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Objective. Ensuring privacy of research subjects when epidemiologic data are shared with outside collaborators involves masking
(modifying) the data, but overmasking can compromise utility (analysis potential). Methods of statistical disclosure control for
protecting privacy may be impractical for individual researchers involved in small-scale collaborations. Methods. We investigated a
simple approach based on measures of disclosure risk and analytical utility that are straightforward for epidemiologic researchers
to derive. The method is illustrated using data from the Japanese Atomic-bomb Survivor population. Results. Masking by modest
rounding did not adequately enhance security but rounding to remove several digits of relative accuracy effectively reduced the
risk of identification without substantially reducing utility. Grouping or adding random noise led to noticeable bias. Conclusions.
When sharing epidemiologic data, it is recommended that masking be performed using rounding. Specific treatment should be

determined separately in individual situations after consideration of the disclosure risks and analysis needs.

1. Introduction

Scientific collaboration often necessitates sharing data with
researchers outside the organization that collects and main-
tains the data. Sharing microdata—records of individual
information on a relatively small number of subjects—
carries a risk of disclosure (determining the identity of one
or more individuals) and, if such disclosure occurs, subjects
may be harmed through access to sensitive information
contained in the data [1-4]. Subjects who supply data are
understandably concerned about the possibility of their
private data being disclosed. Also, despite contracts and tech-
nical implementations to ensure that data remain confiden-
tial, researchers themselves may feel uneasy about releasing
private data to outside laboratories. Therefore, it makes
sense to take additional steps to ease such concerns. In the
United States, one approach is the Federal Certificate of
Confidentiality [3]; however, national laws may be of little
use when data are shared in international collaborations.

Confidentiality of research data remains an issue despite
routine application of methods for protecting privacy;
indeed, it has recently been shown that an individual can
be identified as contributing or not to publicly available
summary data if one has access to certain components of
the individual’s data [5]. Institutions have legal and ethical
responsibilities to ensure that research subjects’ privacy is
protected [6, 7]. Direct identifiers (names, addresses, birth
dates, etc. that have virtually one-to-one correspondence
with individuals) are routinely removed and the microdata
are anonymized by deleting numbers used to link to identify-
ing information in the source database. This alone, however,
does not ensure protection of privacy; the data values
themselves may possess some degree of subject specificity
or uniqueness that could in principle be used to identify
individual subjects [8-10]. Risk of identification via the
data values can be reduced by masking [11], one of several
techniques useful for “statistical disclosure limitation” or


mailto:jcologne@rerf.jp

“statistical disclosure control” [11-13], the goal of which is to
render data safe against attackers/intruders/snoopers while
retaining as much information as possible to allow effective
statistical analysis [1]. A great deal of work has been done
in this area, resulting in methods that allow data managers
to consider the balance between disclosure risk (security)
and analytical integrity (utility) [14], but the ideal of a data
set safe against intrusion yet retaining its full richness for
statistical analysis is elusive [13]. Nevertheless, there are few
documented instances of successful attacks breaching the
confidentiality of research subjects [1].

Much of the data disclosure literature speaks specifically
of information organizations (or “data stewardship organi-
zations” [1]), data managers, and clients. In such settings
there will typically be substantial resources devoted to data
disclosure limitation. However, we are concerned with data
to be shared among public health and epidemiologic research
collaborators as opposed to data considered a commodity to
be made public. In the collaborative setting—where collab-
orators have a right to expect to be able to obtain essentially
the same analytical results that would be obtained using
the original data within the institution that maintains those
data—the trade-off between security and utility renders it
inevitable that the disseminating institution receives reason-
able assurances in writing as to use of the data rather than
relying solely on data masking [15]; this indeed has been
demonstrated to be useful [1]. Even without such assurances,
identification of research subjects via data values is unlikely
[16], but there may be a perceived risk of identification
by research subjects, who are concerned about psychosocial
and financial risks resulting from disclosure of personal
health or genetic information [17]. Some degree of masking
and assessment of identifiability risk is therefore necessary:
not so much as a defense against attack, but as a means
of providing reasonable assurances that satisty stakeholders
(1].

