
STUDY PROTOCOL

Protocol for chronic hepatitis B virus infection

mouse model development by patient-

derived orthotopic xenografts

Aleksey M. NagornykhID
☯*, Marina A. Tyumentseva☯, Aleksandr I. Tyumentsev☯, Vasiliy

G. Akimkin

Central Research Institute for Epidemiology of the Federal Service for Supervision of Consumer Rights

Protection and Human Welfare, Moscow, Russia

☯ These authors contributed equally to this work.

* nagornih@cmd.su

Abstract

Background

According to the World Health Organization, more than 250 million people worldwide are

chronically infected with the hepatitis B virus, and almost 800.000 patients die annually of

mediated liver disorders. Therefore, adequate biological test systems are needed that could

fully simulate the course of chronic hepatitis B virus infection, including in patients with hepa-

tocellular carcinoma.

Methods

In this study, we will assess the effectiveness of existing protocols for isolation and cultiva-

tion of primary cells derived from patients with hepatocellular carcinoma in terms of the yield

of viable cells and their ability to replicate the hepatitis B virus using isolation and cultivation

methods for adhesive primary cells, flow cytometry and quantitative polymerase chain reac-

tion. Another part of our study will be devoted to evaluating the effectiveness of hepatocellu-

lar carcinoma grafting methods to obtain patient-derived heterotopic and orthotopic

xenograft mouse avatars using animal X-ray irradiation and surgery procedures and in vivo

fluorescent signals visualization and measurements. Our study will be completed by histo-

logical methods.

Discussion

This will be the first extensive comparative study of the main modern methods and proto-

cols for isolation and cultivation primary hepatocellular carcinoma cells and tumor engraft-

ment to the mice. All protocols will be optimized and characterized using the: (1) efficiency

of the method for isolation cells from removed hepatocellular carcinoma in terms of their

quantity and viability; (2) efficiency of the primary cell cultivation protocol in terms of the

rate of monolayer formation and hepatitis B virus replication; (3) efficiency of the grafting

method in terms of the growth rate and the possibility of hepatitis B virus persistence and
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replication in mice. The most effective methods will be recommended for use in transla-

tional biomedical research.

Introduction

Chronic hepatitis B virus (HBV) infection is characterized by the persistence of surface antigen

(HBsAg) for at least six months (with or without the simultaneous presence of HB viral protein

(HBeAg)). The continuous presence of HBsAg is the main marker of the risk of developing

chronic liver disease and hepatocellular carcinoma (HCC) during the life [1]. Chronic inflam-

mation characterized by repeated cycles of apoptosis, necrosis, and regeneration is an impor-

tant contributor to hepatocarcinogenesis [2].

To date, there is a huge variety of animal models for studying HBV infection in the world,

but mouse models are still the most popular and cost-effective [3]. For all its diversity, mouse

models have their advantages and disadvantages, depending on the purpose. Thus, one of the

first mouse models of HBV infection, HBV-Trimera mice, was created by transplanting HBV-

infected liver tissues under a kidney capsule of mice with induced severe combined immuno-

deficiency [4]. Unfortunately, this model is not suitable for development of immunotherapy

strategies or adaptive immunity studies, since implanted human hepatocytes remain func-

tional just for 1 month allowing only short-term anti-HBV therapies [5]. Delivery of HBV rep-

licons or the HBV genome associated with adenovirus carriers by hydrodynamic injection

into the tail vein of mice remains perhaps the most common way to simulate HBV infection

[6–10]. However, only temporary replication of HBV is observed—the peak of viremia is

reached on the 6th day after injection, followed by a rapid decline [11]. In addition, there is no

direct infection of mice with HBV, and over time, HBV-specific antiviral antibodies and cyto-

toxic T-lymphocytes appear.

The development of humanized mice made it possible to keep the long-term replication

and persistence of HBV in animal models. Transgenic mice with albumin-urokinase-type plas-

minogen activator (uPA) were the first of them to successfully demonstrate repopulation of

hepatocytes of a healthy adult human to the diseased mouse liver. To improve the recovery of

xenograft hepatocytes, some researchers have crossed these mice with immunodeficient mice

(SCID). Thus, uPA-SCID transgenic mice were derived. However, unpredictability in mainte-

nance and high cost of mice prevents the widespread use of this model [12, 13].

Generation of mice deficient in fumarylacetoacetate hydrolase (FAH) gene, an enzyme that

plays an important role in the last steps of tyrosine catabolism pathway. Damage to the hepato-

cytes of Fah KO mice occurs due to the accumulation of toxic intermediate products of tyro-

sine metabolism. The severity of liver damage is regulated by the introduction of 2-(2-nitro-

4-fluoromethylbenzoyl)-1,3-cyclohexanedione into the mice. To prevent rejection of human

hepatocytes, Fah KO mice were crossed with Rag2/IL2rg KO mice, thus generating mice with a

triple knockout of genes, called FRG KO mice. Azuma et al describe the steady expansion of

human hepatocytes and the maintenance of high production of HBV in serum of FRG KO

mice [14]. A significant limitation in the widespread use of FRG KO mice, apparently, is their

high cost.

