂T
i , σ̂T

i ]
T

of the SSPDF P(Bi;θi) and the shape parameters of reference shape

bi0 for ith subject so that the distribution parameter θi, and therefore

the SSPDF P(Bi), may be predicted solely from the shape parameters

of the unseen reference shape for a new subject data. In the current

study, the distribution parameter is expressed as a linear function of

kernels as follows:

θm(b) = βm0 +
I∑

i=1

βmiK( b, bi0) + εm

with the constraint

I∑
i=1

|βmi|2 ≤ c (5)
In Eq. (5), K(x, x′) = exp(−‖x − x′‖2
/2h2) is a Gaussian kernel

unction with kernel parameter h, which is determined by a cross val-

dation method described in the Section 2.6. The choice of the kernel

unction form is briefly discussed in Section 4; c is a positive scalar

onstant; ε is a random noise term with its statistical expectation

[ε] = 0; m is the index of each scalar distribution parameter such

hat θi = [θmi]m=1,2,...,2L; and βm = [βmi]
T
i=0,1,...,I is a vector regression

arameter. The optimal regression parameter may be estimated by

sing a linear least squares technique to minimise the regularised

esidual sum-of-squares as follows (Hastie et al., 2009): First, a regu-

arised estimator β̂m = [β̂mi]
T

i=1,2,...,I is given by:

β̂m =
(
�T

m�m + λI
)−1

�T
mθi (6)

here the design matrix takes the following form:

m =

⎡
⎣K(b10, b10) − ϕ̄1 · · · K(b10, bI0) − ϕ̄I

...
. . .

...
K(bI0, b10) − ϕ̄1 · · · K(bI0, bI0) − ϕ̄I

⎤
⎦ (7)

¯k = 1
I

∑I
i=1 K( bk0, bi0), I is the identity matrix, and λ is the ridge

eighting parameter. In practice, the regularisation parameter λ is

et to a small constant to avoid over-fitting while maintaining accept-

ble residuals; λ = 10−8 was used in all the experiments presented in

his study. The offset coefficient is then given by:

ˆ
m0 = 1

I

I∑
i=1

θmi −
I∑

k=1

β̂mkϕ̄k (8)

.5. Prediction of a subject-specific SMM

Given reference shape data for a new subject, the shape parame-

ers bnew, 0 for the new subject can be estimated by first non-rigidly

egistering to the mean shape of the group-wise registration (see de-

ails in Section 2.7), and then projecting onto the principal compo-

ents of the mixed-subject SSM after removing the rigid component.

hus,

new,0 = ET (snew,0 − s̄) (9)

here snew, 0 is the rigidly-aligned, undeformed shape. Each distribu-

ion parameter of a new SSPDF can then be computed by taking the

onditional expectation of Eq. (5), as follows:
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m(bnew,0) = E[�| bnew,0] = βm0 +
I∑

i=1

βmiK( bnew,0, bi0) (10)

here coefficients βnew
mi

are given by Eqs. (6) and (8). The

SPDF P(Bnew : Bnew ∈ �new) for the new subject can now be pre-

icted using the predicted distribution parameters, N (Bnew;μnew,

iag(σ2
new)).

Once P(Bnew) has been estimated, the linear model may be ob-

ained directly by “centering” the predicted diagonal covariance ma-

rix, so that the predicted subject-specific SMM takes the form:

spredict = s + Eμnew + Ebnew (11)

here the new component variance becomes σ2
new, s + Eμnew is

quivalent to the mean of the predicted subject-specific SMM and

new represents the new shape parameters.

.6. Optimal kernel parameter

For each regression kernel parameter, expressed as h = 10x, an op-

imal value is computed by minimising the cross validation error,

efined as the root-mean-square of the regression residuals, as in

q. (5). The regression error is computed for each data in a leave-one-

ut scheme by comparing the difference between the ground-truth

istribution parameters, computed from the training data via Eqs. (3)

nd (4), and the predicted distribution parameters, computed from

he test data via Eqs. (6), (8) and (10). In this study, a golden search

trategy was used to then find the optimal value of x within the pre-

efined interval 1 ≤ x ≤ 8, with the cross validation error serving as

he objective function to minimise.