There seems to be little discussion of data disclosure con-
trol in the epidemiologic literature and a dearth of practical
methods for dealing with it that are accessible to epidemio-
logic researchers. Existing methods of disclosure control may
be difficult for epidemiologic investigators to use and, unlike
public release of data, the effort may not be justified by the
limited amount of data or restricted sphere of dissemination
(not to mention the inherently smaller risk) involved in
collaborative data sharing. We therefore investigated simple
steps to address disclosure concerns, with a view towards
the impact on analytic utility of the masked data. We also
illustrate a graphical approach to characterizing the trade-
off between disclosure risk and analysis potential, which is
analogous to the risk-utility (R-U) plot (also referred to
as a “map”) known in the data disclosure literature [12,
18], except that it may be generated using quantities easily
derived from standard methods of risk analysis and is trans-
formed to mimic measures familiar to epidemiologists. The
approach is illustrated using a small set of microdata
constructed from the Japanese Atomic-bomb Survivor pop-
ulation [19].
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2. Materials and Methods

Developing a data-masking strategy involves sequentially
answering three questions: (1) is there a risk of identifying
individuals, and if so, how great is it? (2) If the risk of iden-
tification is unacceptable, can it be reduced by masking the
data? (3) If data are masked, what impact does the masking
have on the results of analyses? If the impact of masking on
analysis is unacceptable, it may be necessary to reevaluate
the acceptable degree of identification risk, resulting in the
need to seek a compromise between disclosure risk and
informativeness (utility) of the data.

2.1. Anonymity. We consider first the risk of identifying indi-
viduals and whether masking is required. Although deletion
of identifying keys is referred to as anonymization, we use the
term anonymity loosely to imply that confidentiality is main-
tained. Also, the term “keys” can mean either the elements
used to link records in a relational database or the variables
that are shared in common between any two datasets.

2.1.1. Identification. Identification could be absolute, based
on linkage to identifying keys (names, etc.) in the insti-
tutional database, or predictive (presumed), based only on
data values in the distributed dataset (using keys available
to the potential intruder, such as gender, and region). With
appropriate access control the institutional database should
be secure from outside intrusion, and in-house researchers
should not generally need to access identifying information
for purposes of analysis. Source data may be separated
into resource data, to which linkage and access are highly
restricted, and research data, which are anonymized by
removing identifying information prior to use in-house.
Absolute identification is therefore not considered a plausible
scenario.

In the case of distributed data, linkage to outside sources
of information might in principle facilitate identification of
individuals in a predictive sense (with some degree of uncer-
tainty) based on the values in the dataset. Coarsely stratified
pieces of information that are not in themselves linkable
can, when combined, increase the possibility of identification
[20]. Although the ability of researchers to perform such
linkage may be overestimated [16], research subjects who
perceive possible harm to themselves through the threat of
lost anonymity may be unwilling to participate [1, 4].

2.1.2. Identifiability Risk. Risk of identification in an anon-
ymized dataset may be defined as the probability that an
individual’s identity is correctly inferred conditional on the
masked data and other prior information available to the
intruder. Because it is difficult to speculate what information
might be used by an intruder to learn the identities of
subjects (the “disclosure attack scenario” [13]), we used as a
proxy to this scenario matching records in the distribution
dataset to records in the source data, which depends on
uniqueness of an individual’s data [1]; a perfect link would
be the epitome of disclosure, as it would reveal absolutely the
identity of an individual in the microdata. We compared data
values in the distribution dataset to the source database to
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determine whether an individual was theoretically identifi-
able via his or her data (“per-record measure of risk” [21]).
This is purely an academic exercise that represents a worst-
case scenario unlikely to be realized with typical access-
control safeguards. The results will therefore overestimate
actual risk [1].

An aggregate measure of risk for the entire dataset can
be derived by considering uniqueness of records [22]. If
only one record in the source database matches that of an
individual in the distribution dataset, that individual is
theoretically identifiable with probability one. Let #n; be the
number of such persons in the distribution data. If two rec-
ords in the source database exactly match that of an individ-
ual in the distribution data, then the probability of correctly
identifying that individual is 0.5 (1 out of 2); let n, be the
number of such individuals. Continuing in this way, define
an identifiability risk score as

identifiability risk score
o om X 1+my x(1/2) +n3 X (1/3) + ny X (1/4) + - - -
total number of individuals in the distributed dataset (N)
S i
=~

(1)