Similarly, TK-NOG mice were briefly exposed to the drug ganciclovir also maintain a high

possibility of HBV replication [15, 16]. However, the demand for this mouse model is not so

high compared to FRG KO mice due to male infertility, which ultimately leads to low repro-

duction efficiency [17].
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Unfortunately, most of these immunodeficient chimeric human liver mice do not have a

functional immune system, which makes it impossible to study human-specific therapeutic

strategies and immune responses caused by HBV. In an attempt to overcome these limitations,

mice with double humanization are generated. Thus, AFC8-hu HSC/Hep mice are mainly

used for HCV researches [18, 19], A2/NSG/Fas-hu-HSC/Hep mice maintain the persistence of

HBV and are susceptible to the development of chronic hepatitis and liver fibrosis [20], After

transplantation of an adult human hepatocytes into uPA-NOG transgenic mice, about 70% of

the mouse liver is humanized [17]. HBV-infected HIS-HUHEP mice are able to maintain a

high level of viremia and demonstrate a phenotype of chronic inflammation, and

hBMSC-FRGS mice demonstrate the development of acute or chronic hepatitis with varying

degrees of lymphocytic portal inflammation, liver fibrosis progressing to cirrhosis, but the

development of HCC does not occur, which may be due to the duration of the pathogenesis of

HCC in humans [21]. With regard to FRGN mice, their use as HBV models is allowed in the

future [22].

Chronic HBV infection throughout life usually leads to chronic hepatitis, fibrosis, cirrhosis

of the liver or hepatocellular carcinoma HBV accounts for about 50% of all HCC etiologies

[23]. HCC is the second leading cause of cancer death in male, and the sixth leading cause in

female around the world [24].

HBV can contribute to carcinogenesis by three different mechanisms: (1) classical retrovi-

rus-like insertion mutagenesis with the integration of viral DNA into host cancer genes, such

as TERT, CCNE1 and MLL4; (2) stimulation of genomic instability as a result of both the inte-

gration of viral DNA into the host genome and the activity of viral proteins; (3) the ability of

wild-type and mutated/truncated viral proteins (HBx, HBc and preS) to influence cell func-

tions, activate oncogenic pathways and sensitize liver cells to mutagens [25, 26]. The integra-

tion of HBV DNA into the host genome causes genomic instability and direct insertion

mutagenesis of various cancer-related genes. A clonal expansion of hepatocytes containing

unique virus-cell DNA junctions formed by the integration of HBV DNA can be detected in

patients at various stages of chronic infection. Unfortunately, the nature of the selective advan-

tages that sustain the expansion of hepatocyte clones containing integrated HBV DNA and

whether they represent a true pre-neoplastic condition as well as their relation with early

HCCs are still unclear [25].

Developed animal models are based on various strategies for inducing liver neoplasms in

mice: (1) genetically engineered models expressing specific fragments of the HBV and HCV

genome [27, 28]; (2) models obtained with the help of chemical toxic agents (carcinogens) by

directly damaging DNA or contributing to the formation of a tumor after administration with

a hepatotoxic compound that promotes the spread of preneoplastic cells [29]; (3) the use of

humanized mice [30–32]; 4) transplantation of immortalized cell lines [33–35].

In recent years, models based on the transplantation of fragments of organs or tissues

obtained from patients have become popular [36, 37]. Many of them are obtained from

patients with aggressive oncological diseases, including liver cancers. Many techniques have

already been proposed for the isolation, cultivation and transplantation of primary cells

obtained from patient biopsies, which are often very different [38, 39].

The currently existing in vitro and in vivo models of viral diseases make it possible to

observe morphological changes in target organs of living animals through bioluminescence

and fluorescent intensity imaging during the development of the pathological picture of the

disease, thus allowing to assess the persistence and replication of viral DNA in the body of the

animal model, noting their gradation over time, using methods that do not require periodic

euthanasia of the animal [40–44]. However, the protocols differ in this direction as well.
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Therefore, we plan to conduct series of experiments on choosing the optimal protocol for

creating a patient-derived orthotopic xenograft (PDOX) mouse model for chronic HBV infec-

tion studying and xenograft visualization techniques using fluorescent imaging.

Materials and methods

Study aim

The aim of the study is to evaluate the efficiency of protocols for isolation and cultivation of

primary cells from diseased liver tissue included primary HCC cells; to optimize methods for

creating HCC-HBV-PDOX avatars and compare the obtained data with the results of hemato-

logical, biochemical and molecular tests of the patient-derived biomaterials.

Study objectives

1. To estimate the efficiency of primary HCC cells isolation using primary HCC cells isolation

protocols.

2. To evaluate the efficiency of primary HCC cells cultivation using primary HCC cells culti-

vation protocols.

3. To give an assessment of the efficiency of HCC-HBV-PDOX avatars development

protocols.

4. To analyze the correlation between biochemical blood analysis and complete blood count

parameters, HBsAg, HBV DNA and AFP quantity of graft donors with in vitro and in vivo
characteristics of these grafts.

