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Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered
attention for its ability to colonize tissues and tumors elsewhere in the human body.
Clinical and epidemiological research has now firmly established F. nucleatum as an
oncomicrobe associated with several major cancer types. However, with the current
research focus on host associations, little is known about gene regulation in F. nucleatum
itself, including global stress-response pathways that typically ensure the survival of
bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobac-
teriota to most model bacteria, their limited genetic tractability, and paucity of known
gene functions. Here, we characterize a global transcriptional stress-response network
governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed
several genetic tools for this anaerobic bacterium, including four different fluorescent
marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and
translational reporter systems. Using these tools, we identified a σE response partly remi-
niscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen.
Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered con-
servation of the noncoding arm of the σE response in form of the noncoding RNA FoxI.
This regulatory small RNA acts as an mRNA repressor of several membrane proteins,
thereby supporting the function of σE. In addition to the characterization of a global
stress response in F. nucleatum, the genetic tools developed here will enable further dis-
coveries and dissection of regulatory networks in this early-branching bacterium.
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The oral microbe Fusobacterium nucleatum is an abundant member of the oral micro-
biome, a complex microbial community consisting of over 700 species (1). In the oral cav-
ity, F. nucleatum functions as a bridging organism between colonizers of dental plaque (2)
and is crucial for the maintenance of this biofilm (3). While generally considered a mutual-
ist, F. nucleatum is also implicated in periodontitis and occurs in abscesses in various body
sites (4). Most importantly, F. nucleatum has recently garnered broad attention for its asso-
ciation with several different types of human tumors. The bacterium is highly abundant in
tissues of colorectal, breast, esophageal, and pancreatic cancer (5–11), and colonization
with F. nucleatum is associated with enhanced tumor growth, metastasis, and resistance to
chemotherapy (9–11). These tissues represent new and adverse environments very different
from F. nucleatum’s primary niche in the oral cavity.
The occurrence of F. nucleatum at these extraoral sites implies that this bacterium can

sense and adapt to changes in its environment. To date, however, only two regulatory cir-
cuits have been described in F. nucleatum: the two-component systems (TCS) CarRS and
ModRS, which control interspecies coaggregation and resistance to hydrogen peroxide,
respectively. Both also play a role in bacterial virulence (12, 13). Factors that govern
global stress responses are unknown. Decoding molecular principles of gene regulation in
F. nucleatum has generally been difficult for two reasons. First, the phylum Fusobacteriota
is phylogenetically remote from all model bacteria (14) (Fig. 1A), which hampers
knowledge transfer by sequence comparison. Second, functional genetics in this obligate
anaerobic, gram-negative bacterium is in its infancy (2), being limited to two recently
introduced systems for scarless genomic deletion (15, 16) and to plasmid-based over-
expression of a gene of interest (17). Therefore, new genetic tools are much needed
to systematically identify and characterize regulatory pathways that ensure viability of
F. nucleatum under stress conditions. In this work, we expand the fusobacterial genetic
tool-kit and use it to dissect a global stress response composed of the extracytoplasmic
function (ECF) σ factor, σE, and an associated regulatory small RNA (sRNA).
ECFs present a fundamental signal transduction mechanism whereby bacteria moni-

tor their environment (18). Specifically, ECFs are usually involved in regulating the
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integrity of the bacterial envelope (19), which represent the first
line of defense in gram-negative bacteria (20). ECFs across dif-
ferent phyla are activated by a variety of signaling stimuli,
including broad stresses—such as osmotic stress, heat shock,
oxidative stress (20)—but also more specific stressors, such as
singlet oxygen produced by photosynthesis (21) or lysozyme
(22). Nevertheless, ECFs share similar core features: 1) they are
autoregulatory; 2) an anti-σ factor that keeps the ECF in an
inactive state is encoded in the same operon; and 3) upon sens-
ing of the specific signal the anti-σ factor is inactivated either
through proteolytic degradation (23), conformational changes
(24, 25), or sequestration by a third protein (26). More rarely,
ECFs can also be activated through phosphorylation (27) or via
a TCS (28).
The σE response has been particularly well-studied since its

discovery in Escherichia coli more than three decades ago (29).
Upon envelope stress, proteolytic cleavage and degradation of
the anti-σ factor RseA releases σE from the inner membrane
(IM) into the cytosol, where σE activates the transcription of
>100 genes (30, 31). The σE regulon is functionally similar
across different bacterial species and includes genes involved in
DNA damage repair, liposaccharide biogenesis, and outer
membrane (OM) homeostasis (31–35).
Importantly, the σE regulon also includes several sRNAs

genes, which together constitute the “noncoding arm” of the
response (36). Work in E. coli, Salmonella, and Vibrio species has
established that these σE-controlled sRNAs posttranscriptionally
repress mRNAs of diverse envelope proteins, including many
major OM proteins (OMPs) (37–45). Endowing the transcrip-
tional activator σE with a repressor function, these sRNAs act
synergistically to ensure envelope integrity. In all species investi-
gated thus far, these sRNAs work in conjunction with the gen-
eral RNA chaperone Hfq, which aids base pairing between the
sRNAs and their target mRNAs. In fact, chronic activation of
the σE response as a result of perturbed envelope homeostasis is a
conserved characteristic of hfq deletion strains among these spe-
cies (46–49).

The envelope composition of F. nucleatum is largely unknown,
and there has been conflicting evidence with respect to a potential
σE stress response. First, genome annotation of F. nucleatum (50)
predicted a putative rpoE gene, which encodes σE in E. coli
(Fig. 1B). However, a recent comprehensive phylogenetic analysis
placed the putative F. nucleatum σE in a functionally different
ECF group from the E. coli protein (51). Second, our recent
RNA-sequencing (RNA-seq) study in F. nucleatum discovered a
previously unknown large suite of sRNAs. Preliminary analysis
identified one of these sRNAs, FoxI, as a posttranscriptional
repressor of an abundant OMP (17). However, FoxI was induced
by molecular oxygen, a condition which seems unrelated to enve-
lope stress and untypical of a σE response. More importantly,
F. nucleatum lacks a gene coding for Hfq or any other known
sRNA chaperone.