This is similar to a measure of identification risk described
elsewhere [21], except that it is an aggregate measure for
the entire microdataset obtained as a weighted average of
individual uniqueness measures (the uniqueness measure
being the probability 1/i and the weight being the number
of individuals n; having uniqueness 1/i, i = 1,...,k). The
value k is simply the largest value of i that occurs in a given
application. The goal is to reduce the overall identifiability
risk by reducing, through data masking, the numbers of
distributed data records that have nearly unique matches
in the source data, that is, reduce the magnitudes of the n;
at small values of 7, which have a high probability (1/i) of
identification. We define an anonymity score as

anonymity score = 1 — identifiability risk score, (2)

where 0 < anonymity score < 1, with 0 representing unam-
biguous identification of all individuals and 1 representing
the case that no individuals are identified.

The aforementioned definition of overall risk is slightly
different from a method that counts number of individuals in
the microdata who have the same values of certain variables
(thereby reducing their uniqueness) [13]. However, that per-
spective stems from the scenario where a potential intruder
has a particular individual in mind and desires to know if that
individual is present in the microdata; our perspective is that
of identifying any individual in the microdata, equivalent
to what has been described as someone attempting to show
that the system can be breached [13]. Our aggregate score is
a weighted measure, which reflects varying degrees of risk,
unlike the so-called “rule of three” that treats occurrences of
i=1or2 (i < 3) as unsafe but weights them equally [13].

2.2. Masking. Numerous approaches to data masking are
available [23]. We consider two broad classes that do not
involve deletion or subsampling of subjects: (1) grouping and
(2) randomization (adding random noise to data values).
Although both classes are “perturbative” [13], we distinguish
them because they pose different statistical challenges in
terms of the random error induced. Grouping (or coarsen-
ing), which includes stratification, rounding, and truncation,
is deterministic and results in errors of the so-called “Berk-
son” type that do not generally induce bias. Randomization
[11] is stochastic and induces classical covariate-error bias
[24]. Furthermore, even though random noise may have
mean zero, it does not preserve variances or correlation
coefficients [1].

2.2.1. Stratification. Epidemiologic data are often stratified
on age, calendar year, and geographic region. Time variables
are typically grouped into five-year intervals. Exposure may
also be expressed using intervals. Stratified microdata would
contain individual records having stratum indicators rather
than actual values of covariates. Individual outcome indica-
tors could be grouped into broad disease or cause-of-death
categories.

2.2.2. Rounding. Rounding to relative precision involves
using a fixed number of significant digits. Rounding to ab-
solute precision involves rounding all data to the same
decimal place and results in greater loss of information with
values closer to zero. If exposure values range over several
orders of magnitude or display a skewed distribution, relative
precision rounding might be a more natural way of masking
because it preserves approximately the same amount of
statistical precision regardless of the level of exposure. Birth
date and age could be rounded to the nearest tenth of a
year (approximately the same as year plus month) or to the
nearest integer year.

2.2.3. Truncation. Truncation results in values biased to-
wards zero. Age and birth year are frequently truncated by
dropping decimal fractions (ignoring month and day). Dates
can be truncated by removing the day value (sometimes
day is replaced by 15). Truncating exposure data could pose
serious repercussions for dose-response analyses because it
introduces systematic bias.

2.3. Analysis Potential. Analysis potential refers to how faith-
fully masked data can replicate results that would be obtained
using the source data. A collaborator would have little in-
terest in data that do not produce essentially the same results
as an analysis of the original data. An estimated parameter
(B) can be evaluated in terms of its precision and bias. Bias
can result from, for example, covariate error; precision plays
a role in the statistical significance and variability (width
of confidence intervals) of risk estimates. We examine two
types of masking: (1) grouping, rounding, or randomizing a
continuous exposure variable and (2) deleting or combining
multiple categorical variables. For a continuous exposure, we
assess analysis potential (utility) via the bias and/or loss of



precision in the risk estimate from a simple dose-response
analysis with various degrees of masking. A statistical meas-
ure that incorporates both bias and variance is the mean
squared error (MSE = variance + bias?); the reciprocal of
MSE has been used as a measure of utility by others [18].
Further aspects of analysis, such as the dose-response shape
or effect modification, are not easily incorporated into a
general approach to quantifying analysis potential and so
are not considered here. Another measure of utility is the
degree of overlap between confidence intervals obtained with
original and masked data [12]. We have not pursued use
of that measure because we find it difficult to interpret
quantitatively.
We define an analysis-potential score as