Study design and settings

We will conduct a comparative study of various methods of isolation and cultivation of pri-

mary liver cells and optimize these protocols for primary HCC cells (Fig 1). We will implement

a comparative study of several methods of HCC grafting to mice and evaluate the total mouse

Fig 1. Graphics pipeline of HCC cell protocols research.

https://doi.org/10.1371/journal.pone.0264266.g001
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body X-ray pre-irradiation effect on xenograft growth and in vivo HBV DNA replication

(Fig 2).

Study methods

The study will be conducted using the following methods:

1. primary cells isolation from biopsy material;

2. cell viability assessment;

3. cells cultivation;

4. qPCR;

5. flow cytometry (immunocytochemistry);

6. surgical manipulations with laboratory animals;

7. in vivo fluorescent intensity imaging;

8. pathomorphological evaluations of HCC-HBV-PDOX avatars;

9. immunohistochemical (IHC) analysis.

Study outcomes

After the study completion we will possess the data regarding: (1) efficiency of primary HCC

cells isolation and cultivation protocols; (2) efficiency of the methods for transplantation of

patient-derived xenograft to mice; (3) correlation data between the donor’s blood parameters

and animal models; (4) in vivo HBsAg and AFP fluorescent intensity imaging. The methods

used will include commercially available animals, immortalized cell line, reagents and

materials.

We expect that a comparative characterization of biochemical blood analysis and complete

blood count parameters, HBsAg, HBV DNA and AFP quantity of graft donors with in vitro
and in vivo characteristics of these grafts will allow us to obtain a correlation for the

Fig 2. Graphics pipeline of animal protocols research.

https://doi.org/10.1371/journal.pone.0264266.g002
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replicability assessment of chronic HBV infection combined with HCC in mouse model. This

correlation can be used in translational biomedical research of chronic HBV infection com-

bined with HCC.

We will conduct the first large-scale study of AFP and HBsAg distribution and localization

in vivo, performed by the small animal optical imaging system Newton 7.0 FT-500 and con-

firmed by images. Also, we will provide optimized protocols for primary HCC cells isolation

and cultivation.

Study details

All procedures with patients will be performed in accordance with the World Medical Associa-

tion Declaration of Helsinki Ethical Principles for Medical Research Involving Human Sub-

jects [45]. An informed consent on voluntary participation in the study will be signed with

each biomaterial donor. HCC biopsy material will be obtained from up to five patients of one

sex, age, duration and severity of the disease and confirmed diagnosis of “HBV-induced

HCC”.

The results of clinical tests obtained from patients during 6 months of observation will be

analyzed according to the following indicators:

• biochemical blood analysis—alanine aminotransferase (ALT), aspartate aminotransferase

(AST), total bilirubin (TB), conjugated bilirubin (CB), alkaline phosphatase (AP), gamma-

glutamyl transferase (GGT), cholesterol (Chol);

• complete blood count;

• HBV DNA quantitative polymerase chain reaction (qPCR);

• HBsAg quantitative ELISA;

• AFP quantitative ELISA.

1. Primary HCC cells isolation

1.1 Two-stage protocol for isolation of primary human hepatocytes from liver tissue (TSP),

described by Baccarani et al [46]

The biopsy material will be perfused under sterile conditions via a vessel (if available) of 25

ml of 2 mM Ethylenediaminetetraacetic acid (EDTA) solution (MilliporeSigma, USA) by dis-

posable syringe and digested with a solution supplemented with 500 mg/L collagenase type P

(MilliporeSigma, USA) at 37˚C. Washing in EDTA solution and tumor tissue digestion will be

carried out on incubation shaker Celltron (Infors HT, Switzerland) at a constant speed of 60

min-1 at 37˚C.

After that the fragment of the tumor will be carefully disrupted with a sterile scalpel, and

the digested parenchyma will be collected in a test tube containing 50 ml of ice-cold RPMI

1640 (MilliporeSigma, USA) supplemented with 10% human serum (MilliporeSigma, USA).

Three 1 mm3 neoplasm fragments will be collected to create HCC-patient-derived xenograft-

(PDX) avatars. The cell suspension will be filtered through 250-μm tissue strainers (Thermo

Fisher Scientific, USA), and then washed three times at 50g for 5 minutes at 4˚C to remove cell

debris.

Cell pellet will be resuspended in 4 ml of RPMI 1640 supplemented with 10% human serum

and brought to final volume of 10 ml with the abovementioned medium.
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1.2 Four-stage protocol for isolation of primary human hepatocytes from liver tissue (FSP),

described by Baccarani et al [46]

The tumor tissue will be quickly washed from a disposable syringe at 37˚C under sterile

conditions via a vessel (if available) with 25 ml of reperfusion solution, composed of: RPMI

1640 (Thermo Fisher Scientific, USA) with the addition of 150 mg/L glycine (MilliporeSigma,

USA), 178 mg/L L-alanine (MilliporeSigma, USA), 40 IU insulin from bovine pancreas (Milli-

poreSigma, USA) and 1800 mg/L fructose (MilliporeSigma, USA). Three 1 mm3 neoplasm

fragments will be collected to create HCC-PDX-avatars.

