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ADAMTS5 is involved in the pathogenesis of OA. As the major aggrecanase-degrading
articular cartilage matrix, ADAMTS5, has been regarded as a potential target for OA
treatment. We here provide an updated insight on the regulation of ADAMTS5 and newly
discovered therapeutic strategies for OA. Pathophysiological and molecular mechanisms
underlying articular inflammation and mechanotransduction, as well as chondrocyte
hypertrophy were discussed, and the role of ADAMTS5 in each biological process was
reviewed, respectively. Senescence, inheritance, inflammation, and mechanical stress are
involved in the overactivation of ADAMTS5, contributing to the pathogenesis of OA.
Multiple molecular signaling pathways were observed to modulate ADAMTS5 expression,
namely, Runx2, Fgf2, Notch, Wnt, NF-κB, YAP/TAZ, and the other inflammatory signaling
pathways. Based on the fundamental understanding of ADAMTS5 in OA pathogenesis,
monoclonal antibodies and small molecule inhibitors against ADAMTS5 were developed
and proved to be beneficial pre-clinically both in vitro and in vivo. Recent novel RNA
therapies demonstrated potentials in OA animal models. To sum up, ADAMTS5 inhibition
and its signaling pathway–based modulations showed great potential in future therapeutic
strategies for OA.
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INTRODUCTION

Osteoarthritis (OA) is one of the most common chronic joint lesions, mainly affecting people aged
50–75 years, with an approximate prevalence of 4–5% in the hand, 6% in the hip, and 16–17% in the
knee in the general population (Hunter and Bierma-Zeinstra, 2019). OA is characterized by articular
cartilage loss, subchondral bone sclerosis, and osteophyte formation (Loeser et al., 2012).
Etiologically, primary OA is driven by a combination of inheritance, aging, obesity,
inflammation, and biomechanical risk factors. Dysregulation of signaling pathways, especially
the activation of proinflammatory pathways, promotes the overactivation of matrix-degrading
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enzymes and exacerbates the degradation of cartilage
extracellular matrix (ECM) (Glyn-Jones et al., 2015). Collagens
and aggrecan are both pivotal structural components of cartilage
ECM, and their degradation is a significant event at the early stage
of OA (Maldonado and Nam, 2013). It has been documented that
matrix metalloproteinases (MMPs, especially MMP-13) and a
disintegrin and metalloproteinase with thrombospondin motifs
(ADAMTSs, especially ADAMTS4 and ADAMTS5) facilitate
type II collagen and aggrecan degradation, respectively (Verma
and Dalal, 2011).

ADAMTSs are a family of zinc metalloendopeptidases that
participate in diverse biological processes, such as procollagen
processing, ECM remodeling, inflammation, cell migration, and
vascular biological processes (Kelwick et al., 2015). In particular,
ADAMTS5 (aggrecanase-2) overexpression is a key risk factor in
degenerative joint diseases and intervertebral disc degeneration
(Wu et al., 2014; Santamaria, 2020).

ADAMTS4 and ADAMTS5 are thought to analogously
mediate aggrecan cleavage. However, the protective effects of
Adamts5 gene knockout and ADAMTS5-specific antibodies in
surgically induced OA mouse models emphasize that ADAMTS5
is the major aggrecan-degrading enzyme in OA (Glasson et al.,
2004; Glasson et al., 2005; Apte, 2016). Therefore, ADAMTS5 has
long been regarded as a potential target for OA treatment.
However, as the balance between matrix synthesis and
degradation is critical for ECM structure and tissue
homeostasis, direct inhibition of ADAMTS5 has aroused great
concern. For instance, ADAMTS5 knockout can lead to
deleterious accumulation of proteoglycan in the adult
cardiovascular system and disrupt aortic wall mechanics in
mice (Dupuis et al., 2011; Dupuis et al., 2013; Fava et al.,
2018; Dupuis et al., 2019). Recently, updated knowledge
regarding ADAMTS5 regulatory factors and the preclinical
discovery of potential disease-modifying drugs have provided
more options for OA treatment. Thus, comprehensive insight
into the biological functions and molecular regulation of
ADAMTS5, supplemented by the current developmental stages
of diverse classes of drugs, may be necessary to better understand
the involvement of ADAMTS5 in OA and identify future
therapeutic strategies.

Functions and Regulation of ADAMTS5 in
Normal Cartilage Extracellular Matrix
Aggrecan is a major component of cartilage and protects
collagens against degradation (Pratta et al., 2003). Aggrecan
glycosaminoglycan chains provide a gel-like structure and
mechanical resistance in joints (Kiani et al., 2002). Increased
levels of aggrecan fragments are a typical pathological change in
cartilage and may serve as a severity indicator for OA (Roughley
and Mort, 2014).