analysis-potential score

MSE(B.) — MSE(B)  MSE(B) (3)
- MSE (B, ~ MSE(Bu)’

where f,, is the risk estimate obtained using masked data
and f3 is the correct risk estimate obtained using nonmasked
data. This score generally takes values between 0 and 1, with 1
representing no adverse impact on analysis potential. It could
conceivably take on values greater than 1 because estimates
obtained using biased regression methods (such as ridge
regression) can have reduced variance.

We summarize the trade-off between anonymity and
analysis potential by plotting security (anonymity score; (2))
versus utility (analysis-potential score; (3)), as shown in
Figure 1. This plot is similar to a risk-utility plot (e.g., Karr
etal. [12]), except that we plot security on the ordinate rather
than risk, and the scales range from 0 to 1, providing some
indication of where the security and utility lie relative to
the ideal case of no risk and no loss of utility (analogous
to an ROC curve [25]). Multiple such plots may arise from
considering multiple disclosure attack scenarios.

2.4. Illustration. We used data from the Adult Health Study
(AHS), a subset of about 23,000 persons who have partic-
ipated in clinical examinations and are selected from the
larger follow-up study of 120,321 Japanese Atomic-bomb
Survivors and controls (the Life Span Study cohort) [26—
28]. We created microdata on 64 cases of stomach cancer
with radiation dose to the stomach (Gray), city, gender, age
at exposure (known precisely from birth date and date of
bombing), and age at diagnosis (known precisely from birth
date and date of diagnosis). Radiation doses ranged from 0
to 2.74 Gray, with mean 0.61 (SD 0.74), median 0.31, and
interquartile range 0.0-0.88. These doses were compared to
three subsets of the larger cohort exposure database: (1) all
radiation doses without regard to organ (there are multiple
dose entries in a relational table, each corresponding to a
different organ of the bodys; if the organ specifier is ignored,
there are a total of 1, 830, 479 dose values), (2) stomach
doses only (96, 341 values), and (3) stomach doses among
the subset of persons who are members of the AHS (16, 153
values).

We estimated radiation risk using logistic regression with
adjustment for uncertainties (random error) in radiation
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FiGure 1: Hypothetical security-utility plot. The plot shows the
trade-off between degree of masking and analysis potential. The
axes are defined to allow comparison with the ideal situation of no
loss of security and no loss of utility (the upper right corner).

dose estimates [29]. Analyses were performed using the Epi-
cure statistical package (HiroSoft International Corporation,
Seattle, WA).

3. Results

3.1. Identifiability via Continuous Exposure. Identifiability
risk scores (1) using unmasked stomach doses are shown
in Table 1(a). With more information about the source of
the data, larger proportions of individuals were linkable via
unique dose values. These were mostly high-dose persons
due to a skewed distribution of doses.

With relative precision rounding to three significant
digits identifiability risk was zero. None of the cases was
correctly matched (Table 1(b)), but some of the rounded
dose values matched values belonging to other individuals in
the source data. The proportion of such erroneous matches
decreased with decreasing size of the comparison source
database; the perceived identification risk based on these
chance matching proportions is also shown in Table 1(b).
With rounded data it would not be possible to determine
whether a match was correct or erroneous, adding additional
ambiguity to any presumed identification.

3.2. Identifiability via Multiple Categorical Variables.
Figure 2(a) shows the probability of matching an individual
to the clinical subset of the cohort database when data were
grouped by five-year intervals of age at exposure and age
at diagnosis and further broken down by dose strata, city,
and gender (the strata used in analyses of the full cohort
[27]). A large proportion (23%) of subjects in the micro-
dataset were uniquely matched (P = 1), being the only
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TABLE 1: Cases in the distributed data matching to <3 doses in the source database.