.7. Point correspondence

One of the advantages of the proposed modelling technique is that

t does not require the establishment of motion correspondence be-

ween the subject subspaces for different subjects (also described in

ection 1) since only the probability densities are modelled to de-

cribe the subject motions, motion data can be grouped in an ar-

itrary order in the training dataset, which overcomes a number of

ractical difficulties. However, point correspondence still needs to be

stablished between subject subspaces and may be estimated using,

or example, a group-wise surface registration scheme (Heimann and

einzer, 2009).

In this study, inter-subject registration of the training shapes re-

uired to build the mixed-subject SSM was performed using an iter-

tive group-wise registration scheme based on the landmark-guided

oherent point drift (LGCPD) method (see Hu et al., 2010a for more

etails), with anatomical apex and base points of the prostate gland

erving as two known correspondent points to assist the registration

n finding the point correspondence between organ surfaces. In this

cheme, the mean shape of the registered segmentations was up-

ated iteratively until convergence. Typically, this took no more than

ve iterations. Because each deformed shape was generated by using

n FEM simulation to predict a physical deformation of the reference

hape, with the final deformed shape represented by a 3D FE mesh,

he 3D point correspondence between different deformed shapes for

ach subject is known from matching the corresponding nodes (ver-

ices) in the reference and deformed meshes. Finally, a single pair-

ise registration using the same method was performed to find point

orrespondence between a new reference shape for an unseen sub-

ect and the mean shape found following the group-wise registration.

.8. Validation methodology

.8.1. Data acquisition

To test the method introduced in the previous sections for a

eal-world application, a subject-specific SMM of an unseen prostate
land was built and compared with an SMM generated directly us-

ng biomechanical modelling using the methods described in detail

n Hu et al. (2012). The mixed-subject SSM was built using 100 FEM

imulations of TRUS-probe-induced gland deformation for each of 36

atients, leading to 3636 training shapes in total. For each simulation,

ifferent probe/balloon positions and orientations, different balloon

iameters, and different elastic material properties were applied (see

u et al., 2012 for further details). For each of the 36 patients, the

eference geometry of the prostate was defined as the shape result-

ng from a manual segmentation of the capsule in a T2-weighted MR

can, performed by an expert clinical observer (an experienced radi-

logist or a urologist with an additional verification of the segmented

ontours by an experienced radiologist).

.8.2. Cross validation

A leave-one-out, cross-validation framework was used to assess

he generalisation ability and specificity (defined in Hu et al., 2010b;

tyner et al., 2003) of the following three linear models: (a) a subject-

pecific SMM, generated using the population-based model proposed

n this paper, (b) a subject-specific SMM based on biomechanical sim-

lation training data and, for comparison, (c) a mixed-subject SSM

uilt using a training dataset that represents both inter- and intra-

ubject organ shape variation (this model is by definition not subject-

pecific). Figs. 5 and 6 illustrate the leave-one-out validation method

sed for a chosen test subject. The three linear models are constructed

ndependently. The root-mean-square (RMS)-distance-based gener-

lisation ability and specificity then can be computed for each test

ubject. The cross validation method described below provides an

verall assessment of the modelling ability. Low RMS distances in-

icate a strong model generalisation ability and specificity.

The generalisation ability of a linear model quantifies its ability to

escribe unseen data, which relates closely to the application of in-

erest in this paper, namely, capturing organ motion to provide prior

nformation for registering non-rigidly to unseen (TRUS image) data.

t was measured by a separate, embedded leave-one-out scheme (Hu

t al., 2010b). The generalisation ability was defined as the RMS Eu-

lidean distance between the mesh nodes of an unseen test data and

he corresponding nodes of the instantiated model fitted to the test

ata (i.e. the fitted model). In this study, the unseen test data (as de-

oted in boxed prostate shape with a lighter shading in Fig. 5) was the

ata left out from the 100 biomechanical simulations of the test sub-

ect in the embedded leave-one-out scheme; the biomechanically-

ased SMM was built independently using the remaining 99 simula-

ions, as illustrated in Fig. 5. The RMS-distance-based generalisation

bility is given by:

MSgen =
√

1

N
(stest − sfitted)

T
(stest − sfitted) (12)

here N is the number of the mesh nodes of each model, stest and

fitted are the shape vectors (as defined in Section 2.2) of a test data

nd the instantiated model, respectively. The generalisation abilities

ere computed for the three linear models in the main “subject-

evel” leave-one-out scheme.