Aggrecan can be cleaved by ADAMTS family members,
including ADAMTS1, ADAMTS4, ADAMTS5, ADAMTS8,
and ADAMTS15 (Santamaria, 2020). Among these ADAMTSs
with aggrecan-degrading activity, ADAMTS4 and ADAMTS5
tend to bemost efficient (Tortorella andMalfait, 2008). These two
aggrecanases are regarded as critical factors in metabolism,

homeostasis, and pathological changes of joint ECM.
Structurally, from the N- to C-terminus, ADAMTS5 is
composed of a signal peptide, a pro-domain, a catalytic
metalloproteinase domain, a disintegrin-like domain, and
other C-terminal ancillary domains (a central thrombospondin
type 1 sequence repeat (central TSR) motif, a cysteine-rich
domain, a spacer region, and an additional TSR motif)
(Kelwick et al., 2015) (Figure 1A). Extracellular excision of the
pro-domain by proprotein convertases, specifically furin and
furin-like enzymes, is essential for ADAMTS5 activation
(Longpré et al., 2009). The catalytic metalloproteinase domain
alone has little proteolytic activity, and the combination of its
C-terminal ancillary domains increased its proteolytic activity
(Gendron et al., 2007). The cysteine-rich domain is critical for the
localization of ADAMTS5 and its binding to the cell surface and
ECM (Gendron et al., 2007). Similar to ADAMTS4, the cysteine-
rich domain of ADAMTS5 is also critical for its interaction with
the glycosaminoglycan chains of aggrecan, and the central TSR
motif is necessary for aggrecan recognition and cleavage
(Tortorella et al., 2000; Flannery et al., 2002; Fushimi et al.,
2008). Exosites in the spacer region are responsible for substrate
recognition and proteolysis (Santamaria et al., 2019).

ADAMTS5 is expressed at low levels in various tissues,
including the placenta, heart, lung, skeletal muscle, tendon,
cartilage, and synovium (Fagerberg et al., 2014). Breakdown

FIGURE 1 | Structure of human ADAMTS5 and Aggrecan. (A) Human
ADAMTS5 domain structure. Thrombospondin type 1 sequence repeat,
central TSR. (B) Structure of Aggrecan. ADAMTS5-mediated cleavage within
the aggrecan occurs at (glutamate) Glu-Xaa (where Xaa � alanine,
glycine, and leucine) recognition motifs. Abbreviations: globular domains,
G1-3; interglobular domain, IGD; keratan sulfate attachment domain, KS;
chondroitin sulfate attachment domains, CS-1 and -2.
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products of cartilage ECM can enhance MMP-13 and ADAMTS5
expression and activation (Jung et al., 2019). ADAMTS5 zymogen
in the ECM is inactive and can be activated extracellularly by
removal of its pro-domain (Longpré et al., 2009). Activated
ADAMTS5 cleaves the aggrecan core protein at its specific
recognition motifs, for example, the glutamate (Glu) 373-
alanine (Ala) 374 bond (Glu392-Ala393 bond in the modern
nomenclature, UniPort ID P16112) in its interglobular domain,
as well as other specific sites, leading to loss of integrity of
aggrecan molecules (Kiani et al., 2002; Little et al., 2007)
(Figure 1B). Under physiological conditions, the aggrecanase
activity of ADAMTS5 in cartilage can be inhibited by its
endogenous inhibitor, tissue inhibitor of metalloproteinase 3
(TIMP3) (Figure 2). TIMPs are expressed in connective
tissues and play an important role in the inhibition of MMPs
(Brew et al., 2000). TIMP3, with its distinct N-terminal inhibitory
domain, has a strong inhibitory effect on ADAMTS4 and
ADAMTS5 (Kashiwagi et al., 2001). After forming a complex
with TIMP3, ADAMTS5 can therefore be cleared by
chondrocytes through lipoprotein receptor-related protein 1
(LRP-1)–mediated endocytosis in cartilage tissue (Yamamoto
et al., 2013) (Figure 2). In cartilage, the cysteine-rich domain
and the spacer region of ADAMTS5 are involved in effective
binding to the sulfated proteoglycans at the cell surface or the
ECM (Gendron et al., 2007). The central TSR motif and the
spacer region can also be identified by LRP-1, leading to
ADAMTS5 clearance. Thus, ADAMTS5 and TIMP3 can be
endocytosed independently or as a complex. LRP-1 is an
important regulator of normal cartilage homeostasis, and the
location and activity of ADAMTS5 are determined by
competition between the ECM and LRP-1.

ADAMTS5 in the pathogenesis of OA In Vitro
and In Vivo.
Cytological studies and animal models recapitulating OA
enhance the understanding of disease progress and the
evaluation of therapeutic modalities. Desirable biomarkers of
OA can effectively assist indications for OA stages and
monitor treatment responses (Gu et al., 2019). Since aggrecan
destruction in synovial fluid is a hallmark at the early stage of OA,
the major aggrecanase, ADAMTS5, is identified as a potential
biomarker for the prediction of OA progression (Saberi Hosnijeh
et al., 2019).

Genetic polymorphisms inADAMTS5 in different populations
were also identified to be associated with susceptibility to OA.
Bioinformatic analysis on 2,715 patients with OA and 1,185
controls in a European Caucasian population identified two
single-nucleotide polymorphisms at ADAMTS5 gene loci
(Rodriguez-Lopez et al., 2008). These two nonsynonymous
variants appeared clustered in patients with severe OA and
resulted in an aberrant amino acid sequence of encoded
ADAMTS5. Furthermore, another genetic variant in
ADAMTS5, rs2830585, was identified in a Chinese population
with 300 pairs of OA patients and control subjects (Zhou et al.,
2019).

ADAMTS5, as one of the key downstream responders, was
upregulated in OA models in vitro and in vivo (Song et al., 2007;
Johnson et al., 2016). Moreover, cartilage destruction was rescued
in Adamts5 knockout mice with posttraumatic OA, while mice
with deletion of Adamts4 developed OA (Glasson et al., 2004;
Glasson et al., 2005). In the joints and serum of rats with surgery-
induced OA, the expression of ADAMTS5 was markedly
increased along with OA progression (Elsadek et al., 2019).