After that, 25 ml of 2 mM EDTA solution (37˚C) will be perfused with a disposable syringe

through a vessel (if available) to remove residual blood. Then the tumor tissue will be washed

with 50 ml RPMI 1640 supplemented with 300 mg/L CaCl2 using incubation shaker Celltron

at a constant speed of 60 min-1 at 37˚C.

Enzymatic digestion will be performed in a solution supplemented with 500 mg/L collage-

nase type P (MilliporeSigma, USA) with addition of 300 mg/L CaCl2 using incubation shaker

Celltron, 60 min-1at 37˚C. When the digestion of the parenchyma can be assessed visually, the

tumor tissue will be washed with 50 ml of the reperfusion solution at 60 min-1 at 37˚C.

After that, the tumor tissue will be disrupted with a sterile scalpel, and the cells will be col-

lected after adding 50 ml of culture medium (RPMI 1640 + 10% human decomplemented

plasma + 40 UI of insulin + 20 mL of 5% fructose) and filtration through 250-μm tissue strain-

ers (Thermo Fisher Scientific, USA). The cell suspension will be washed three times at 50g for

5 minutes at 4˚C to remove cell debris.

Cell pellet will be resuspended in 4 ml of culture medium and brought to final volume of 10

ml with the abovementioned medium.

1.3 Protocol for isolation of primary human hepatocytes from diseased liver tissue (NDP),

described by Bhogal et al [47]

The biopsy material will be washed with 1x phosphate buffered saline (PBS, pH 7,2, Milli-

poreSigma, USA) to identify suitable vessels that could be used for subsequent perfusion of

buffers. All buffers used in the extraction procedure will be pre-warmed to 42˚C in a water

bath. At this stage, the tumor tissue will be washed through the vessels with a 10 mM HEPES,

pH 7,2 (MilliporeSigma, USA) to remove the remaining blood. Three 1 mm3 neoplasm frag-

ments will be collected to create HCC-PDX-avatars.

After that, the biopsy material will be impregnated with a chelating solution: 10 mM

HEPES supplemented with 190 mg/L ethylene glycol bis (2-aminoethyl ether)-N,N,N0,N0-tet-

raacetic acid (EGTA), pH 7,2 (MilliporeSigma, USA), in order to disrupt the adhesion of cells

to the underlying matrix. The process will be controlled visually. Then the neoplasm fragment

will be washed with 10 mM HEPES (pH 7.2) to remove residual EGTA.

After that, the tissue fragment will be placed into enzyme buffer solution (75 ml), composed

of: fresh aliquots of enzymes dissolved in Hank’s balanced salt solution (HBSS) supplemented

with 555 mg/L CaCl2 and 475 mg/L MgCl2 (Thermo Fisher Scientific, USA). After dissolution,

the enzymes will be filtered through a 0.2-μm sterile syringe filter (Corning Inc., USA) back to

HBSS. Enzyme composition: 0.5% w/v Collagenase A (MilliporeSigma, USA), 0.25% w/v Pro-

tease (MilliporeSigma, USA), 0.125% w/v Hyaluronidase (MilliporeSigma, USA) and 0.05% w/

v Deoxyribonuclease (MilliporeSigma, USA). The digestion in the enzyme buffer will be con-

ducted for 1–20 minutes. The digestion rate will be evaluated by palpation. Digestion will stop

when the tumor tissue softens so much that it can be easily disrupted.

After that, the neoplasm tissue will be transferred to a sterile dish and disrupted with sterile

scalpel in DMEM supplemented with 10% heat-inactivated fetal bovine serum (FBS, Thermo
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Fisher Scientific, USA), 292 mg/L glutamine (Thermo Fisher Scientific, USA), 20 units/ml

Penicillin G (MilliporeSigma, USA), 20 mg/L Streptomycin (MilliporeSigma, USA) and 2.5

mg/L Gentamycin. After dissociation of the fragment, the suspension will be passed through

250-μm tissue strainers (Thermo Fisher Scientific, USA), and then through 70-μm sterile

nylon filter (Corning Inc., USA). Then the suspensions will be washed three times at 50g for

10 minutes at 4˚C in the culture medium.

Cell pellet will be resuspended in 4 ml of supplemented DMEM and brought to final vol-

ume of 10 ml with the abovementioned medium.

1.4 Protocol for isolation of primary human HCC cells (HCCP), described by Cheung et al
[48]

The biopsy material will be washed with an Advanced MEM (AMEM, Thermo Fisher Sci-

entific, USA) supplemented with 50 units/ml Penicillin G (MilliporeSigma, USA) and 50 mg/L

Streptomycin (MilliporeSigma, USA), and then disrupted into 1 mm3 fragments with a sterile

scalpel. Three 1 mm3 neoplasm fragments will be collected to create HCC-PDX-avatars.

After enzymatic dissociation with collagenase type IV (MilliporeSigma, USA) for 5 minutes

at 37˚C three times, the disaggregated cell suspension will be filtered through a 40-μm sterile

cell strainer (Corning Inc., USA).

Red blood cells will be lysed using the Red Blood Cell Lysis Buffer (MilliporeSigma, USA)

and cells will be washed three times at 50g for 10 minutes at 4˚C in AMEM.