Here, to experimentally resolve these seeming inconsistencies,
we developed several much-needed systems to characterize fusobac-
terial gene regulation: fluorescent marker proteins, transcriptional
and translational reporters, an inducible gene-expression system,
and a gene-deletion system that is not reliant on a specific strain
background. Application of these tools allowed us to define the σE
regulon of F. nucleatum, revealing a surprising conservation of its
overall architecture in this early-branching species. This general
conservation includes a noncoding arm of the σE response
provided by the sRNA FoxI, which we show acts as a negative
posttranscriptional regulator of several envelope proteins. Intrigu-
ingly, the fusobacterial ECF is activated by oxygen rather than
sources of envelope or oxidative stress. Our results provide func-
tional evidence for a global stress response composed of a σ factor
and an associated sRNA in an early-branching bacterium, and an
experimental framework to dissect regulatory networks in the
understudied phylum Fusobacteriota.

Results

Expanding the Genetic Toolkit for F. nucleatum. To facilitate
dissection of gene regulatory networks in F. nucleatum, we created
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five plasmid-based tools: constitutively expressed fluorescent
marker proteins, a transcriptional and a translational reporter
system, an inducible gene expression system, and a system for
markerless genomic deletion (Fig. 2A). These systems are derived
from our recently developed plasmid pEcoFus for gene overexpres-
sion in F. nucleatum (17). We initially reduced the overall size of
pEcoFus, generating the plasmid pVoPo-00 (see Materials and

Methods for details). Next, we inserted an expression cassette for
one of four different codon-optimized fluorescent proteins:
mCherry, GFP, mScarlet-I, and mNeonGreen. These constructs
allow easy visualization of F. nucleatum using fluorescence imaging
(Fig. 2B). pVoPo-mNeonGreen uses an expression construct with
a weaker promoter, therefore the fluorescence signal is lower
(Materials and Methods). This adjustment was necessary because
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we were unable to express the original mNeonGreen construct in
E. coli during the cloning procedure, likely due to overexpression
toxicity. The pVoPo-mNeonGreen construct also demonstrates
that marker gene expression can be adjusted and thereby adapted
to the conditions needed. In addition to their excitation and
emission spectra, the four fluorescent proteins also differ in photo-
stability and maturation time. This will allow researchers to
choose the optimal vector for their specific experimental needs.
On the basis of pVoPo-mCherry, we generated the transcrip-

tional reporter plasmid pVoPo-01 to determine the activity of
promoter regions of interest placed upstream of mCherry
(Fig. 2A). For translational reporters (plasmid pVoPo-02), the
50 UTR and first 10 aa of a specific target gene are fused to the
second codon of mCherry and expressed from a constitutive
promoter (Fig. 2A).
Next, we adapted the widely used tetracycline-inducible gene-

expression system (52) for use in F. nucleatum. To this end, we
replaced the constitutive promoter of pVoPo-00 with a synthetic
tetracycline-responsive promoter and added a TetR repressor gene,
thus creating plasmid pVoPo-03. For proof of concept, we
showed that expression of mCherry from this plasmid can be
tightly controlled with the nonbacteriostatic tetracycline derivative,
anhydrotetracycline (ATc). Addition of different concentrations of
ATc to cultures of F. nucleatum led to a dose-dependent and
robust expression of mCherry (Fig. 2C), whereas no signal was
detected in the absence of ATc. Of note, in the western blots,
mCherry runs as a doublet, likely representing full-length protein
and a truncated version expressed from an internal translational
start site (53).
Gene deletion represents another important tool in the arsenal

to study gene regulation in bacteria. The currently available gene
disruption (54, 55) and deletion (15,16) tools for F. nucleatum
use suicide vectors. However, these vectors require either constant
selection pressure (56, 57) or a galK(T) gene-deletion background
for efficient counterselection (15, 16), which limits their applica-
tion for long-term or complex experiments, such as animal studies.
Taking advantage of the inducible plasmid pVoPo-03, we evalu-
ated the MazF toxin as a potential counterselection marker, since
heterologous expression of this endonuclease had been shown to
be toxic in several unrelated bacteria (58–60). Similarly, in
F. nucleatum we observed a 40% reduction in viable bacteria 3 h
after mazF induction (Fig. 2D). Induced expression of MazF
caused a drastic growth delay for ∼16 h, before growth resumed
(Fig. 2E). Importantly, no recovery was observed when this experi-
ment was performed under conditions that select for plasmid
retention (SI Appendix, Fig. S1). Therefore, only bacteria that
have lost the plasmid will grow. These observations indicated the
feasibility of using inducible mazF expression as a method for
counterselection during double cross-over homologous recom-
bination, as depicted in Fig. 2F. We successfully validated this
approach by deleting the adhesin gene fadA in F. nucleatum, as
evident from the absence of fadA mRNA on a northern blot (Fig.
2G). In combination, these five plasmid-based systems developed
here provide much-needed genetic tools to accelerate functional
genomics in F. nucleatum and likely other members of the under-
studied phylum of Fusobacteriota.

The σE Regulon in F. nucleatum. To define a potential σE stress
response in F. nucleatum, we cloned the candidate fusobacterial
rpoE gene C4N14_09830 into the inducible pVoPo-03 plasmid.
We then used RNA-seq to determine the initial transcriptional
response upon induction of this gene for 30 min during mid-
exponential growth. Expression of C4N14_09830 did not affect
bacterial growth at this time point (SI Appendix, Fig. S2); in fact,

growth inhibition was observed only 2.5 h after induction. This
indicates that aberrant activation of C4N14_09830 negatively
affects cell growth only upon prolonged expression. Applying a
false-discovery rate (FDR) of ≤ 0.05, our global gene-expression
analysis identified 147 up-regulated (log2 fold-change ≥ 1) and 23
down-regulated (log2 fold-change ≤ �1) genes, as compared to
empty vector control (Fig. 3A). The down-regulated transcripts
mostly encode membrane proteins and include an ortholog of the
IM galactose transporter MglB and three similar multicistronic
operons encoding envelope proteins, such as a FadA-domain con-
taining protein, OmpA family proteins and type 5a autotransport-
ers (Dataset S1).