FIGURE 2 | Activation and degradation mechanism of ADAMTS5 in vivo. In normal cartilage, ADAMTS5 is activated under the stimulation of inflammatory factors or
breakdown products in cartilage ECM. After the removal of its pro-domain by furins, activated ADAMTS5 cleaves the aggrecan core protein at its specific Glu-Xaa
recognition motifs. ADAMTS5 can be inhibited by its endogenous inhibitor, TIMP3. ADAMTS5, together with TIMP3 are subsequently endocytosed by chondrocyte via
LRP-1 receptor and degraded. Abbreviations: tissue inhibitor of metalloproteinase 3, TIMP3; lipoprotein receptor–related protein 1, LRP-1.

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 7031103

Jiang et al. Recent Articular Progress of ADAMTS5

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


These studies suggested a critical role of ADAMTS5 in OA
development and implied that ADAMTS5 can serve as not only a
predictive biomarker of OA staging and prognosis but also a
potential target for OA therapy. Thus, a comprehensive
understanding of ADAMTS5 regulatory pathways is required.

Signaling Pathways Regulating ADAMTS5
Expression in the OA Pathological Process
Several signaling pathways are involved in ADAMTS5
modulation in the pathophysiological process of OA, such as
Runx2 signaling, Fgf2 signaling, Notch signaling, Wnt signaling,
YAP/TAZ signaling, and inflammatory signaling pathways (Chia
et al., 2009; Hosaka et al., 2013; Ji et al., 2016a; Deng et al., 2018;
Catheline et al., 2019; Wang et al., 2019). The regulation of
ADAMTS5 and the crosstalk of each signaling pathway are
discussed below.

Runx2 Signaling and Fgf2 Signaling
Runt-related transcription factor 2 (RUNX2) is a key
transcription factor in osteoblast proliferation and
differentiation (San Martin et al., 2009). RUNX2 is strictly
expressed in the nucleus of osteoblasts and regulates the cell
cycle via its oscillating level of expression (San Martin et al.,
2009). Moreover, RUNX2 can respond to mechanical signals and
affect bone homeostasis (Kanno et al., 2007). In human OA
cartilage, high expression of RUNX2 was detected (Zhong et al.,
2016; Chen et al., 2020). RUNX2 is also responsible for
hypertrophic differentiation of chondrocytes, which is a
characteristic change in the development of OA (Dreier, 2010;
Catheline et al., 2019).

Analysis of the ADAMTS5 promoter sequence identified four
binding sites for the RUNX family, among which RUNX2

exhibited strong affinity (Thirunavukkarasu et al., 2007). In
mechanical stretch-exposed OA chondrocytes, the expression
of ADAMTS5 was overactivated by RUNX2 (Tetsunaga et al.,
2011). In this literature, RUNX2 might have a role as a key
downstream mediator of MAPK and p38 to regulate mechanical
stress–induced ADAMTS5 expression (Figure 3). This trend
was also confirmed in surgically induced OA mice: the
progression of OA was significantly decelerated in Runx2
knockout mice compared with control mice (Liao et al.,
2017). A decrease in the expression of ADAMTS5 was also
confirmed by immunohistochemical analysis in this study (Liao
et al., 2017). Recently, WW domain-containing protein 2
(WWP2), a kind of E3 ubiquitin ligase in osteoblasts, was
shown to inhibit the expression of ADAMTS5 through
ubiquitination and degradation of RUNX2 (Mokuda et al.,
2019).

Fibroblast growth factor 2 (FGF2), a growth factor involved in
many biological processes, is implicated in chondrocyte
differentiation and maintaining cartilage homeostasis and is
highly associated with the severity of OA (Ellman et al., 2013;
Yan et al., 2012). RUNX2 can be activated by FGF2 (Qi et al.,
2020; Ji et al., 2016b). FGF2 molecules can elicit RUNX2
activation through the MAPK/ERK pathway and eventually
modulate ADAMTS5 (Ji et al., 2016b; Xiao et al., 2002)
(Figure 3). Notably, in human OA chondrocytes treated with
FGF2 for a short time (mostly less than 1 h), FGF2 was shown to
inhibit ADAMTS5 expression and thus retard cartilage
destruction (Sawaji et al., 2008), while after long-term
treatment (more than 2 h), FGF2 was likely to activate
RUNX2-mediated ADAMTS5 upregulation (Ji et al., 2016b).
This effect may be responsible for the temporal expression
pattern of ADAMTS5 in OA, although the detailed
mechanism remains unclear.

FIGURE 3 | Overview of signaling network in ADAMTS5 regulation in chondrocytes. Mechanical stimulation, cell differentiation signals, and inflammatory
environment are primary initiators to ADAMTS5 overexpression in OA. Signaling pathways were illustrated with recent insights, such as Runx2 signaling, Notch signaling,
Wnt/β-catenin signaling, and cytokine-mediated signaling pathways, and some newly discussed signaling pathways, such as YAP/TAZ signaling and Sox4 signaling are
presented in this schematic presentation.
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Yes-Associated Protein/TAZ Signaling
Yes-associated protein (YAP)/transcriptional coactivator with
PDZ-binding motif (TAZ) signaling are important not only
for mediating tissue growth, cell fate, and tissue
morphogenesis but also in the development of cartilage
(Vanyai et al., 2020). YAP signaling is regulated by upstream
Hippo-dependent and independent signaling, such as mechanical
cues, metabolic signals, and other signaling pathways (Dupont,
2016). YAP can inhibit chondrocyte maturation by suppression
of Collagen type X alpha 1 chain (COL10A1) expression through
interaction with RUNX2 (Deng et al., 2016).