Comparison to

Number of matches in source database (identification risk)

Overall identification

3(0.33) 2(0.5) 1(1.0) risk (1)
(a) Using original (nonmasked) doses
All organ doses 9 18 0.39
Stomach doses only 5 29 0.52
AHS stomach doses 1 3 35 0.58
(b) Using doses rounded to 3 significant digits
All organ doses 0(1)? 0(5) 0(6) 0(0.14)
Stomach doses only 0 0 0(2) 0(0.03)
AHS stomach doses 0 0 0 0(0)

“Numbers in parentheses are the numbers of values that exactly matched some entry in the source database, but in no instance was the matching individual

in the source database the subject with the three-digit rounded dose.

individual occupying the corresponding stratum in the
source data. The overall identification risk score (1) was
0.40. Thus, grouping the variables into categories did not
afford substantial protection against matching to a unique
record in the database. As the number of variables or the
number of categories per variable increases, the number
of persons per stratum decreases, and identifiability risk
increases (recall, however, that these identifiability estimates
presume access to the source data).

Without knowledge of clinical cohort membership (i.e.,
comparing the distributed data to the entire cohort data-
base), the identifiability risk was virtually zero (not shown).
Thus, knowledge of a specific subcohort from which micro-
data were prepared may be an important factor in identifica-
tion via stratified data. Using ten-year age intervals resulted
in reduction by more than one-half in the numbers of
cases with identification probabilities of 1.0 or 0.5 (Figure
2(b)), with an overall identification risk score of 0.23.
Removing the two age variables altogether produced a
large reduction in identifiability risk (Figure 2(c)). Ignoring
ages, the maximum ratio of number of microdata cases to
number of source-data subjects in any stratum was 0.077
and the overall identifiability risk score was 0.013. This is an
overestimate of individual identifiability risk because some
of the strata in the microdataset had more than one case.

3.3. Analysis Potential. Table 2 shows results of binary re-
gression of the risk of stomach cancer for radiation dose,
employing various forms of dose masking and using all
cancer-free subjects for comparison. We include in Table 2
the results of adding random perturbations to the doses by
generating random uniform deviates in the range +0.001
Gray, +0.01 Gray, or +0.1 Gray. Because the results of
analysis based on randomized doses are random, the results
for this masking scheme are presented as the means and
ranges (extreme values) from 500 repetitions.

The bias with rounding was small and there was virtually
no difference between absolute and relative precision round-
ing, but there was a small increase in bias and standard error
with stratification. With randomization, bias increased only
slightly on average, but with any particular randomization
the bias could be quite large, as seen by the ranges in Table 2.

Randomization using +0.1 Gray (slightly greater than 10%
of the standard deviation or interquartile range) resulted in
average bias of 1.6%, similar to that with stratification, but
the maximum bias was as high as 6.5%. With randomization
using +0.001 Gray the bias was less than 0.1%, while using
+0.01 Gray it ranged to a little more than 0.5%.

Figure 3 is the plot of security versus utility for the
illustration. The various masking methods led to varying
degrees of reduction in identifiability risk, but most had little
impact on analysis potential.

4. Discussion

We have adapted the risk-utility (R-U) plot (or R-U map)
[12, 18] to utilize easily derived measures and to illustrate
the trade-off between confidentiality and utility in a way
that is familiar to epidemiologists. One could undertake a
formal mathematical analysis that minimizes information
loss in a masked dataset under the constraint that disclosure
risk is below some allowable threshold (“minimum safety
principle” [13]), although in practice it can be difficult
to define information loss (predict the analytical needs of
the collaborator) and quantify the risk (which depends in
part on the particular attack scenario assumed). Although
masked data can be analyzed appropriately given knowledge
of masking mechanisms, treating the masked values as
truth (ignoring the process of masking) may be the only
realistic method of analysis because disclosing the masking
mechanism may increase the likelihood of successful attack
[23]. It would be useful to further evaluate the method using
other databases with different exposure classifications and
distributions to assess its generalizability. Further approaches
to data masking and measures of utility are described
elsewhere [12].

We found that there was little chance of identifying
individuals if ages were truncated to integer values and doses
in Gray were rounded to at most one decimal place of
accuracy. Because the source database is highly protected
and even sources of information outside the institution are
subject to privacy protection laws and regulations, learning
the identity of individuals in the distributed dataset seems
extremely unlikely. However, in terms of analytical potential,
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FiGUure 2: Identifiability risk with the illustration microdataset
when compared to stratified source data. Data stratified on city,
gender, dose, and (a) five-year intervals of age at risk and age at
exposure, (b) ten-year intervals of age at risk and age at exposure,
and (c) no ages included.

relative-precision rounding would be preferable to absolute
rounding given the wide range of magnitudes of doses.