Cell pellet will be resuspended in 4 ml of AMEM and brought to final volume of 10 ml with

the abovementioned medium.

2. Increasing the number of viable cells (described by Bhogal et al [47])

Cells yield and viability will be determined using the Cell Vitality Assay Kit, C12 Resazurin/

SYTOX™ Green (L34951, Thermo Fisher Scientific, USA) exclusion test using LUNA-II Auto-

mated Cell Counter (Logos Biosystems, South Korea).

If the cell viability is low (< 50%), but the resulting number of cells is high, the method of

Percoll density gradient separation centrifugation will be used. Percoll (MilliporeSigma, USA)

will be prepared by adding PBS (pH 7,2) and bringing the density to 4.5 g/ml. After that, Per-

coll will be added to the cells and suspension will be centrifuged at 300g for 30 minutes at

room temperature. Then the cell viability will be determined again.

After counting, the HCC cell suspensions will be transferred to 25-cm2 culture flasks (Corn-

ing Inc., USA), rotate gently and incubated in a humidified atmosphere containing 5% CO2

overnight. Following overnight attachment, the medium will be decanted and replaced with a

fresh preheated (i. e. 37˚C) medium.

3. Primary HCC cells cultivation

TSP- and FSP-isolated cells will be cultured according to protocol for cultivation of primary

human hepatocytes from liver tissue.

NDP- isolated cells will be cultured according to protocol for cultivation of primary human

HCC cells on a Poly-D-Lysine matrix.

HCCP-isolated cells will be cultured according to protocol for cultivation of primary

human HCC cells on a gelatin matrix.

HepG2 cell line (CLS Cell Lines Service, Germany) will be used as HBV-negative control at

all stages of our study.

3.1 Protocol for cultivation of primary human hepatocytes from liver tissue, described by Bac-
carani et al [46]
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Cells will be resuspended in RPMI 1640 (MilliporeSigma, USA) supplemented with 10 mg/

L bovine insulin (MilliporeSigma, USA), 5 mg/L transferrin human (MilliporeSigma, USA),

0.019 mg/L somatostatin (MilliporeSigma, USA), 0.01 mg/L Gly-His-Lys acetate salt (Millipor-

eSigma, USA) and 10 nmol/L hydrocortisone acetate (MilliporeSigma, USA). Cell suspension

will be placed in a 6-well plate (Corning Inc., USA) with seeding density 5x105 cells per well

and cultured at 37˚C in a humidified atmosphere containing 5% CO2 with 12th-hour monitor-

ing points for the formation of a monolayer.

3.2 Protocol for cultivation of primary human HCC cells on a Poly-D-Lysine matrix, described

by Qiu et al [49]

Isolated cells will be resuspended in RPMI 1640 (Thermo Fisher Scientific, USA) supple-

mented with 10% FBS (Thermo Fisher Scientific, USA), 110 mg/L sodium pyruvate (Millipore-

Sigma, USA), 10 mg/L bovine insulin (MilliporeSigma, USA), 5.5 mg/L transferrin human

(MilliporeSigma, USA), 40 ng/ml Epidermal Growth Factor (EGF) (MilliporeSigma, USA), 6.7

ng/mL sodium selenite (MilliporeSigma, USA) and placed into a 6-well plate (Corning Inc.,

USA) coated with 50 mg/L Poly-D-Lysine (Thermo Fisher Scientific, USA) with seeding den-

sity 5x105 cells per well. Cells will be cultured at 37˚C in a humidified atmosphere containing

5% CO2 with 12-hour control points for the formation of a monolayer.

3.3 Protocol for cultivation of primary human HCC cells on a gelatin matrix, described by

Cheung et al [48]

Cells will be resuspended in Hepatocyte culture medium (Corning Inc., USA) and placed in

6-well plates coated with 0.1% gelatin (MilliporeSigma, USA) with seeding density 5x105 cells

per well. The cell adhesion to the gelatin substrate is monitored for 12 hours.

3.4 HepG2 cells cultivation protocol is performed as described by Donato et al [50]

Quantitative determination of HBV DNA in the cultural supernatants will be performed 2

days after the cell culturing start by “AmpliSens1HBV Monitor-FRT” kit (Central Research

Institute for Epidemiology of the Federal Service for Supervision of Consumer Rights Protec-

tion and Human Welfare, Russian Federation) using QuantStudio 5 real-time PCR system

(Thermo Fisher Scientific, USA) for all cultivation protocols.

When cells are 80% confluent, they will be dissociated from the well surface using 0.05%

trypsin-EDTA solution (MilliporeSigma, USA) and their viability will be evaluated by trypan

blue exclusion test using LUNA-II Automated Cell Counter.

4. HCC-PDX-avatars development

The establishment of HCC-PDX-avatars at first is caused by the need to adapt the mouse to

human tissues for prevention an active “graft versus host” reaction on HCC-HBV-PDOX ava-

tars stage later.