Overexpression of YAP was observed in cultured
chondrocytes and surgery-induced animal OA models (Gong
et al., 2019). Furthermore, inhibition of YAP can reduce
interleukin-1β (IL-1β)–induced expression of MMP13 and
ADAMTS5 and retard cartilage degradation in OA mice
(Gong et al., 2019). While inhibition of YAP expression can
ameliorate osteoarthritic cartilage degradation, other studies have
revealed that YAP plays a protective role as an inflammatory
inhibitor in the progression of OA (Deng et al., 2018). In addition,
both Yap knockout and overexpression of YAP promote cartilage
disruption, indicating that YAP regulates cartilage homeostasis in
a biphasic manner (Deng et al., 2018; Zhang et al., 2019; Vanyai
et al., 2020).

Hippo signaling is triggered by mechanical stimulation and
phosphorylates its downstream effectors YAP/TAZ. Mechanical
stimulation can also mediate YAP activity in the Hippo-
independent signaling pathway, which requires Rho GTPase
activity and tension of the actomyosin cytoskeleton (Dupont
et al., 2011). The opposite effects triggered by mechanical
inputs converge on the regulation of YAP/TAZ.
Unphosphorylated YAP/TAZ is transported into the nucleus
to promote downstream ADAMTS5 transcription, while
phosphorylated YAP/TAZ is degraded in cytoplasm (Zhao
et al., 2011) (Figure 3).

Notch Signaling
As a juxtacrine cellular signaling pathway, Notch signaling
modulates cell differentiation and adult tissue homeostasis,
including cartilage formation and pathology (Bray, 2016;
Dowthwaite et al., 2004). In mice with surgically induced OA,
Notch signaling is overactivated and participates in OA
development (Saito and Tanaka, 2017). Generally, Notch
signaling is initiated when the NOTCH receptor is cleaved by
related proteinases after receiving signals from NOTCH ligands
on adjacent cells (Kopan and Ilagan, 2009). The NOTCH receptor
is a single-pass transmembrane receptor on the cell surface that is
composed of an extracellular fragment, a membrane-tethered
fragment and the NOTCH intracellular domain (NICD)
(Chillakuri et al., 2012). Two main proteinases take part in the
cleavage of the NOTCH receptor, a disintegrin and
metalloproteinase 10 (ADAM10) and γ-secretase, which
release NICD from NOTCH receptors. Gene transcription in
the nucleus is subsequently regulated by the interaction of NICD
with trans-acting elements, such as recombination signal binding
protein for Ig kappa J (RBPjκ) and the coactivator Mastermind
(MAM) (Nam et al., 2006; Wilson and Kovall, 2006) (Figure 3).

Specifically, a downstream transcriptional repressor of Notch
signaling, HES1, is upregulated (Kageyama et al., 2007). Once
upregulated, HES1 is switched to an activator by its cofactor and
directly upregulates the transcription of Adamts5 and Mmp13 in
OA (Sugita et al., 2015) (Figure 3). In Hes1 knockout OA mice,
the expression level of ADAMTS5 and MMP13 was
downregulated, and no significant histomorphometric
difference was observed between OA mice and controls (Sugita
et al., 2015). In addition, the joint cartilage of Rbpjκ knockout
mice also presented OA-like histological changes, indicating a
requisite role of Notch signaling in articular cartilage and joint
maintenance (Hosaka et al., 2013; Mirando et al., 2013).

Wnt Signaling
TheWnt/β-catenin signaling pathway is involved in physiological
and pathological changes in articular cartilage and is also
regarded as a potential therapeutic target of OA (Wang et al.,
2019). Wnt comprises a diverse family of extracellularly secreted
glycoproteins with various receptors. Canonical Wnt/β-catenin
and noncanonical signaling pathways participate in numerous
biological processes, such as cell proliferation, differentiation, cell
fate determination, and tissue homeostasis (Steinhart and Angers,
2018). Accumulating evidence implies an important role for Wnt
signaling in OA pathogenesis. In transgenic surgery-induced OA
mice with constitutive activation of β-catenin, sustained
expression of ADAMTS5 was observed (Rockel et al., 2016).

Reportedly, activation of Wnt/β-catenin signaling by bone
morphogenetic protein 2 (BMP2) contributed to upregulation of
ADAMTS5 and severe conditions of OA (Papathanasiou et al.,
2012). The results of this study suggested that BMP2 was able to
activate Wnt signaling via low-density lipoprotein
receptor–related protein 5 (LRP-5), a key component involved
in the canonical Wnt pathway. This Wnt pathway signaling
promotes the binding of its downstream factor, lymphoid
enhancer factor-1 (LEF1), to the ADAMTS5 promoter and
initiation of ADAMTS5 transcription (Figure 3).