It is prudent to consider the distributions of the variables
when contemplating a masking strategy. Unique values
might not be successfully masked if the magnitude of round-
ing is small relative to the variability in the data, particularly
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FIGURE 3: Empirical security-utility plot. The plot shows the trade-
off between degree of masking and analysis potential for the
example data. The points do not fall directly on the curve because
the masking methods are not nested (i.e., there is not a one-to-
one correspondence between degree of anonymization and analysis
potential). The curve is a nonlinear regression fit of the model
anonymization score = [1 — (analysis-potential score)e] ve where 0
was estimated to be 178.

in sparse regions of the distribution. One could use a var-
iable-precision rounding scheme, whereby values in sparse
regions of the distribution are rounded to less precision than
values in dense regions of the distribution. In the exam-
ple presented here, the exposure distribution is positively
skewed, so relative-precision rounding achieves the same
purpose.

Masking by grouping results in Berkson-type random
error, which does not introduce covariate-error bias in
simple linear models but can lead to problems with more
complex models, including nonlinear models and analyses
of interaction with other variables [24]. Covariate-error bias
in the case of classical error, such as arises with random-
ization of data values, leads to attenuated effect estimates
(underestimation), but Berkson error can lead to overestima-
tion of effects [30]. Thus, grouping should not be employed
needlessly, and its impact on the planned analysis should be
carefully considered.

The current work has several limitations in terms of
generalizability. First of all, it is difficult to assess the per-
formance of data masking without considering the specific
data situation. We examined masking both continuous and
categorical information and assessed identifiability for a
reasonably small distribution dataset, so we think that our
results should be generally applicable to most practical,
small-data situations. However, the performance of any data-
masking scheme should be evaluated in its own setting.

Secondly, we used an aggregate measure of identifiability
and applied the same masking scheme to all individuals in
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TABLE 2: Results of fitting a linear dose response using binary regression.
. ERR? . LR statistic ~ Relative bias
Dose masking scheme (per Gray) Standard error Deviance (P value) (%) MSE
None 0.5235 0.1548 826.36 9.27 (0.0023) — 0.0240
gi‘;‘iltr;ded to three decimal 0.5237 0.1548 826.35  9.28(0.0023) 0.038 0.0240
dRi(;‘i‘:;ded to two decimal 0.5235 0.1547 82635  9.28 (0.0023) 0 0.0239
Rounded to nearest 05235 0.1548 826.36  9.27(0.0023) 0 0.0240
centiGray
Rounded to nearest 0.5228 0.1547 82636 9.27 (0.0023) 0.13 0.0239
deciGray
Stratified® 0.5320 0.1553 826.11 9.52 (0.0020) 1.6 0.0242
Randomized®
+ 0.001 0.5235 0.1548 826.36 9.27 0.015 0.0240
(min, max) (0.5234, 0.5238) (0.1548, 0.1549) (0.0023) (0, 0.057) (0.02397, 0.02398)
+0.01 0.5239 0.155 826.36 9.28 0.16 0.0240
(min, max) (0.5226,0.5266)  (0.1548,0.1551) (0.0023) (0,0.59)  (0.02396, 0.02407)
+0.1 0.5271 0.155 826.33 9.31 1.6 0.0243
(min, max) (0.5159, 0.5573) (0.1537,0.1584) (0.0023) (1.4,6.5) (0.02415, 0.02557)

“ERR: excess relative risk (relative risk—1). Precision is overrepresented for comparison.
bDoses were stratified according to the categories used in Life Span Study Report 13 [27]. The dose value assigned to each individual was the mean of all

database AHS stomach dose values in that group.

€A random uniform deviate between the specified range was added to the dose; if this operation resulted in a negative value, the masked dose was set to zero.

Results are the averages from 500 simulations.

the microdata. In practice, some individuals will be at higher
risk of identification due to more unique values of their data
(e.g., those with extreme values in a skewed distribution).
Using per-record measures of disclosure risk may yield
greater analysis potential if some records do not require the
same degree of masking [21]. However, to achieve the same
overall anonymity score may require that records with great-
er identifiability risk be masked to a greater extent. The re-
sulting impact on analysis potential relative to aggregate pro-
tection deserves further investigation.