Analysis of the promoter regions of the up-regulated genes
revealed a common motif with a “GTCWAA” in the �10 box
and a less distinct “AAC” in the �35 box separated by an
AT-rich spacer region (Fig. 3B). This motif closely resembles the
well-established consensus σE binding sites in E. coli or Pseudomo-
nas aeruginosa (61, 62). Additionally, the 18-nt spacing between
the transcriptional start site (TSS) and the �10 box is very similar
to E. coli (SI Appendix, Fig. S3) (31). Importantly, this motif is
distinct from the previously identified σ70 binding site, in both
the �10 and �35 regions (Fig. 3B). The putative σE motif is pre-
sent in 28 transcriptional units consisting of 127 genes and
accounted for 113 of the 144 up-regulated genes (Dataset S1).
Interestingly, we observed that in 14 cases σE activation initiated
transcription of suboperons (Dataset S1), leading to an uncou-
pling of gene expression from the upstream genes of these
operons.

Besides the candidate rpoE gene itself, the two downstream
genes in its operon (Fig. 1B) were also highly up-regulated
upon induction of this putative ECF (Fig. 3A), reflecting the
established self-amplification of the σE response in E. coli,
where σE directly activates its own promoter (63).

Despite the evolutionary distance of Fusobacteriota to Proteo-
bacteria (Fig. 1A) (14), the transcriptional response described here
exhibits several similar features to the σE regulon in E. coli. This
includes, for example, up-regulation of homologous genes impor-
tant for the insertion of OMPs (bamA, skp) or lipid A biosynthesis
(lxpD) (31, 33, 64–66). The observed target gene conservation
classifies the candidate ECF protein C4N14_09830 as a σE
homolog and thus we will refer to it as σE from here on. Interest-
ingly, three genes (ftsY, secA, lepB) essential for Sec-dependent
(general secretory pathway-dependent) protein translocation across
the IM (67, 68) were induced as well; none of them had previ-
ously been linked to σE. Twenty-four genes in the transcriptional
response lack any functional prediction, including the most highly
up-regulated dicistronic operon C4N14_03280-C4N14_03285
(Fig. 3A). This raises the question of whether these genes are
involved in envelope maintenance or protein translocation as well,
or if they represent an entirely new function in the σE-mediated
stress response.

Recent studies have identified σE-activated sRNAs in several
different species (39–42, 49, 69, 70). Here, we observed a clear
increase of the levels the oxygen-induced 87-nt sRNA FoxI
upon induced expression of σE in F. nucleatum (17). This regu-
lation suggests that the fusobacterial σE response might possess
a noncoding arm, to which we will return below.

Validation of σE Target Genes Using Transcriptional Reporters.
To confirm a subset of the identified σE target genes with an
orthogonal method, we constructed five transcriptional reporters,
in which the promoter regions of these targets, including the
sRNA FoxI, drive mCherry expression. To confirm that the fuso-
bacterial σE protein controls its own transcription, we included
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the promoter of the rpoE gene. All these promoters harbor in their
�10 region a conserved cytosine shown to be critical for recogni-
tion by σE in E. coli (71) (Fig. 3C). Strikingly, a C-to-G point
mutation at this position completely abolished transcription from
these five selected fusobacterial promoters (Fig. 3D). These data
indicate that these genes depend on σE for their transcriptional
activation and support the relevance of the identified promoter
motif for recognition by σE.

Oxygen-Dependent Activation of the σE Response in F. nucleatum.
It is well established that σE is activated in different bacterial
species by various distinct stressors, such as unfolded proteins,
osmotic stress, heat shock, singlet oxygen, or oxidative stress
(20,21,29,72,73). To better understand what activates σE in
F. nucleatum, we monitored rpoE mRNA levels upon exposure
to different sources of envelope (polymyxin B; lysozyme;
bile), osmotic (NaCl), and oxidative stress (H2O2; diamide;
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Fig. 3. The σE regulon in F. nucleatum. (A) Volcano plot of the global gene-expression changes in F. nucleatum after 30 min of σE induction. Gene expression
of bacteria carrying pVoPo-03-σE is compared to cells carrying pVoPo-03 serving as empty vector control. Genes were considered significantly up-regulated
with a log2 fold-change ≥ 1 (black) and significantly down-regulated with a log2 fold-change ≤ �1 (blue) with an FDR ≤ 0.05 (dashed horizontal line). The σE