Inflammatory Signaling Pathways
Cultured human chondrocytes and cartilage explants could be
induced as in vitro OA models by inflammatory factors, such as
IL-1β, tumor necrosis factor-α (TNF-α), and nuclear factor-κB
(NF-κB). In those human OA models, the expression of
ADAMTS5 was not significantly changed (Tortorella et al.,
2001; Bau et al., 2002), suggesting constitutive expression of
ADAMTS5 (Verma and Dalal, 2011; Bondeson et al., 2006;
Bondeson et al., 2008). However, some studies in murine
chondrocytes revealed that ADAMTS5 expression could be
promoted by IL-1 (Ji et al., 2016a; Stanton et al., 2005). In
human and mouse chondrocytes, ADAMTS5 might be
differentially regulated. A recent study elucidated that IL-1β
induced the overexpression of ADAMTS5 via the AP-1/
microRNA-30a (miR-30a) axis (Ji et al., 2016a) (Figure 3).
Notably, miR-30a belongs to a family of small endogenous
noncoding RNAs, which play a role in posttranscriptional
repression of gene expression (Miyaki and Asahara, 2012).
Activator protein 1 (AP-1) elicited by IL-1β molecules can
bind to the promoter of miR-30a and initiate its expression (Ji
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et al., 2016a). In the chondrogenic ATDC5 cell line, enhanced
ADAMTS5 expression was also elicited under IL-1β treatment
(Kobayashi et al., 2013).

Interleukin 6 (IL-6) is a cytokine with pleiotropic functions
and is an essential initiator of inflammation and immunity
(Tanaka et al., 2012). The continual overexpression of IL-6 is
responsible for chronic inflammation and autoimmunity (Tanaka
et al., 2014). Signal transducer and activator of transcription
(STAT), mainly STAT3, is the main downstream effector element
triggered by IL-6 molecules (Mihara et al., 2012). The expression
level of IL-6 in serum and synovial fluid is associated with OA,
and treatment of chondrocytes with IL-6 is a common method in
OA model establishment (Tsuchida et al., 2012). A significant
increase in ADAMTS5 expression was observed in
IL-6-stimulated chondrocyte culture, as well as in mice with
intra-articular injection of IL-6 (Legendre et al., 2005; Ryu
et al., 2011). Recently, Latourte et al. (2017) found that IL-6
upregulated the expression of ADAMTS5 via the activation of
downstream STAT3 in vitro (Latourte et al., 2017) (Figure 3). In
addition, decreased expression levels of ADAMTS5 and
decreased severity of OA were observed in both systemic
inhibition of IL-6 and STAT3 blockade in a surgically induced
OA mouse model (Latourte et al., 2017). This study provided
strong evidence that ADAMTS5 can be upregulated via the
IL-6/STAT3 pathway under the inflammatory conditions in OA.

NF-κB is a transcription factor stimulated by cytokines and
ECM fragments in OA. NF-κB has long been recognized as a
potential therapeutic target in OA (Rigoglou and Papavassiliou,
2013). There are three NF-κB binding motifs in the promoter of
ADAMTS5, −1,196/−1,187 bp region, −896/−887-bp region, and
−424/−415-bp region (Kobayashi et al., 2013). p65, also known as
RelA, is one of the five components that form the NF-κB
transcription factor family (Chen and Greene, 2004). Specific
binding between p65 and NF-κB bindingmotifs in theADAMTS5
promoter suggested a transcriptionally induction of ADAMTS5
expression during osteoarthritis development (Kobayashi et al.,
2013). While NF-κB signaling is known to take part in
inflammation in OA, it also responds to excessive mechanical
loading and accelerates OA progression. Gremlin-1 is an
inhibitor of BMPs and can be induced by mechanical stretch.
Gremlin-1 activated by excessive mechanical loading can activate
NF-κB signaling, resulting in the induction of ADAMTS5 (Chang
et al., 2019).

Other Involved Pathways
Sex-determining region Y-box 4 (SOX4) belongs to the SOXC
subgroup of the SOX family and is a transcription factor involved
in embryonic development and cell fate determination (Moreno,
2020). It has been reported that SOXC family members play a role
in skeletal development (Lefebvre and Bhattaram, 2016).
Overexpression of ADAMTS4 and ADAMTS5 can be induced
by SOX4 in an inflammatory environment and mechanical stress
in chondrogenic cell lines (Takahata et al., 2019). Chromatin
immunoprecipitation assays showed that SOX4 molecules
directly bound to the promoter sequences of ADAMTS4 and
ADAMTS5 and modulated their transcription (Takahata et al.,
2019). In skeletogenesis, SOX4 is involved in the promotion of

canonical and noncanonical Wnt signaling, which is vital in OA
(Bhattaram et al., 2014; Kato et al., 2015). Retinoic acid, with the
ability to potentiate inflammatory cytokines, is commonly used to
mimic OA in chondrocyte cell lines (Davies et al., 2009). In
superficial zone cells of articular cartilage treated with retinoic
acid, SOX4 expression was markedly induced (Takahata et al.,
2019). However, trans-acting elements of SOX4 in OA have not
been identified. Further studies are required to explore the
mechanisms controlling SOX4 in OA.

These signaling pathways are not mutually independent but
form a complex network in ADAMTS5 regulation through their
interactions. For example, inhibition of YAP significantly
enhances the expression of RUNX2 in chondrocyte
differentiation, while YAP overexpression significantly
downregulates the expression of RUNX2 (Zhang et al., 2019).
TAZ also participates in FGF2 signaling and activates RUNX2-
mediated transcription of targeted genes (Byun et al., 2014). The
Wnt/β-catenin pathway and Hippo/YAP signaling pathway can
both be activated by Piezo1/2-mediated mechanical signals in
joints (Zhou et al., 2020).

In this section, we assume that the activation of ADAMTS5 is a
converged output of a complex molecular network including
mechanical loading responses, chondrocyte differentiation, and
inflammatory responses (Table 1).