Thirdly, we did not evaluate the propensity score [31], a
means of summarizing confounder information. The pro-
pensity score combines information from multiple variables
into a single value, which should result in substantial mask-
ing. However, this would only be useful with variables not
individually needed in analysis, such as confounders. The
propensity score could not be used to replace exposures or
effect modifiers of interest.

Fourthly, one caveat concerns the extent of investigation
of analysis potential. Obviously, if the full analysis to be
conducted by the collaborating investigator is applied to as-
certain analysis potential of the masked data, there would
be no need for the collaboration. Analysis potential must
therefore be evaluated using simplified analyses that are
expected to provide an indication of data quality without
replicating the entire collaborative effort. A post hoc analysis,
such as fitting the collaborators’ final model to the source
data, might be considered.

Finally, we have dealt with perceived (predictive) identi-
fication rather than true identification, although the latter is
generally considered more relevant for purposes of disclosure

control [4]. Because we assumed that identifiability is tan-
tamount to having access to the source data, which are
generally secure, we might have overestimated the true
identifiability risk. However, we did not address situations
where alternative, publicly available sources of data could
be used in identification. As there is no way of generally
characterizing all potential attack scenarios, it is best to
evaluate each individual application separately, taking into
account security of the source data, availability of relevant
public databases, and existence of related microdatasets
previously sent outside the institution.

Needs for disseminating health research data vary widely.
The situation discussed here focuses on sharing microdata
with a small number of investigators for research purposes,
whereas medical informatics requires making data more
widely available [32]. Individual data are required for pur-
poses of developing tailor-made prognostic clinical models,
and seriously perturbed data may suffer from unacceptable
loss of utility. Recent calls for reproducible research would
require sharing unmasked data [33]. Although we have not
addressed security issues in other fields, it would be useful
to establish links between collaborative and public-access
scenarios. This is beyond the scope of the present paper,
but would provide a useful bridge between the fields of
epidemiology and medical informatics.

Issues related to privacy protection include justification
(does the research contribute to “generalizable knowledge”),
what constitutes “identifiable information”, and what consti-
tutes “minimal risk” [17, 34]. Some situations may not afford
sufficient masking without destroying analysis potential. For
example, researchers might need unmasked dose estimates



to investigate uncertainties in exposure assessment. Another
situation is when subjects have a rare disease, which is not
easily masked because the full population is small to begin
with. Thus, in addition to masking, appropriate assurances
should be obtained from the collaborators regarding privacy
protection and use of the distributed data.

A recent text on molecular epidemiology notes the need
for multidisciplinary collaborative research but appears to
mention subject confidentiality only once in the first chapter
[35]. Although actual identification of research subjects
from shared data is extremely unlikely given the secure
nature of research databases, it is important to consider the
perceived possibility of identification. Research subjects may
withhold consent if they perceive a threat to their privacy,
or researchers may be concerned that such perception
might impact the quality of the data provided by subjects
[10]. Furthermore, laws require researchers involved in data
sharing to understand and apply appropriate safeguards to
protect the privacy of subjects’ data [36]. Researchers should
also be concerned about subjects’ welfare. Article 23 of the
Declaration of Helsinki of the World Medical Association
states, “Every precaution must be taken ... to minimize the
impact of the study on their physical, mental and social
integrity” [37]. This would include stigmatization caused by
perceived potential for identification and its implications for
the subject’s health care, employment, and so forth.

5. Conclusions

The best masking schemes are those for which anonymity
(security) and analysis potential (utility) are mutually as
high as possible. Standard approaches to statistical disclosure
control are developed for large-scale data releases by organi-
zations specializing in data management but may be difficult
to implement by epidemiologic researchers in small-scale
data-sharing collaborations. We recommend that confiden-
tiality be assessed by examining uniqueness of data records
and attempting linkage with the source data. For dis-
seminating microdata, we recommend that data values be
rounded using relative-precision rounding. The trade-off
between security and utility should be numerically evaluated
in each individual data-sharing situation to assure outside
researchers and study participants of the utility and security
of the data. An approach to evaluating the trade-off between
security and utility may be based simply on quantities easily
derived by epidemiologic researchers and examined graphi-
cally as illustrated herein.
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