It is also important to note that, to avoid bias, a different leave-

ne-out scheme was used to validate the linear models versus the es-

imation of the optimal kernel parameter described in Section 2.6: In

he validation experiments, each of the 36 model-predicted subject-

pecific SMMs was tested using a mixed-subject SSM generated from

he remaining 35 training datasets. Among these, 34 subjects were

sed as training data to compute the regression error for the remain-

ng datasets in order to determine the optimal kernel parameter for

he regression.

The specificity of each linear model was also computed using the

ame cross-validation framework, which is similar to that adopted

n Hu et al. (2010b). This measure indicates the degree to which the

eformations of a linear model are constrained, which is relevant
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Fig. 5. An overview of the leave-one-out methodology used to compare the modelling ability of three linear models by computing the RMS-distance-based generalisation ability.

The boxed shape with a lighter shading denotes the test data that is compared to each of the three models in the leave-one-out scheme.

Fig. 6. An overview of the leave-one-out methodology used to compare the modelling ability of three linear models by computing the RMS-distance-based specificity.
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because it is desirable for the model to be robust to corrupted data,

for instance, due to image artefacts or noise. Furthermore, the model

should be able to predict missing data. For the purposes of this study,

as illustrated in Fig. 6, this measure was defined as the RMS distance

between each of a number of randomly sampled model shape in-

stances, specified by sinstance, and the nearest shape found in the train-

ing data (i.e. 100 biomechanical simulations), specified by snearest, as

follows:

RMSspc =
√

1

N
(sinstance − snearest)

T
(sinstance − snearest) (13)

where N is number of solid mesh nodes in the model. For each

test subject, one thousand deformed prostate glands for each linear

model were generated by randomly sampling b from P(Bnew), P(Bi)
and P(Bg), respectively. The prostate shape instances generated us-

ing each linear model form a set that defines the model space, and

the distance to the nearest training data from the random instance

measures the specificity of the linear model.
For comparison, the generalisation ability and specificity of a set

f “k-nearest” SSMs were computed for only the k nearest training

ubjects are used, based on the RMS distances between the reference

hape of the available training subject and that of the test subject.

herefore, when k > 1 the k-nearest SSM is a mixed-subject SSM,

hereas a single-subject SMM is constructed when k = 1.

.8.3. SMM-based registration validation

Although the main contribution of this paper is the presentation

f an alternative technique for generating a subject-specific SMM us-

ng synthesised training data, it is also important to assess the abil-

ty of such models to recover actual patient organ motion as part

f a non-rigid image registration algorithm. To satisfy this, the ac-

uracy of registering a deformable, model-predicted subject-specific

MM, which is based on MR-derived prostate geometry data, to 3D

RUS images was investigated by quantifying the target registra-

ion error (TRE) in the alignment manually-identified, independent

natomical landmarks for 8 patient datasets following registration
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Fig. 7. Example plots of the factorised P(Bil) for the first four predicted SSPDFs for three new test subjects (solid line), compared with the histogram constructed using original {bij}

(dotted line). It can be seen that the corresponding curves show excellent agreement.

Fig. 8. Top row: The randomly sampled prostate glands from the ground-truth biomechanically-based SMM of a test subject (as in the leave-one-out validation). Middle row:

Samples from the model-predicted subject-specific SMM, which are constructed from data excluding the test subject. Bottom row: Samples from the mixed subject SSM which

includes both intra- and inter-subject shape variations in the training data. The first column shows the reference shape from each model.
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2 Unless otherwise indicated, significance levels of all the statistical tests used in this

study were set to α = 0.05.
sing the method described in our previous published work (Hu et

l., 2012). The data for these 8 patients was independent of the train-

ng data used to build the predictive model. This TRE provides an in-

ependent measure of the registration performance that can be com-

ared directly with registrations that make use of SMMs built using

he results of biomechanical simulations of prostate motion for each

atient.

. Results

Fig. 7 shows example histograms (plotted as dotted lines) rep-

esenting P(Bil) for the data used in this study, and the regression-

stimated subject-specific probability density curves (plotted as solid
ines) for first four principal components for three patients. The

oodness-of-fit between the corresponding curves was evaluated us-

ng the X2 test.2 The result – an average p > 0.78 – indicates excellent

greement and provides justification for the effectiveness of the ker-

el regression analysis and the choice of the Gaussian form to model

he PDFs in this study.