Potential Therapies in OA Targeting
ADAMTS5
In healthy articular cartilage, the balance between matrix
synthesis and degradation is dynamically maintained.
Overactivation of matrix remodeling and the inflammatory
response are major events in synovial joints in the context of
senescence, mechanical stress, and proinflammatory cytokines. In
addition, analgesics and nonsteroidal anti-inflammatory drugs
are still clinical choices to relieve symptoms of OA (Alcaraz et al.,
2019). No disease-modifying OA drugs have ever been applied in
clinical treatment. Notably, in recent years, therapeutic options
designed to modulate the expression and activity of ADAMTS5,
for instance, monoclonal antibodies, small synthetic molecule
inhibitors, small interfering RNAs (siRNAs), miRNAs, and
injectable agents for ADAMTS5 blockade, have arisen as
potential alternatives for OA treatment (Table 2).

Monoclonal Antibodies and Small Molecule
Inhibitors
Selective and high-affinity antibodies have been evaluated as
direct attempts to block ADAMTS5 catalytic activity and
reduce cartilage damage (Santamaria and de Groot, 2019).
Antibody-based inhibitors, such as CRB0017, GSK2394002,
and M6495, were selected and exhibited the efficacy of
ADAMTS5 inhibition in vivo (Chiusaroli et al., 2013; Larkin
et al., 2015; Santamaria et al., 2015; Siebuhr et al., 2020). M6495,
which has completed phase 1 clinical trials, is an antibody that
selectively binds to the catalytic metalloproteinase domain and
inhibits ADAMTS5 in vitro, reducing aggrecan cleavage in OA
joints (Siebuhr et al., 2020). However, due to potential side effects,
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TABLE 1 | Signaling pathways that involve in ADAMTS5 regulation in the pathophysiological process of OA.

Signaling Biological processes Mechanism Reference

Runx2
signaling

Mechanical stimulationHypertrophic
differentiation

RUNX2 is a downstream target of p38 and MAPK, and can bind to the promoter
sites of ADAMTS5 and regulate its expression

Kanno et al. (2007)

WWP2 can repress the expression of ADAMTS5 through ubiquitination and
degradation of RUNX2 in osteoblasts

Mokuda et al. (2019)

FGF2 signaling Chondrocyte differentiation FGF2 can elicit RUNX2 activation through MAPK/ERK pathway and modulate
ADAMTS5 expression

Ji et al. (2016a)

YAP/TAZ
signaling

Mechanical stimulation Unphosphorylated YAP/TAZ, mediated by both hippo-dependent and
independent signaling pathways, is transported into the nucleus to promote
downstream ADAMTS5 transcription

Zhao et al. (2011)
Chondrocyte differentiation Gong et al. (2019)

Notch
signaling

Chondrocyte differentiation RBPjκ and MAM, which are activated by NICD from NOTCH receptors, can
upregulate the expression of HES1 and following ADAMTS5

Sugita et al. (2015)
Saito and Tanaka,
(2017)

Wnt
signaling

Chondrocyte differentiation BMP2-induced Wnt/β-catenin signaling promotes its downstream factor, LEF1, to
bind to ADAMTS5 promoter and to initiate its transcription

Papathanasiou et al.
(2012)

IL-1
signaling

Inflammatory response IL-1β can induce the overexpression of ADAMTS5 via AP-1/microRNA-30a (miR-
30a) axis

Ji et al. (2016b)

IL-6
signaling

Inflammatory response IL-6 can upregulate the expression of ADAMTS5 via the activation of downstream
STAT3

Latourte et al. (2017)

NF-κB
signaling

Inflammatory response NF-κB, especially p65, stimulated by cytokines and ECM fragments can bind to the
promoter of ADMATS5 and upregulate its expression

Kobayashi et al. (2013)

Mechanical stimulation Gremlin-1 activated by excessive mechanical loading can activate NF-κB signaling,
resulting in induction of ADAMTS5

Chang et al. (2019)

SOX4
signaling

Mechanical stimulation SOX4 molecules induced by retinoic acid can directly bind to the promoter
sequences of ADAMTS5 and modulate its transcription

Takahata et al. (2019)
Inflammatory response

TABLE 2 | Potential drugs targeting ADAMTS5 in OA therapy.

Drug type Drug name Mechanism Status Reference

Monoclonal
antibodies

CRB0017 CRB0017 binds to the spacer domain of ADAMTS5 and reduce its
proteolytic activity

Preclinical Chiusaroli et al.
(2013)

GSK2394002 GSK2394002 binds to catalytic/disintegrin-like domains Preclinical Larkin et al. (2015)
2D3, 2D11, 2D5, and 2B9 2D3 and 2D11 react with epitopes in the catalytic/disintegrin-like

domains of ADAMTS5
Discovery Santamaria et al.

(2015)
2D5 binds to thrombospondin type 1 motif and 2B9 binds to the spacer
domain

M6495 M6495 binds to the catalytic and/or disintegrin-like domain Clinical (phase 1) AS Siebuhr et al.
(2020)

Sheddase antibodies Monoclonal antibodies selectively inhibit the LRP-1 sheddases to
promote the endocytosis of ADAMTS5

Preclinical Yamamoto et al.
(2017)

Syndecan 4 specific
antibody

Injection of syndecan 4 specific antibody blockes ADAMTS5 protein
maturation

Preclinical Echtermeyer et al.
(2009)

Small molecule
inhibitors

AGG-523 A reversible, non-hydroxamate, zinc-binding selective inhibitor to both
ADAMTS5 and ADAMTS4 developed by Wyeth/Pfizer

Discontinued
(phase 1)

Chockalingam et al.
(2011)