All animals will be housed in specific pathogen-free conditions in bioexclusion systems

IsoCage N and IsoCage P (Tecniplast, Italy). All manipulations with animals are approved by

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010

on the protection of animals used for scientific purposes (22 September 2010), European Con-

vention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific

Purposes (Strasbourg, 18 March, 1986) and Central Research Institute of Epidemiology Com-

mission for the Care and Scientific Purposes Use of Animals (CRIECCSPUA, petition№ 3-

Zh). All surgical manipulations with animals will be carried out under anesthesia, and every

effort will be made to minimize suffering.
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5–6-week-old male BALB/c athymic nude mice (Charles River, Germany) will be randomly

divided into six groups of 7 and subcutaneously injected into the left flank with one 1 mm3

neoplasm fragment obtained during the primary HCC cells isolation protocols

implementation:

• group # 1—TSP;

• group # 2—NDP;

• group # 3—HCCP.

All neoplasm fragments will be grafted in a mixture with 200 μL of ECM Gel from Engel-

breth-Holm-Swarm murine sarcoma (MilliporeSigma, USA). The injection will be performed

under Isoflurane (Laboratorios Karizoo, Spain) anesthesia (Biosthesia 300, Vilber Lourmat,

France) using a syringe with 18G needle.

Group # 4 mice will be previously total body irradiated [51, 52] with 2 Gy by Xstrahl CIX3

irradiator cabinet (Xstrahl, UK) and injected in the same way with the neoplasm fragments

obtained during the FSP implementation. During the irradiation procedure, the mice will be

anesthetized with Isoflurane. Thus, we plan to evaluate the effect of pre-irradiation on tumor

tissue engraftment and growth and on the possibility of HBV replication in pre-irradiated

mice.

Group # 5 mice will be pre-irradiated with 2 Gy by Xstrahl CIX3 irradiator cabinet under

Isoflurane anesthesia. Group # 5 and group # 6 mice will be subcutaneously injected into the

left flank with 1 × 107/200 μL HepG2 cells resuspended in ECM Gel from Engelbreth-Holm-

Swarm murine sarcoma [35, 53] and used as HBV-negative control.

Humane endpoints will be tumor size reaching of 2 cm in diameter or a body weight loss of

at least 10%. Animal monitoring is carried out for no more than two months.

Weekly, until the condition requiring humane euthanasia of mice will be reached, the AFP

(by Human alpha Fetoprotein ELISA Kit, Abcam, UK), HBsAg (by “HBsAg-IFA-BEST” kit,

Vector-BEST, Russian Federation) and HBV DNA (by “AmpliSens1HBV Monitor-FRT” kit)

levels in the blood serum will be assessed [48, 54]; mice weight, size of subcutaneous neoplasm,

biochemical blood analysis (ALT, AST, TB, CB, AP, GGT, Chol) and complete blood count by

auto hematology analyzer BC-2800Vet (Mindray Medical International Ltd, China) will be

also performed weekly. ELISA tests will be performed using Multiskan FC microplate photom-

eter (Thermo Fisher Scientific, USA). Blood samples from animals will be collected under Iso-

flurane anesthesia by the facial vein puncture with a 20G needle. The size of subcutaneous

neoplasm will be measured using a micrometer screw gauge, and its volume will be calculated

by the formula: tumor volume = (length×width2)/2 [55]. When the tumors will be reached 0.4

to 0.6 cm in diameter, the tumor-bearing mice will be subjected to in vivo imaging studies.

In vivo imaging will be carried out by targeted delivery of fluorescently labeled antibodies to

the corresponding targets. Before labeling antibodies, a Microcon-10kDa centrifugal filter

units with ultracel-10 membrane (MilliporeSigma, USA) will be used to remove residual

sodium azide. Antibody labeling will be performed in accordance with the protocol provided

by the manufacturer. In vivo HBsAg fluorescent intensity imaging will be implemented on

small animal optical imaging system Newton 7.0 FT-500 (Vilber Lourmat, France) with F-550

filter and “c 540 nm” lighting using the Hepatitis B Virus Surface Monoclonal Antibody

(Thermo Fisher Scientific, USA) labeled with Mix-n-Stain CF 555 Antibody Labeling Kit

(MilliporeSigma, USA) [56–58]. Xenograft growth estimation will be carried out on the New-

ton 7.0 FT-500 by means of in vivo fluorescent intensity imaging of AFP Monoclonal Antibody

(SP154) (Thermo Fisher Scientific, USA) labeled with SAIVI Rapid Antibody Labeling Kit,

Alexa Fluor 680 (Thermo Fisher Scientific, USA) using the Evolution-Capt Edge software
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(Vilber Lourmat, France) with F-700 filter and “c 680 nm” lightning. The concentration of

injected antibodies will be selected empirically, but the total volume of the injected solution

would not exceed 0.2 ml per mouse. Labeled HBV surface monoclonal antibodies will be

injected into the tail vein using sterile disposable syringe with 29G needle. AFP monoclonal

antibodies will be delivered in the same way 1 hour later.

Upon reaching the humane endpoint, animals will be sacrificed by total exsanguination

under anesthesia (Isoflurane inhalation; Zoletil (Virbac, France) + Xyla (Nita-Farm, Russian

Federation), 7.5–50 mg/kg and 5–10 mg/kg, respectively, intraperitoneally). Animals from the

control groups will be sacrificed on the same day.