regulon (red) includes all transcriptional units that harbor the identified σE binding motif in their promoter region. (B, Upper) motif analysis via MEME (102)
for all genes significantly up-regulated upon σE induction. TSS of all up-regulated genes were manually annotated and 50 nt upstream of the identified TSSs
were used as input for MEME. The conserved �10 and �35 boxes are indicated, as well as the AT-rich spacer in between both boxes. (Lower) The previously
identified promoter motif for σ70 with an extended �10 box and a less pronounced �35 box (17). (C) Alignment of the promoter regions for selected genes
identified as part of the σE regulon. A point mutation inserted into transcriptional reporter constructs (see D) is indicated. (D) Western blot analysis for
mCherry expressed from transcriptional reporter plasmids harboring the native promoters (GTC) or a point mutation in the conserved �10 box (GTG) for
selected genes shown in C. Total proteins samples were collected during mid-exponential phase for western blot analysis. PonS staining is shown as loading
control. Representative images of three independent experiments are shown. Unspecific bands are marked by an asterisk. (E) qRT-PCR analysis for rpoE
mRNA after exposing F. nucleatum to the indicated stress conditions for 60 min. Data are normalized to the control and plotted as the average of three bio-
logical replicates with the SD. (F) Northern blot probed for the sRNA FoxI using total RNA samples extracted from F. nucleatum treated with the indicated
stress conditions for 60 min. The smaller band represents a degradation or degradation event.
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S-nitrosoglutathione [GNSO]); DNA damage (mitomycin C),
heat shock (42 °C), and oxygen exposure (Fig. 3E). Surpris-
ingly, in this anaerobe bacterium, we observed a selective σE
induction upon oxygen exposure. Importantly, the envelope-
penetrating antibiotic polymyxin B, which is a well-established
activator of σE in E. coli, did not induce rpoE in F. nucleatum,
despite the fact that polymyxin B is active against this gram-
negative species (74).
FoxI, originally reported as an oxygen-responsive sRNA, is

now found to possess a promoter that is stringently controlled
by σE (Fig. 3 C and D). Profiling FoxI expression in response
to the full panel of stressors described above, we observed an
almost selective increase in FoxI levels upon oxygen exposure
(Fig. 3F and SI Appendix, Fig. S4), with the exception of nitro-
sative oxidative stress (GNSO) that induced this sRNA as well.
Interestingly, rpoE mRNA levels did not increase after treat-
ment with GNSO, suggesting that σE might not be the only
regulator of FoxI (Fig. 3 E and F). Supporting the strong
induction of σE upon oxygen exposure, the transcripts of four
additional genes of the σE regulon showed a similar increase
after oxygen exposure in comparison to the untreated control
(SI Appendix, Fig. S5).
F. nucleatum subspecies nucleatum, used in this study, harbors

no additional ECFs. Yet, it does encode three conserved σ factors
(SI Appendix, Fig. S6A): housekeeping RpoD, a second uncate-
georized σ70-family member C4N14_05515, and a putative
homolog of SigH of the Clostridiales. The strain we used also har-
bors a rare putative σ factor (C4N14_03400) found only in some
members of Fusobacterales, Staphylococci, Clostridiaceae, and on
plasmids of Enterococcaceae. The alternative σ factor RpoN is
absent in the F. nucleatum subspecies nucleatum strain used here.
Testing a possible activation of the three conserved σ factors
under different stress conditions by using qRT-PCR, we observed
only mild expression changes upon oxygen exposure (SI Appendix,
Fig. S6B). According to our RNA-seq data, these σ factor genes

do not respond to σE either (Dataset S1), suggesting that σE is a
main factor in the response to molecular oxygen.

Global Analysis of the Oxygen Response in F. nucleatum. In
light of the specific activation of σE and FoxI by oxygen (Fig. 3 E
and F), we investigated the global activation of the σE regulon by
exposing F. nucleatum to oxygen for 20 min, followed by RNA-seq
analysis. We observed a total of 289 significantly regulated genes
(FDR ≤ 0.05) with 174 up-regulated (log2 fold-change ≥ 1) and
115 down-regulated genes (log2 fold-change ≤ �1) (Fig. 4A). The
upregulated genes included the rpoE operon and the sRNA FoxI
confirming their activation by oxygen. Nineteen additional genes
of the σE regulon identified in Fig. 3A were also up-regulated
(Fig. 4B), including the dicistronic operon C4N14_03280-
C4N14_03285. Of note, sensing of oxygen by F. nucleatum
induced differential expression of 15 transcription factors (Dataset
S2), potentially indicating a widespread response beyond σE.

The sRNA FoxI Is a Negative Regulator of the σE Response. In
previous work (17), we showed that the FoxI sRNA acted as a neg-
ative regulator of the abundant OM porin FomA. Although fomA
did not pass our cutoff for significantly regulated transcripts (Fig.
3A), manual inspection of the global RNA-seq data revealed a clear
decrease of fomA mRNA levels upon induced σE expression (log2
fold-change of �0.73). To test if FoxI might act as the negative
regulator of σE in F. nucleatum, we used our mazF-based gene
deletion tool pVoPo-04 to generate a ΔfoxI strain (Fig. 5A).
Following complementation of this strain with the inducible σE
expression plasmid, we performed a global RNA-seq analysis after
σE induction for 30 min. A comparison of down-regulated genes
in the WT and the ΔfoxI strain showed that fomA mRNA levels
were not reduced when FoxI was absent (Dataset S1). Similarly,
the ΔfoxI strain failed to down-regulate mglB after σE expression
(Fig. 5B), suggesting that the mglB mRNA might be another FoxI
target. Nonetheless, mglB was the only other mRNA to show
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altered levels in the ΔfoxI background, indicating that other targets
of FoxI might be primarily regulated on the level of translation.
Furthermore, additional σE-dependent sRNAs that compensate for
FoxI function might be present, similar to what is seen in E. coli
(38) and V. cholerae (40).