Fig. 8 shows examples of random shape instances generated using

he biomechanically-based SMM (used here as the ground-truth), the

odel-predicted subject-specific SMM of a prostate for the same sub-

ect, and the mixed-subject SSM (which captures the general shape
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Fig. 9. Generalisation ability of the model-predicted subject-specific SMM for each

test subject, generated using the proposed method and expressed as the median RMS

distance (the error bars indicate the 5th/95th percentiles of these RMS distances).

Fig. 10. Generalisation ability of the biomechanically-based subject-specific SMM for

each test subject, generated using the (ground truth) biomechanical simulations and

expressed as the median RMS distance (the error bars indicate the 5th/95th percentiles

of these RMS distances).

Fig. 11. Generalisation ability of the mixed-subject SSM for each test subject, ex-

pressed as the median RMS distance (the error bars indicate the 5th/95th percentiles

of these RMS distances).

Fig. 12. Specificity of the model-predicted subject-specific SMM for each test subject,

expressed as the median RMS distance (the error bars indicate the 5th/95th percentiles

of these RMS distances).
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variation over the training population of 36 patient prostates). By

comparing the general form of the shapes generated using the three

methods (see Fig. 8), it is visually evident that the subject-specific

SMM generates shapes look more physically realistic than those gen-

erated by the mixed-subject SSM, and are closer in appearance to

those obtained from the ground-truth biomechanically-based SMM.

(It should be noted that because the shape instances shown in Fig. 8

are based on random sampling, they are purely illustrative of the form

of shapes generated by each SMM, and therefore should be compared

group-wise, between rows, and not down each column.)

In Figs. 9, 10 and 11 the median RMS value of the generalisa-

tion ability of the model-predicted-, biomechanically-based subject-

specific SMM and the mixed-subject SSM for each test subject are

plotted, respectively. Inspection of these plots reveals that the two

subject-specific SMMs provide lower RMS errors compared with

the mixed-subject SSM. Using a confidence level of 0.05, paired

Kolgomorov–Smirnov tests confirm that: (a) mixed-subject SSM
as significantly lower generalisation ability than both the model-

redicted- and the biomechanically-based SMM (p < 0.0001 in both

ases); and (b) the difference in generalisation ability between the

odel-predicted- and biomechanically-based SMMs is not signifi-

antly larger than 0.1 mm (p < 0.0001). Therefore, we conclude

hat the proposed model-predicted SMM has comparable general-

sation ability to unseen data to that of the biomechanically-based

MM, while both outperform the mixed-subject SSM in terms of this

easure.

The median values of the specificities of the three linear models

re plotted in Figs. 12–14. Comparing these results reveals that the

ubject-specific SMMs provide significantly smaller (therefore better)

odel specificities. The same statistical test concludes that the differ-

nce in specificity between the mixed-subject SSM and either of the

ther two subject-specific SMMs is significantly larger than 10 mm,

ith p < 0.0001. However, the difference between the two subject-

pecific SMMs is not greater than 1 mm (p = 0.0005). These results
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Fig. 13. Specificity of the biomechanically-based mixed-subject SSM for each test sub-

ject, expressed as the median RMS distance (the error bars indicate the 5th/95th per-

centiles of these RMS distances).

Fig. 14. Specificity of the mixed-subject SSM for each test subject, expressed as the

median RMS distance (the error bars indicate the 5th/95th percentiles of these RMS

distances).

i

t

p

p

i

n

p

t

d

i

T

F

a

T

j

o

Fig. 15. Generalisation ability of the k-nearest SSMs plotted versus increasing values

of k. Pooled data from all test subjects were used, expressed as the pooled median RMS

distance (the error bars indicate the 5th/95th percentiles of these RMS distances).

Fig. 16. Specificity of the k-nearest SSMs plotted versus increasing value of k. Pooled

data from all test subjects were used, expressed as pooled median RMS distance (the

error bars indicate the 5th /95th percentiles of these RMS distances).
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ndicate that, compared to the subject-specific SMMs, the ability of

he mixed-subject SSM to generate accurate subject-specific data is

oor. Furthermore, compared to the biomechanically-based SMM, the

roposed model-predicted SMM provides equivalent modelling abil-

ty in terms of generating subject-specific instances.