Blood samples, subcutaneous xenografts, spleen, liver and tissue metastases (if available)

will be collected for further routine histological hematoxylin-eosin (H&E) staining and

IHC.

1 mm3 subcutaneous xenograft tissues fragments obtained from mice with the greatest abil-

ity of HBV DNA replication will be separated under sterile conditions for further cells cultiva-

tion and HCC-HBV-PDOX-avatars generation.

5. Isolation and cultivation of primary HCC cells obtained from HCC-PDX-avatars

The isolation and cultivation of primary cell culture obtained from subcutaneous xenografts

of HCC-PDX-avatars will be carried out according to the protocol proposed by the Research

laboratory of Xin Chen [59].

If the cell viability is low (< 50%), but the resulting number of cells is high, the method of

Percoll density gradient separation centrifugation will be used as described in the “Increasing

the number of viable cells” section.

Quantitative determination of HBV DNA in the culture supernatant will be performed 2

days after the cell culturing start by the “AmpliSens1HBV Monitor-FRT” kit using QuantStu-

dio 5.

When cells are 80% confluent, they will be dissociated from the well surface using 0.05%

trypsin-EDTA solution and their viability will be evaluated by trypan blue exclusion test using

LUNA-II Automated Cell Counter.

6. HCC-HBV-PDOX-avatars development

5–6-week-old male BALB/c athymic nude mice will be randomly divided into groups, with

7 mice in each group. If high results will be demonstrated in group # 5 of HCC-PDX-avatars,

the animals are divided into 4 groups:

• group #1 mice will be grafted by 1 mm3 tumor fragments obtained from HCC-PDX-avatars

with the highest level of HBV DNA replication;

• group # 2 mice will be grafted by 1 mm3 tumor fragments obtained from group # 6 of

HCC-PDX-avatars and used as HBV-negative control for group #1 of HCC-HBV-PDOX-

avatars;

• group #3 mice will be pre-irradiated with 2 Gy by Xstrahl CIX3 irradiator cabinet under Iso-

flurane anesthesia and grafted by 1 mm3 tumor fragments obtained from group # 4 of

HCC-PDX-avatars;

• group # 4 mice will be pre-irradiated with 2 Gy by Xstrahl CIX3 irradiator cabinet under Iso-

flurane anesthesia and grafted by 1 mm3 tumor fragments obtained from group # 5 of

HCC-PDX-avatars and used as HBV-negative control for group #3 of HCC-HBV-PDOX-

avatars.
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If the level of HBV DNA replication in pre-irradiated HCC-PDX-avatars will be low, the

study will involve only groups # 1 and # 2.

All surgical procedures will be carried out under sterile conditions. Laparotomy will be per-

formed on mice under anesthesia (Isoflurane inhalation; Zoletil + Xyla, 7.5–50 mg/kg and

5–10 mg/kg, respectively, intraperitoneally) to the left of the linea alba. The fibrous capsule

and the parenchyma of the left lobe of the liver will be perforated to 3 mm depth with an aspi-

ration 18G biopsy needle, and a fragment of the liver parenchyma will be extracted. A 1 mm3

subcutaneous neoplasm fragment derived from the HCC-PDX-avatar will be placed in the

formed cavity. Similar manipulations will be performed with the spleens of 4 mice in each

group. The liver and spleen wounds will be closed with Surgicel (Johnson & Johnson, USA)

[55, 60, 61]. Muscle wounds will be sutured continuously with Vicryl W9113 4/0. Skin wounds

will be sutured continuously with Ethilon 4/0. Skin sutures will be treated with Terramycin

aerosol spray (Zoetis Inc, USA) once. After surgical procedures animals will be treated with

Ketoprofen 1% solution (Merial, France) subcutaneous injection, 2 mg/kg, once a day, 1–3

days.

AFP, HBsAg and HBV DNA levels, biochemical blood analysis, complete blood count,

HBsAg in vivo fluorescent intensity imaging, mice weight and xenograft growth will be esti-

mated as described in the “HCC-PDX-avatars development” section.

Humane endpoints and the method of euthanasia will be the same as described in the

“HCC-PDX-avatars development” section.

7. Morphology studies design

It is planned to perform macro-and micromorphological evaluations.

Macromorphological evaluation will be performed during the necropsy process.

Herewith the size and mass of the xenograft, liver and spleen, as well as other pathological

changes (if available) will be determined.

Formalin fixation and paraffin embedding of tissues will be performed according to the

standard procedure [62].

The paraffin-embedded tissues sectioning will be carried out by rotary microtome Rotary

3003 (PFM medical, Germany).

Micromorphological evaluation will be performed according to the routine H&E staining

technique of paraffin-embedded tissue sections [62].

IHC staining of paraffin-embedded tissue sections will be performed according to the mod-

ified protocol described by Liu et al [39]:

• Tissue blocks will be cut, mounted on microscope slides and heated at a temperature of 56

˚C for 20 minutes in a dry oven.