Posttranscriptional Repression of Envelope Protein MglB
by FoxI. An in silico prediction of RNA interactions indi-
cated a potential binding site of the FoxI sRNA across the
Shine-Dalgarno sequence of mglB (Fig. 5C), expected to pre-
vent MglB synthesis upon binding of the sRNA. To validate
the mglB mRNA as a FoxI target, we constructed a translational
reporter based on plasmid pVoPo-02, expressing the 50 UTR

and the first 10 aa of mglB as a fusion to mCherry from a con-
stitutive promoter. Subsequently, we added expression cassettes
for FoxI or a FoxI mutant that carries mutations in its seed
region (FoxI-3C) (Fig. 5D). Western blot analysis showed a
strong reduction of the MglB::mCherry protein in the presence
of FoxI compared to the control (Fig. 5E and SI Appendix, Fig.
S7A), similarly to a mCherry fusion of the known target fomA.
We further confirmed this effect by quantification of the
fluorescence signal of the mCherry fusions via flow cytometry
(Fig. 5F). These interactions are likely mediated via direct base-
pairing since coexpression of the seed region mutant FoxI-3C
did not down-regulate these translational reporters (Fig. 5 E
and F). No regulation was observed with a C4N14_09375::
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Fig. 5. The sRNA FoxI as a negative regulator of the σE response. (A) Northern blot detection of FoxI using total RNA samples extracted from F. nucleatum
WT or ΔfoxI generated via the deletion system pVoPo-04. The 5S rRNA served as loading control. (B) Differential gene expression upon σE induction in WT
F. nucleatum or in the FoxI deletion strain (ΔfoxI). The heatmap displays log2 fold-changes of genes that are significantly down-regulated in either back-
ground (log2 fold-change ≤ �1; FDR ≤ 0.05). mglB is marked in bold as the only gene that is not down-regulated in the ΔfoxI background upon σE induction.
Members of the three multicistronic operons started by FadA-domain containing genes are marked in purple. (C) Schematic representation of IntaRNA
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region mutant FoxI-3C. (E) Representative western blots for each gene tested in the translational reporter system. C4N14_09375 served as control gene as it
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constructs as shown in E. The average of three biological replicates relative to that of the control (control) is displayed together with the SD.
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mCherry fusion, chosen as a negative control since the
C4N14_09375 mRNA does not harbor a predicted FoxI
binding site. Combined, the results reveal mglB as a second
target of the sRNA FoxI and highlight the application of our
translational fusion system to validate sRNA-mediated mRNA
regulation in F. nucleatum.

Global Transcriptome Changes Induced by FoxI Expression
and sRNA Target Identification. Induced overexpression of
sRNAs is a powerful approach to capture the targetome of sRNAs
(42, 75, 76), which includes successful experimental target searches
for σE-dependent sRNAs in Proteobacteria (37, 40, 42). Here, we
took a similar approach and pulse-expressed FoxI, FoxI-3C, as well
as FoxI-C4A, a mutant that carries only a single point mutation in
the seed region, in the F. nucleatum ΔfoxI strain for 20 min. Of
note, under these experimental conditions, FoxI did not affect
bacterial growth (SI Appendix, Fig. S2). RNA-seq identified 30
down-regulated mRNAs as potential FoxI targets (�0.5 ≤ log2
fold-change ≥ 0.5; FDR ≤ 0.5); for most of these, repression was
lost when expressing the seed region mutants FoxI-3C and FoxI-
C4A (Fig. 6A and Dataset S3). The strongest negative regulation
was observed for the C4N14_09375-C4N14_09395 operon of
unknown function (Fig. 6A). However, this operon was also down-
regulated by expression of the FoxI seed mutants, arguing against it
being a direct target of FoxI. More importantly, we observed
down-regulation of the FoxI target mglB and of mglA, the gene

immediately downstream of mglB in the mglBAC operon. Curiously,
pulse-expression of FoxI-C4A also reduced the mglB transcript levels
but did not affect fomA mRNA (Fig. 6A), possibly indicating a
more robust target interaction of FoxI with mglB in comparison to
fomA (SI Appendix, Fig. S8). In addition, several genes of the σE reg-
ulon, including the σE operon itself, were down-regulated upon
expression of a WT copy of FoxI, but not the seed mutants (Fig. 6A,
purple). Interestingly, in silico target predictions for FoxI only
revealed poor binding sites for these genes (Dataset S4), suggesting
that some of them are regulated as an indirect consequence of
FoxI-mediated relief of basal activation of σE. Overall, our analysis
supports the identification of mglB as a direct target of the sRNA.
Nevertheless, the moderate changes in RNA levels upon FoxI
expression suggests that this sRNA might act primarily on the trans-
lational level, similar to the sRNA Spot 42 in E. coli, which blocks
translation within the galETKM mRNA without affecting mRNA
levels (77).

Evidence for Multitarget Regulation by the FoxI sRNA. In
E. coli, the σE-dependent sRNAs MicA, RybB, and MicL repress
the mRNAs of several OMPs as well as the abundant Lpp protein
(37, 38, 42). Since unfolded OMPs and Lpp are potent triggers
of σE, the sRNA-mediated translational inhibition results in a neg-
ative feedback-loop within the σE response. Interestingly, we
observed repression for several OMPs upon σE induction in
F. nucleatum (Fig. 3) and in silico target prediction indicates
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promising binding sites for FoxI for some of these OMPs (Fig. 6B
and Dataset S3). We therefore hypothesized that FoxI might
block the synthesis of multiple OMPs without directly affecting
their RNA levels. To test this, we applied our translational
reporter system to five additional candidate target mRNAs,
whose levels decreased upon σE induction: fadA2, fadA3, fvcD,
C4N14_00275, and C4N14_02035. In all of these cases we
observed a strong translational repression upon constitutive FoxI
expression, but not upon expression of the FoxI-3C mutant
measured by flow cytometry (Fig. 6C) and western blot analysis
(Fig. 6D and SI Appendix, Fig. S7B). Thus, we have obtained
evidence for FoxI-mediated posttranscriptional repression of at
least seven mRNAs of envelope proteins, lending further support
to a model in which the conserved FoxI sRNA acts as the global
noncoding arm of the fusobacterial σE response (Fig. 6E).