Median values of generalisation ability and specificity of the k-

earest-SSMs are plotted in Figs. 15 and 16, both calculated using

ooled test subjects from the cross validation scheme. Inspecting

hese results reveals that the generalisation ability increases (RMS

istance error decreases) as k increases. The best generalisation abil-

ty (= 3.76 mm median RMS distance) was achieved when k = 35.

his distance is close to that of the mixed-subject SSM reported in

ig. 11 and can be improved significantly (p < 0.0001) by adopting

model-predicted SMM (Median RMS distance = 0.57 mm; Fig. 9).

he specificity, on the other hand, decreases as more training sub-

ects are included: the smallest median RMS distance (4.06 mm) was

btained using only the closest training subject, i.e. k = 1, and is
ignificantly worse (p < 0.0001) than that calculated for the model-

redicted SMM (Median RMS distance = 2.90 mm; Fig. 12).

From the results above, it follows that the generalisation ability of

k-nearest-SSM is likely to improve as more training data become

vailable. However, this clearly imposes a practical limitation on this

pproach and increasing the number of training shapes has the unde-

irable effect of increasing the model specificity, meaning that shapes

nstantiated by the model become less physically plausible (as indi-

ated in Fig. 8).

The TRE results using the proposed method for generating

ubject-specific SMMs are summarised in Table 1, along with

ublished TRE data obtained by registering biomechanically-based

ubject-specific SMMs (Hu et al., 2012). With a confidence level set

o 0.05, a paired Kolmogorov–Smirnov test indicates that there is no

ignificant difference between the TREs obtained using the two meth-

ds (p = 0.14). This suggests that the proposed method for gener-

ting subject-specific SMMs provides an alternative to conventional
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Table 1

Summary of TREs before and after registration using model-predicted versus a biomechanically-based, subject-specific SMMs.

Subject 1 2 3 4 5 6 7 8 All

Median (95% percentile)

TRE (mm)

Start 9.42

(11.39)

14.52

(17.43)

6.29

(9.62)

6.25

(9.42)

9.32

(11.14)

5.86

(8.75)

8.84

(11.65)

6.15

(8.98)

8.13

(15.02)

Model-predicted,

subject-specific SMM

2.88

(7.94)

3.95

(10.75)

1.79

(6.86)

1.98

(4.99)

2.81

(7.16)

1.90

(6.09)

2.79

(9.26)

1.92

(5.65)

2.40

(6.19)

Biomechanically-based

subject-specific SMM

2.68

(7.21)

3.19

(9.62)

1.69

(5.38)

1.56

(5.21)

2.60

(6.84)

1.58

(4.65)

2.92

(7.49)

1.49

(4.66)

2.42

(7.15)

s

l

t

m

S

H

t

t

s

r

w

[

f

n

d

g

t

m

b

p

t

g

i

r

m

n

c

9

o

i

v

G

t

r

e

m

s

s

a

s

r

f

t

s

p

m

i

m

w

c

t

modelling techniques that require subject-specific training data

without compromising registration accuracy.

4. Discussion

This paper describes a new framework for modelling subject-

specific organ motion in which learnt statistics from a training popu-

lation are used to predict subject-specific training data for an unseen

subject rather than requiring those data to be provided directly either

from subject-specific dynamic image data or from subject-specific

computer simulations, both of which can often place a significant

burden on technical and healthcare resources. In particular, the pro-

posed method allows subject-specific organ motion to be modelled

implicitly without knowledge of the explicit motion correspondence be-

tween different subjects (which for respiratory organ motion for exam-

ple, might be provided by an independent respiratory signal or sur-

rogate respiratory signal). The proposed motion modelling method

was compared with biomechanical modelling as an alternative, direct

means of generating subject-specific synthetic training data. One ad-

vantage of using biomechanical simulations is that the point corre-

spondences between successive shapes of the organ of a particular

subject are known implicitly, since these are computed relative to a

common reference shape. In general, however, point correspondence

may be established via any of a number of point registration methods

described in the literature (Heimann and Meinzer, 2009).

Further work is necessary to validate the technique against image-

derived organ shape data for a wider variety of applications, but a

key potential advantage of the method over alternative approaches is

that only limited subject-specific data on motion-related organ shape

change are required. This makes the method both computationally ef-

ficient and highly suited to applications where more comprehensive

data on organ motion, such as a 4D image with a high temporal res-

olution, are difficult or impossible to acquire. In situations when dy-

namic imaging of organ motion is feasible, but has significant practi-

cal constraints, such as limited temporal resolution or limited access

to the required imaging facilities, the proposed method can in prin-

ciple work with only a small number of training shape instances and

therefore may be usefully applied. Moreover, the requirement for a

single reference shape for unseen subjects overcomes practical con-

straints that are commonly encountered in the clinical setting where

a segmentation from a (static) diagnostic or planning image is often

the only, or at least most readily accessible, data available.