Compounda A series of compounds with carboxylate zinc-binding group Discovery Shiozaki et al. (2011)
Compound 15f, 13g,
13eb

A series of nonclassical zinc-binding group compounds selected via
encoded library technology

Discovery Deng et al. (2012)

Compound 7 A compound with zinc-binding group moieties in hydantoin series Preclinical Durham et al. (2017)
GLPG1972 A compound with zinc-binding group moieties in hydantoin series Clinical (phase 2) Brebion et al. (2021)
Glycoconjugated
arylsulfonamide

A compound with positively charged residue-binding ability to the
disintegrin-like domain of ADAMTS5

Discovery Santamaria et al.
(2021)

RNAs ADAMTS5 siRNA ADAMTS5 siRNA silences ADAMTS5 gene by interfering with its mRNA
translation

Preclinical Chu et al. (2013)
Hoshi et al. (2017)

miRNA-140 miRNA-140 is located in one intron of WWP2 gene and is a regulator of
cartilage homeostasis

Preclinical Si et al. (2017)

WWP2 mRNA WWP2 mRNA suppresses ADAMTS5 upstream Runx2 signaling Preclinical Mokuda et al. (2019)
ROR2 siRNA ROR2 siRNA suppresses ADAMTS5 upstream YAP/TAZ signaling Preclinical Thorup et al. (2020)
Antisense
oligonucleotides

Antisense oligonucleotides silences ADAMTS5 gene by interfering with
its mRNA translation

Preclinical Garcia et al. (2019)

a(1S,2R, 3R)-2,3-Dimethyl-2-phenyl-1-sulfamidocyclopropanecarboxylates.
bThe core structure of these compounds is triazine pyrrolidine (4-n-propanephenyl)sulfonamide.
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most antibodies fail to progress beyond preclinical expectations,
and only a few are undergoing or have progressed further than
phase 1 clinical trials (Santamaria, 2020) (Table 2). For example,
the risk of cardiovascular side effects was increased upon systemic
administration of GSK2394002 in mice (Larkin et al., 2014). Since
ADAMTS5 also exerts a role in cardiovascular and limb
development (McCulloch et al., 2009; Dupuis et al., 2011), the
long-term impacts of these antibodies need to be investigated
before clinical trials.

Apart from ADAMTS5-specific antibodies, other antibodies
that block ADAMTS5 maturation and function also presented
protective outcomes preclinically. Monoclonal antibodies that
selectively inhibit LRP-1 (ADAMTS5 endocytic receptor)
sheddases reversed OA cartilage degradation (Yamamoto et al.,
2017). Intra-articular injection of inhibitors that block
posttranslational modifications of the ADAMTS5 proprotein
was also used to treat OA mice (Echtermeyer et al., 2009).

Compared with monoclonal antibodies, most small molecule
inhibitors of ADAMTS5 are orally bioavailable (Shiozaki et al.,
2011), while the specificity of small molecule inhibitors is not that
exquisite. Small molecule inhibitors were selected based on the
structure of the ADAMTS5 protein, and the majority of inhibitors
were developed based on the catalytic metalloproteinase domain
(Shiozaki et al., 2011; Chockalingam et al., 2011; Deng et al., 2012;
Durham et al., 2017; Brebion et al., 2021; Nuti et al., 2013). The
zinc-binding group in the catalytic metalloproteinase domain is
the distinguishing structure of these inhibitors, such as
hydroxamate and carboxylate (Shiozaki et al., 2011; Deng
et al., 2012). However, zinc-binding domains widely exist in
many metalloproteinases, which may lead to cross-inhibition
of these drugs (Bakali et al., 2014). Many small molecule
inhibitors were only tested at the discovery/preclinical stage or
discontinued in phase 1 clinical trials (Table 2). GLPG1972 is a
compound with zinc-binding group moieties and belongs to the
hydantoin series (Brebion et al., 2021). After screening,
structure–activity relationship optimization was used to
improve its potency and eventually led to its discovery.
GLPG1972 displayed high potency against ADAMTS5 in
cultured cartilage explants and is now under phase 2 clinical
trials with a high degree of selectivity (Brebion et al., 2021).

Since it is challenging to select suitable drugs among classical
compounds with zinc-binding groups, new strategies are
proposed to circumvent these drawbacks. Specific amino acid
residues in the ancillary domains were targeted for drug
development. For example, glycoconjugated arylsulfonamide
was identified to target the disintegrin-like domain of
ADAMTS5 with its positively charged residue-binding ability
(Santamaria et al., 2021). This exosite inhibitor presented
amenable selective inhibition of ADAMTS5 activity and
indicated the prospects of a novel class of OA drugs.

Posttranscriptional Suppression and
Upstream Signaling Blockade of ADAMTS5
Using miRNAs and siRNA in OA Therapies.
Many antibodies and small molecule inhibitors failed to exhibit
the expected results after preclinical testing. Thus, drugs with less

cross-inhibition and off-target damage are required. miRNAs are
a class of small, noncoding RNAs that specifically bind to
messenger RNAs (mRNAs) and posttranscriptionally regulate
protein expression level. miR-140 is an endogenous RNA
abundantly expressed in chondrocytes and is located in one
intron of the WWP2 gene (Nakamura et al., 2008). Similar to
the WWP2 protein, miRNA-140 helps maintain the homeostasis
of cartilage, and miRNA-140 knockout mice showed OA-related
changes (Miyaki et al., 2009; Miyaki et al., 2010). Multiple
downstream factors, including ADAMTS5 and MMP13, were
shown to be downregulated by miRNA-140 in OA model (Liang
et al., 2016). Direct intra-articular injection of miRNA-140 has
shown significant improvement of histological score of articular
cartilage and significantly decreased expression levels of
ADAMTS5 and MMP13 (Si et al., 2017). However, miRNA-
140 can be degraded by nucleases under inflammatory conditions
in OA. Chemical modifications, exosomes, viruses, and liposomes
have been designed for the transport of miRNAs with the benefits
of accurate delivery to targeted cells and slow release for cellular
uptake (Duan et al., 2020). Tentatively, chitosan-mediated
miRNA-140 and insulin-like growth factor 1 overexpression in
vivo can significantly reduce ADAMTS5 and improve the repair
of articular cartilage in OA (Zhao et al., 2019).