Discussion

Despite the growing appreciation of their importance for health
and disease, the vast majority of the >4,500 bacterial species that
constitute the human microbiota are currently molecular terra
incognita (78). Research in this area is hampered by the fact that
genetic modification of these bacteria is notoriously difficult and
thus we lack the ability to genetically dissect their physiology and
molecular principles of gene regulation. F. nucleatum has emerged
as a new paradigm for such microbes and its ability to colonize
distal body sites has increasingly been recognized as a medical
problem (2). Here, we present a broad suite of genetic tools for
F. nucleatum and apply these to uncover a conserved stress
response mediated by the ECF σE in this bacterium, which was
triggered by oxygen instead of general envelope perturbation.
Our present knowledge of the architecture of the σE response

primarily stems from studies in a few γ-proteobacterial species
(30), were it was shown to be a central player in combatting enve-
lope stress. σE up-regulates factors that ensure proper folding and
insertion of OMPs or lipoproteins and thereby helps to maintain
and shape the bacterial envelope. Since F. nucleatum exhibits a
very large phylogenetic distance to these proteobacterial species
(14), it was surprising to discover in F. nucleatum a σE regulon of
similar architecture to E. coli (31, 38): many of the genes con-
trolled by σE possess envelope-related functions, and there is a
noncoding arm (i.e., the FoxI sRNA), many of whose target
mRNAs also encode proteins with envelope-related functions.
Strikingly, however, σE itself is not induced by known triggers of
envelope stress but by exposure to oxygen. While the molecular
mechanism of oxygen-mediated activation remains to be eluci-
dated, it is tempting to speculate that σE in this early-branching
anaerobic bacterium serves the role of an environmental sensor,
while sharing the envelope remodeling function with E. coli σE.
As to specific σE-controlled genes, skp (79) and bamA (66)

encode proteins that work cooperatively to ensure proper insertion
of unfolded OMPs into the OM. The protein encoded by lpxD,
on the other hand, is integral for liposaccharide biosynthesis (80),
another important component of the envelope of gram-negative
bacteria. We also identified a consensus σE-binding site, consisting
of the conserved �10 and �35 boxes, similar to E. coli and
P. aeruginosa (31, 62). In light of the evolutionary distance
between Fusobacteriota and other bacterial phyla (14), this conser-
vation suggests that the σE response represents a very deeply
rooted regulon that maintains bacterial envelope homeostasis. The
σE regulon in F. nucleatum also includes genes encoding three
integral members of the Sec-dependent protein translocation path-
way: ftsY, secA, and lepB. The FtsY and SecA proteins facilitate
the translocation process, in a cotranslational or posttranslational

manner, respectively. The signal peptidase LepB releases translo-
cated proteins into the periplasm (81). Interestingly, these proteins
have not been found to be under σE control in other bacteria, but
increased translocation capacity would be expected to act in syn-
ergy with enhanced OMP insertion. After all, the Sec-pathway is
the major transport mechanism for OMPs to the periplasm (81,
82). Although we still lack a functional understanding of the 117
genes that are part of the σE regulon in F. nucleatum, it is clear
that at least part of the physiological role of σE in this anaerobic
bacterium is envelope maintenance, reflecting a core function for
this ECF.

The link between σE and the response to molecular oxygen
is supported by the common activation of 23 genes upon σE
induction and oxygen exposure (Fig. 4). An interesting example
is activation of the dicistronic operon ccdA-msrAB, which is
paralogues to an operon previously linked to the defense against
hydrogen peroxide in F. nucleatum (Dataset S1) (13). Thus, the
σE regulon in F. nucleatum might serve a dual function by neu-
tralizing oxygen and by modulating the bacterial envelope, act-
ing in synergy in this anaerobe bacterium. However, based on
the differential expression of 15 transcription factors, it is clear
that σE is not the only mediator of an oxygen-induced
response. Therefore, it will be important to understand how
this anaerobe senses oxygen and transmits the signal to activate
σE. As to the actual activation mechanism, we note that
F. nucleatum has no homolog of the protease DegS, which
senses unfolded OMPs in E. coli (83). DegS initiates a proteo-
lytic cascade that leads to the degradation of the anti-σ factor
and release of σE (84, 85). The lack of DegS might imply that
F. nucleatum uses alternative ways of perceiving and relaying
stress signals that lead to σE activation. These might involve
phosphorylation as shown for the Vibrio parahaemolyticus σ fac-
tor EcfP (27) or a TCS, as seen during activation of SigE in
Streptomyces coelicolor (28). Interestingly, the fusobacterial TCS
ModRS was recently shown to be involved in the response to
H2O2 (13). However, ModRS is not activated by oxygen
(Dataset S3). Alternatively, the anti-σ factor could be directly
involved in sensing oxygen and subsequently trigger σE activa-
tion. Such a mechanism has been shown for singlet oxygen in
Rhodobacter sphaeroides, where the anti-σ factor ChrR directly
responds to the reactive oxygen species and releases σE (21, 24,
86). Another possibility is activation via cofactors, such as
[4Fe-S]2+ or heme, which present widespread oxygen-sensing
mechanisms in bacteria (87).

One of the most striking findings of the σE response of
F. nucleatum is the conservation of a noncoding repressor arm,
constituted by the sRNA FoxI, in an organism that lacks
known sRNA chaperones. Although sRNAs are frequently part
of regulatory circuits, there is only one example of broad con-
servation in different phyla: the sRNAs controlled by the iron
uptake regulator Fur (88). Fur is present in gram-positive and
gram-negative bacteria because iron is essential for all bacteria
(89). The Fur-dependent sRNAs, such as RyhB in E. coli (90),
expand Fur’s transcriptional repressor function upon iron star-
vation (91, 92). Similarly, sRNAs form the repressive arm of
the σE response and play an important role in downregulating
envelope proteins (38). However, evidence for a conservation
of this function has come from the single phylum of Proteobac-
teria (i.e., from E. coli and Salmonella) (39, 42, 49, 69),
P. aeruginosa (70), and Vibrio cholerae (40, 41). Here, we find
that the sRNA FoxI is expressed in a σE-dependent fashion and
represses the translation of the OM porin FomA, the MglBAC
galactose-uptake system and leading genes of operons that
encode type 5a autotransporters, another class of abundant
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fusobacterial OMPs (12, 94–96). Our observations suggest that
FoxI reduces translation of membrane proteins, thereby limiting
the burden on the Sec- and BAM-dependent membrane protein
insertion pathways. This is likely also reflected in the observation
that expression of FoxI in the ΔfoxI background decreases expres-
sion of the rpoE and C4N14_03280-C4N14_03285 operons
(Fig. 6A), which might indicate a decreased activation of the basal
σE stress response. FoxI and σE thus work synergistically to
maintain envelope homeostasis and integrity in F. nucleatum
(Fig. 6E), mirroring the coding arm and noncoding arm
principle established by σE-dependent sRNAs in E. coli (38).
Nevertheless, the fact that we did not observe a strict depen-
dence of σE-repressed targets on FoxI suggests that there
could be additional σE-dependent sRNAs. This has been seen
in E. coli (MicA, RybB) (38) or V. cholerae (VrrA, MicV) (40),
where two sRNAs share common targets and compensate for
another.
As mentioned, all σE-dependent sRNAs studied thus far rely