In the example used in this study, subject-specific prostate SMMs

were built to describe the motion of the prostate gland alone, but the

method could also be extended to model multi-organ motion. Fur-

thermore, the proposed framework may be adapted easily to use a

different kernel function, i.e. K in Eq. (5), a different regression tech-

nique and/or another PDF, such as a mixture model for cases where a

multi-modal distribution is observed. The simple Gaussian function

form K takes in Eq. (5) is proposed mainly for its efficiency in local

weighting and prevalence in wider statistical learning applications.

This choice is proven adequate in this case based on the cross val-

idation results presented in Section 3, but another kernel function

might be equally valid. Although these adaptations would not neces-

sarily result in a direct linear model represented by Eq. (11), random
amples of the subject-specific organ shape can be drawn from the

earnt SSPDF, for example, using a Monte Carlo approach, which are

hen used to build a linear SMM using a standard PCA-based or other

odel construction method.

Reference shapes were included when building the mixed-subject

SM so that these predictors can be expressed using the same SSM.

owever, this may introduce a small bias into the model. To inves-

igate this further, we calculated reconstruction errors in RMS dis-

ance using the mixed-subject SSMs with- and without the reference

hape data. These were 0.28 ± 0.065 mm and 0.28 ± 0.065 mm,

espectively; no statistical significant difference can be concluded

ith p = 0.58 and a confidence interval on the mean difference of

−0.0028, 0.0016], based on a pooled two sample t-test. We there-

ore conclude that the impact of including the reference shape was

egligible. Any other linear form of parameterisation of these pre-

ictors should have equivalent performance in the subsequent re-

ression analysis. In theory, other nonlinear parameters representing

he reference shape and/or other predictors, such as intra-procedural

easurements (e.g. gland size) and temporal information, can readily

e incorporated in the proposed learning framework. These may help

redict the subject-specific SMM but this hypothesis would need fur-

her investigation beyond the scope of the present study.

A secondary noteworthy aspect of the work is the use of the

roup- and pair-wise LGCPD algorithms to non-rigidly register train-

ng shapes (see Section 2.7). Fig. 17 shows an example of a pair-wise

egistration of prostate surfaces. This algorithm provides a faster and

ore robust extension to the general-purpose CPD algorithm, origi-

ally proposed by Myronenko and Song (2010).

The value of L in Eq. (1) may be chosen so that the reference SSM

overs of a certain percentage of the cumulative variance (e.g. at least

9%, yielding L = 31 in this study) in the training data. An interesting

bservation is that the proposed method may be useful for determin-

ng an optimal value of L as the components ordered with decreasing

ariance may contain too much noise to be reasonably modelled by a

aussian distribution or captured by kernel regression. However, fur-

her investigation of this point is beyond the topic of this paper and

emains to be investigated in future work.

Importantly, for the application of modelling prostate motion to

nable non-rigid registration of MR to TRUS images, the proposed

ethod reduces the time required to build a subject-specific SMM

ubstantially, compared with using subject-specific biomechanical

imulations to provide model training data. The time taken to gener-

te a subject-specific SMM in this study was on average less than 20

econds in total (∼18 s for the single LGCPD registration and <2 s for

egression evaluation) compared with at least a few hours required

or GPU-based FEM simulations (Hu et al., 2012, 2011). This means

hat model generation is no longer only practical as a pre-operative

tep within an image-guided surgery workflow, but could feasibly be

erformed immediately prior to or even during a procedure, which

ay have significant practical advantages in terms of convenience

n the clinical setting. In addition, the proposed model generation

ethod does not require the resources demanded by FE simulation,

hich is difficult to automate to a level that they can be performed by

linicians without significant technical support or at least in-depth

raining. Moreover, potential issues regarding numerical instability
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Fig. 17. Example of pair-wise registration of prostate surfaces and anatomical landmarks (apex and base) using the CPD and LGCPD algorithms. It can be seen that the landmarks

are well aligned (right) after using the LGCPD algorithm, compared with using the CPD algorithm (middle).
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nd lack of convergence are avoided, and high-quality FE simulations

eed only be limited to generating training data, which in principle

nly needs to be done once to create a single generative model from

hich subject-specific SMMs are built.
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