Similar to miRNAs, siRNAs are a class of double-stranded
noncoding RNAs that bind to complementary mRNAs and
promote their degradation. Lentivirus-mediated siRNA is used
to knock down target genes (Tiscornia et al., 2003). The
expression of ADAMTS5 was significantly decreased after
injection of lentivirus-mediated ADAMTS5 siRNA in vivo and
in vitro in a surgically induced OA mouse model (Chu et al.,
2013). In addition, injection of ADAMTS5 siRNA without viral
vectors also attenuated articular cartilage degeneration in an OA
mouse model (Hoshi et al., 2017). Double-stranded siRNA needs
to be unwound into a single-stranded component before binding
to the target mRNA sequence (Chery, 2016). Antisense
oligonucleotides, a class of single-stranded nucleic acids, are
also introduced for posttranscriptional modification due to
their higher affinity and selectivity, and lower toxicity after
chemical modifications (Kole et al., 2012). Sustained local
release of antisense oligonucleotides from a fibrin-hyaluronic
acid hydrogel also resulted in long-term silencing of
ADAMTS5 in OA chondrocytes (Garcia et al., 2019).

In addition to directly knockdown ADAMTS5 translation,
siRNAs that suppress ADAMTS5 upstream signaling were also
used in OA treatment. Receptor tyrosine kinase–like orphan
receptor 2 (ROR2) belongs to the tyrosine kinase receptor
family and is involved in skeletal development (DeChiara
et al., 2000). Thorup et al. (2020) demonstrated that blocking
the activity of ROR2 can retard cartilage degradation in an OA
mouse model by inhibiting YAP signaling (Thorup et al., 2020).
ROR2 blockade also suppressed the expression of ADAMTS5 and
protected mice from loss of cartilage integrity. In chondrocytes,
ROR2 can facilitate YAP nuclear translocation and elevate BMP2
expression (Blaney Davidson et al., 2015). The results showed that
decreased expression of ROR2 by intra-articular injection of
ROR2 siRNA decreased downstream YAP signaling and
ADAMTS5 expression. In addition to articular
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cartilage–protecting effect, ROR2 blockade achieved OA-induced
pain relief and absence of side effects, at least until the mice were
euthanized 22 weeks after birth (Thorup et al., 2020).
Furthermore, WWP2 mRNA-treated chondrocytes also
presented protective results via Runx2 signaling inhibition
(Mokuda et al., 2019).

Compared with antibodies and small molecule inhibitors,
miRNA- and siRNA-mediated ADAMTS5 inhibitory effects
are specific due to complementary pairing. Considering that
ADAMTS5 is involved in multiple regulatory mechanisms,
nonspecific blockade of ADAMTS5 is not worth considering
for OA therapy. Intra-articular injection of miRNA and siRNA
can precisely knock down ADAMTS5 expression in imbalanced
joints but also confines the drug to a limited space. Moreover,
investigation on the specificity and bioavailability of RNA-based
therapeutics in OA treatment are still challenging (Winkle et al.,
2021). The off-target effects on tissues, cells, and genes may lead
to severe toxicity or autoimmune responses (Hong et al., 2020).
Besides, the instability and inefficient delivery of unmodified
RNAs in vivo limit the improvement of therapeutic effect. To
be noted, no clinical trials on OA have been registered so far
(https://clinicaltrials.gov). However, recent years have seen a
growing number of approvals for commercial use RNA
therapies in treating liver, muscle, or the central nervous
system diseases, shedding lights on further investigation of OA
treatment (Crooke et al., 2019). The robustness of subcutaneous,
intravitreal, and intrathecal delivery in hereditary transthyretin
amyloidosis, cytomegalovirus retinitis, and spinal muscular
atrophy treatment has provided perfect examples for a safe
and efficient delivery of the therapeutic construct (Group,
2002; Aartsma-Rus, 2017; Wood, 2018; Gillmore et al., 2021).
Progress in exploits of the molecular mechanisms of OA may
facilitate the development and deployment of novel RNA
therapeutics in future clinical trials.

SUMMARY AND OUTLOOK

In this review, we comprehensively discussed the roles of
ADAMTS5 in OA development. ADAMTS5 is the main
aggrecanase in the pathogenesis of OA and is the chief cause of
articular cartilage breakdown and matrix loss. Under stimulation
by inflammatory factors and mechanical stress overload, upstream
signaling pathways function improperly, leading to dysregulation
of ADAMTS5. A complex molecular signaling regulatory network
modulates ADAMTS5-related OA pathogenesis. Since analgesics
and nonsteroidal anti-inflammatory drugs are still first-line options
in OA therapy, disease-modifying OA drugs that inhibit
ADAMTS5 expression and activity are required for OA therapies.
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