on the RNA chaperone Hfq for their activity (42, 46, 49), but
F. nucleatum lacks known sRNA chaperones. It nevertheless
remains possible that a yet unidentified RNA-binding protein
(RBP) plays a role in sRNA-mediated regulation in F. nucleatum.
To facilitate the discovery of such RBPs, proteins interacting with
FoxI could be identified using the sRNA as bait for pulldown
experiments (76). A promising candidate for this role might be
the RBP KhpB, which has been found to bind RNA in Streptococ-
cus pneumonia and Clostridium difficile (97–99), and for which
F. nucleatum harbors a homolog.
Overall, our study highlights the conservation of the regulatory

principle of the bacterial σE response, despite the evolutionary
distance of Fusobacteria to other bacterial clades, and provides
much-needed tools to dissect F. nucleatum gene function in order
to accelerate research into this clinically relevant bacterium.

Materials and Methods

Strains and Growth Conditions. All oligonucleotides, plasmids, or strains
used in the present study can be found in Dataset S5. F. nucleatum subspecies
nucleatum ATCC 23726 was acquired from the American Type Culture Collection
(ATCC). F. nucleatum was routinely grown at 37 °C in 80:10:10 (N2:H2:CO2) on
2% agar BHI-C plates (brain–heart infusion [BHI], 1% [w:v] yeast extract,
1% [w:v] glucose, 5μgmL�1 of hemin; 1% [v:v] fetal bovine serum). For liquid
growth Columbia broth medium was utilized. For selecting F. nucleatum carrying
a plasmid or for selection steps during gene deletion, BHI-C agar plates were
supplemented with 5 μg mL�1 thiamphenicol and liquid cultures with 2.5 μg
mL�1 of the antibiotic. For details regarding the transformation, see SI
Appendix, Material and Methods. All solutions or plates were always prereduced
overnight prior to use in the anaerobic chamber to ensure the absence of
entrapped oxygen. For growing F. nucleatum, precultures were prepared 24 h
prior to inoculating the working cultures (1:50 dilution).

Construction of pVoPo and Related Plasmids. Comprehensive descriptions
for the construction of the different constructs used in this study are provided in
SI Appendix, Material and Methods.

Evaluation of MazF Expression for Counterselection. To create a mazF-
containing plasmid that allows replication in F. nucleatum, the ORIFN was
inserted into the PvuI and NotI site of pVoPo-02 generating pVoPo-01-mazF
(p.mazF). Subsequently, bacteria carrying p.mazF or the control vector pVoPo-01
(p.empty) were used to prepare precultures in biological triplicates. For analysis
of bacterial survival, the cells were grown to mid-exponential phase and exposed
to either 100 ng mL�1 ATc or left untreated. Serial dilutions were plated at
0 min, 30 min, or 3 h after treatment. For this, 10 μL were spotted in technical
triplicates on BHI-C plates. Three days later, all technical replicates for the appro-
priate dilutions were counted and averaged for each biological replicate. The
average and SD are shown in Fig. 2D. For analysis of growth, precultures for

three replicates were diluted as described above either in the presence of
100 ng mL�1 ATc or left untreated. Growth was monitored for 24 h using a plate
reader and reported as the average of three biological replicates for each group
in Fig. 2D.

Generating Clean Deletion Mutant Using pVoPo-04 System. To allow
homologous recombination, 1-kB flanking up- and downstream of the target
gene were amplified from genomic DNA of F. nucleatum and assembled in
pVoPo-04 as described above. Transformation was carried out as described above
and successful integration events were restreaked on fresh BHI-C plates contain-
ing thiamphenicol. Colonies that grew had successfully integrated the suicide
vector into the genome (marked as first recombination). A single colony was
used to inoculate an overnight culture in Columbia broth without selection
pressure to allow the second recombination step to take place. The next day, the
culture was diluted 1:50 into media containing 100 ng mL�1 ATc. This allows
for the counterselection due to the toxic expression of the toxin MazF and only
bacteria having lost the plasmid can grow. After 4 h, serial dilutions were plated
on BHI-C plates. The loss of the plasmid was verified via restreaking resulting
colonies on BHI-C and BHI-C–containing thiamphenicol plates. Only colonies
growing on BHI-C but not the plates with antibiotic were used for further valida-
tion via PCR to check for the loss of the target gene or reversion to the WT.

Northern and Western Blot Detection. For further experimental details on
the northern and western blots, see SI Appendix, Material and Methods.

Sample Collection for RNA-Seq of σE Expression. Three biological replicates
for each group (WT: p.empty; p.rpoE and ΔfoxI: p.empty; p.rpoE) were grown to
mid-exponential phase. All samples were induced with 100 ng mL�1 of ATc for
30 min. Samples were fixed by adding STOP Mix (95% [v:v] EtOH; 5% [v:v]
phenol) and then snap-frozen in liquid nitrogen. Samples were stored at
�80 °C until further processing. The Hot Phenol was used for RNA extraction as
reported previously (17).