• Paraffin will be removed with xylene, and the tissues are consistently rehydrated by reducing

the concentration of ethanol (100%, 90%, 70%) to deionized water.

• Antigen will be extracted using the pre-treatment module for tissue specimens PT Link

(Dako, Agilent Technologies, USA) using a 10 mM sodium citrate buffer (pH 6,0).

• Slides will be washed 3 times in 1xPBS for 5 minutes with gentle agitation.

• Tissue samples will be blocked for 1 hour with PBS supplemented with 10% goat serum

donor herd (G6767-100ML, MilliporeSigma, USA) at room temperature in a light-protected

chamber.

• Slides will be washed twice in 1xPBS and once in PBS-1% Tween-20 for 15 minutes with gen-

tle agitation.
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• Tissue samples will be treated with the Mouse on Mouse Polymer IHC Kit (ab269452,

Abcam, UK) for 30–60 minutes at room temperature in a light-protected camera.

• Slides will be washed twice in 1xPBS and once in PBS-1% Tween-20 for 15 minutes with gen-

tle agitation.

• Slides will be incubated with specific primary antibodies in a light-protected chamber at 4 ˚C

overnight: HBcAg monoclonal antibody (MA1-7607, Thermo Fisher Scientific, USA) and

AFP rabbit polyclonal antibody (PA5-16658, Thermo Fisher Scientific, USA) resuspended in

blocking buffer.

• Slides will be washed 3 times in 1xPBS for 5 minutes with gentle agitation.

• After that, slides will be stained with corresponding secondary antibodies for 1 hour at room

temperature in a light-protected chamber: goat anti-mouse IgG (H+L) highly cross-adsorbed

secondary antibody, Alexa Fluor 488 (A-11029, Thermo Fisher Scientific, USA) and goat

anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, PE (P-2771MP, Thermo Fisher

Scientific, USA) resuspended in blocking buffer.

• Slides will be washed 3 times in 1xPBS for 5 minutes with gentle agitation.

• Nuclei will be counterstained using DAPI (D9542-10 MG, MilliporeSigma, USA).

• Slides will be washed 3 times in 1xPBS for 5 minutes with gentle agitation.

• Slides will be dried for 1–2 hours at room temperature in a light-protected chamber.

Slides will be examined using an inverted research microscope Olympus IX73 (Olympus

Corporation, Japan).

8. Data analysis

Data analysis and graphing will be performed using Mann-Whitney U test, Kruskal-Wallis

H test and three-way analysis of variance (ANOVA) by Prism 9 (GraphPad Software, USA).

Data fluorescent intensity images will be performed using Kuant software (Vilber Lourmat,

France).

Discussion

High levels of HBV DNA in the blood serum of patients correlate in clinical conditions with

the accumulation of liver damage, resulting to cirrhosis and HCC development [25]. There-

fore, the simulation of the clinical features of HBV infection requires animal models to ade-

quately display the disease course. The methods of creating HCC-HBV-PDOX-avatars made it

possible to conduct in vivo studies, including therapeutic protocols, directly on models as close

to the original as possible. Therefore, we set ourselves the goal to evaluate the effectiveness of

the protocols for isolation and cultivation of primary HCC cells described in the literature and

the methods for introducing xenografts into the animal according to the following criteria:

• number of isolated viable primary HCC cells;

• viability of primary HCC cells during cultivation;

• efficiency of in vitro HBV DNA replication;

• effectiveness of xenograft engraftment in the mouse;

• effectiveness of in vivo HBV DNA replication;
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• correlation between the results of measurements of AFP levels, biochemical blood analysis

(ALT, AST, TB, CB, AP, GGT, Chol) and complete blood count obtained during the study

with similar data obtained from donors.

The primary HCC cells isolation protocol will be considered acceptable if the number of

viable HCC cells is not less than 50%.

The primary HCC cells viability will be considered acceptable if the cell’s monolayer is

achieved within 5 days in a 6-well plate.

The efficiency of in vitro HBV replication will be considered acceptable if the amount of

DNA will reach 10±7x105 viral copies/mL of the supernatant during the cultivation period

[63].

The effectiveness of xenograft engraftment in the mouse will be considered acceptable if the

size of the tumor increases during the period of endpoints reaching.

The efficiency of in vivo HBV DNA replication will be considered acceptable if the level of

HBV DNA in blood reaches 10±6x105 viral copies/mL [64].

Our proposed model differs from the existing ones by the low invasiveness of surgical

manipulations with animals. In addition, it is expected that X-ray pre-irradiation of the total

mouse body and step-by-step transplantation will improve engraftability of the tumor and

reduce the “graft versus host” reaction.

Our study will be the first extensive comparative study of popular modern methods and

protocols for the isolation and cultivation of primary HCC cells and the establishment of

HCC-HBV-PDOX-avatars for the study of chronic HBV infection. It will be the first large-

scale study of in vivo AFP and HBsAg distribution and localization, performed on the small

animal optical imaging system Newton 7.0 FT-500 and confirmed by images. All protocols will

be optimized and characterized. Some methods will be considered as “research-use only”, oth-

ers will be recommended for use in translational biomedical research.
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