Analysis of Fluorescent Protein Expression by Confocal Microscopy.

F. nucleatum carrying the individual pVoPo-FP plasmids were grown to mid-
exponential phase. All of the following steps were conducted outside the anaero-
bic chamber. One milliliter of each culture was spun down and washed once in
PBS. Next, the bacteria were fixed in 4% (w/V) PFA for 20 min at 4 °C. Afterward,
the cells were washed once with PBS prior to overnight incubation in PBS at
4 °C. This step ensures proper maturation of the fluorescent proteins. The next
day, the samples were imaged on ibdi chambered coverslips performed on a
Leica SP5 laser scanning confocal microscope (Leica Microsystems) acquiring the
fluorescence signal at the indicated wave lengths.

Exposure of F. nucleatum to Different Stress Conditions. Three biological
replicates of F. nucleatum were grown to mid-exponential phase. The cultures
were split into 3-mL aliquots and treated by adding a 1 mL of a 4× solution in
Columbia broth of the following conditions for 60 min: polymyxin B (400 ng
mL�1), lysozyme (125 μg mL�1), NaCl (600 mM), bile (0.05% (w/V), H2O2
(400 μM), diamide (125 μM), GNSO (250 μM), mitomycin C (625 ng mL�1).
The final concentrations used are given. For the heat shock, the samples were
placed in an incubator at 42 °C for the duration of the treatment. Regarding the
oxygen exposure, the samples were poured into a Petri dish and placed in an
incubator at 37 °C outside of the anaerobic chamber for the duration of the treat-
ment. One milliliter of Columbia broth was added as a control to untreated to
the control samples. After 60 min, samples were fixed through the addition of
STOP mix and RNA extracted via the Hot Phenol protocol, as mentioned above.

Gene-Expression Analysis via qRT-PCR. One microgram of DNase-digested
RNA was used as input to generate cDNA using the M-MLV reverse transcriptase
(ThermoFisher Scientific) and random hexamer primers following the manufac-
turer’s instructions. The equivalent of 10 ng RNA was used for qPCR analysis
using gene specific primers (Dataset S5). For this, the Takyon Master Mix was
used according to the manufacturer’s protocol. The relative fold-changes to the
control were calculated based upon the 2�ΔΔCt method (100). The 5S rRNA was
used as reference gene.
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Sample Collection and Analysis for Translation Fusion Experiments by
Western Blot. F. nucleatum carrying the individual translational fusion alone,
or in combination with FoxI/FoxI-3C was grown to mid-exponential phase and
cells were quickly spun down and snap-frozen in liquid nitrogen. Thawed cells
were resuspended in protein loading buffer and 0.2 OD600 nm units were used
for western blot analysis. Quantification of the fusion products signal in the west-
ern blot was carried out using ImageJ (101). Three biological replicates were
analyzed in each case and the average together with the SD reported.

Sample Collection and Analysis for Translation Fusion Experiments by
Flow Cytometry. F. nucleatum carrying the individual translational fusion
alone, or in combination with FoxI/FoxI-3C, was grown to mid-exponential phase
and cells spun down for 3 min at 4,000 × g. This and all following steps were
conducted outside of the anaerobic chamber. After removing the supernatant,
the bacteria were fixated in 4% (w/V) PFA for 20 min at 4 °C. Next, the cells were
washed with 1× PBS before incubating them with DAPI in PBS (100 ng mL�1)
for 5 min at room temperature. The bacteria were washed once more with PBS
and resuspended in PBS. To ensure full maturation of the fluorescent protein,
the samples were left overnight at 4 °C. The next day, the fluorescence intensity
was measured by flow cytometry at 615 to 620 nm for 50,000 cells of each sam-
ple determined by a DAPI+ signal.

Sample Collection and Analysis for Transcriptional Reporter Experiments.

F. nucleatum carrying the individual transcriptional reporters was grown to mid-
exponential phase. At this time, samples were collected and snap-frozen. No
quantification was carried out as no signal could be detected for samples with
the point mutation.

Sample Collection for RNA-Seq of sRNA Expression. Three biological repli-
cates for each group (ΔfoxI: p.empty; FoxI; FoxI-3C; FoxI-C4A) were grown to
mid-exponential phase. All samples were induced with 100 ng mL�1 of ATc for
20 min. Samples were treated as described above prior to performing RNA
extraction according to the Hot Phenol protocol.

Sample Collection for RNA-Seq upon Oxygen and Polymyxin B Exposure.

Three biological replicates of WT F. nucleatum were grown to mid-exponential
growth phase. The cultures were exposed either to atmospheric oxygen concen-
trations outside of the anaerobic chamber (maintaining 37 °C) or treated with
400 ng mL�1 of polymyxin B for 20 min. Untreated samples were used as con-
trol. RNA extraction was performed according to the Hot Phenol protocol.

Analysis of RNA-Seq Data. A detailed description for the analysis of all RNA-
seq data can be found in the SI Appendix, Material and Methods.

Promoter Analysis. For the identification of promoter motif, each significantly
up-regulated gene resulting from the σE expression was grouped into transcrip-
tional units (Fig. 3A). Based on our previous data for the TSS (17), we then
extracted 50 nt upstream of each TSS for the individual transcriptional unit. Inter-
nal as well as secondary start sites of genes where we observed strong RNA-seq
up-regulation were treated the same. These nucleotide sequences were used as
input for analysis via MEME (v4.12.0) (102).

Data, Materials, and Software Availability. The data reported in this paper
have been deposited in the Gene Expression Omnibus (GEO) database, https://
www.ncbi.nlm.nih.gov/geo (accession no. GSE192339) (103). Plasmids pVoPo-
GFP—pVoPo-mNG (104–107,) (with the individual fluorescence proteins) and
pVoPo-01—pVoPo-04 (108–111) have been deposited with Addgene (Dataset S5).
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