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Abstract: Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation.
Ras mutations have been associated with a broad spectrum of human cancers and thus targeting
Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1
allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K
mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics
(MD) simulations and dynamic network analysis, we explored the molecular mechanism for the
unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD
simulations revealed that the overall structures of the two complexes did not change significantly, but
the H-Ras–NS1 interface underwent significant conformational alteration in the mutant Binding free
energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in
the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss
of binding of NS1 were identified. Importantly, the allosteric networks for these important residues
were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras.

Keywords: H-Ras; molecular dynamics (MD) simulations; allosteric pathway; allosteric network;
allostery; R135K mutation

1. Introduction

Ras proteins, a series of GTPases [1], play key roles in the regulation of cell proliferation, cell
survival as well as cell motility [2,3], and thus are closely related to tumorigenesis [4–9]. Ras-activating
mutations can be found in about 30% of cancers in human beings, especially those highly malignant
and resistant to traditional therapies [10–15]. Onco-mutations of Ras are observed in cancer [11,15–19],
particularly in pancreatic adenocarcinomas, and the occurrence of K-Ras mutations in patients reaches
as high as 90% [20–24]. Therefore, targeting Ras proteins has already become one of the latest hot spots
in drug design for anti-cancer purposes [11,25–27].

Ras can be characterized as the activator in the RAS-RAF-MEK-ERK pathway [28–31], and the
activation of the downstream Raf proteins requires the dimerization of Ras [30,31]. In their active forms,
Ras-GTP complexes can form dimers with each other [24,32,33], which can subsequently recruit the Raf
kinase. Due to the close distance between the Ras dimer, the recruited Raf are in close proximity and
dimerize [24], and the Raf dimer can further activate the downstream MEK-ERK pathway. The binary
switch function of Ras mainly depends on the way they exist. Ras can be divided into GDP-bound
inactive forms, and GTP-bound active forms [34]. Considerable effort is currently invested to the
development of inhibitors directly targeting the GDP/GTP binding site [35]. Until now, however, little
progress has been reported in the search for therapeutic agents targeting the primary site because of
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the high affinity of the binding of GDP or GTP [36], which reduces the potential molecules to failure
in the competition with GDP or GTP. With the previous failure, and together with the advances of
structural biology and allostery, interacting with the allosteric sites of Ras has been established as an
alternative method for the Ras-targeting treatments [11,28].

Allosteric Ras therapies mainly focus on the binding of therapeutic agents to the allosteric
sites [26,28,36]. By targeting the allosteric sites, the dimerization of Ras proteins or the proteins
interaction in the signaling pathway is disrupted, and consequently, the signal transduction is
regulated [37–39]. Recently, Spencer-Smith et al. synthesized a binding protein NS1 (monobody)
targeting the allosteric site on Ras. Binding of NS1 inhibits Ras dimerization as well as the downstream
CRAF-BRAF heterodimerization, therefore inhibiting the cell growth-signaling pathway [40].
However, in vitro experiments showed that R135K mutation in H-Ras greatly reduced the affinity of the
binding of the NS1 to H-Ras, which significantly weakened its efficacy [40]. Until now, the underlying
mechanism for the affinity change is still unclear. Molecular dynamic (MD) simulations can reveal the
landscapes of the changes in proteins after mutations [41–46], and they have been frequently applied
to study the on-protein conformational changes in response to mutations or modifications [47,48],
especially for the ones related to cancer or tumorigenesis [49–54]. Hence, we employed the MD
simulations and in silico analysis to explore the H-Ras and NS1 complex system. By carrying out
200 ns MD simulations, and analyzing a series of statistical values, we demonstrated that at the critical
point mutation R135K disrupted the binding of NS1 to H-Ras, and there was an underlying allosteric
mechanism responsible for such effect. Moreover, by analyzing the residue topology, we further
identified a potential allosteric network in this complex system, which will offer a guidance for future
drug development related to Ras proteins.

2. Results and Discussion

2.1. RMSD and RMSF Analysis

200 ns MD simulations were carried out for both the wild type and R135K H-Ras–NS1
complexes. To quantify the dynamic conformational changes throughout the simulations, the Cα

atoms root-mean-square deviation (RMSD) of simulated snapshots relative to the original crystal
structure were calculated. As shown in Figure 1A, the two systems became relatively stable after
50 ns simulations, which implied that the dynamic process reached equilibrium states, and thus
the following analysis was focused on the period of 50–200 ns simulations. During the last 150 ns,
the RMSD values for the wild type and mutation complexes were 3.48 ± 0.31 Å and 3.53 ± 0.25 Å,
respectively, which showed no significant difference. This suggested that the overall conformation of
H-RasR135K–NS1 complex adopted a similar topology to the wild type complex.

Root-mean-square fluctuation (RMSF) was calculated to reveal the differences in the fluctuation
of local regions for the two systems. Generally, the mutant displayed a higher RMSF, especially for the
NS1 part, which showed that the mutated system was less stable, particularly for NS1. Also, loop SW1
in H-Ras was relatively flexible and had high RMSF in both systems, whose conformation changed
greatly after R135K mutation. Since during simulations, NS1 binding was unfavored in the R135K
system, it would gradually disassociate from H-Ras, which would be discussed later. Unbinding of NS1
would relieve the constraint stemmed from its interaction with H-Ras. Considering its peptide nature,
which mainly consisted of beta sheets, and the reduced restriction, NS1 unsurprisingly displayed
higher flexibility and RMSF after mutation.

2.2. DCCM and PCA Analysis

To analyze the effect of the mutation on the intrachain motions in the complex system, Dynamic
cross-correlation matrix (DCCM) were calculated for each residue within two complexes, and it showed
that R135K mutation resulted in an increase of correlated motions, especially for residues near the
interface between NS1 and H-Ras (Figure 2). The higher correlation indicated that there were more
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fluctuation and residues interaction within the complex due to the mutation. Moreover, several newly
formed correlations within NS1 or H-Ras reflected that the original allosteric network was disturbed.

Figure 1. (A) RMSD of the wild type and R135K H-Ras–NS1–GDP complexes in 200 ns simulation;
(B) The Cα atoms RMSF of the wild type and mutation system in 200 ns simulation (Residue 1–92 was
for NS1, and 1–166 was for H-Ras–GDP).

Figure 2. Dynamic cross-correlation matrices of wild type complex (A) and R135K (B) H-Ras–NS1
complex. Red stands for correlation and blue stands for anticorrelation. Correlated motions whose
absolute values were smaller than 0.3 were neglected.
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There was more anticorrelation in the H-RasR135K–NS1 complex. In wild type (Figure 2A), A1
represented the anticorrelation between the G β sheets and FG loop in NS1 and the α4 helix and β6
sheet in H-Ras (Figure 3), while A2 showed that the G β sheet and FG loop also anticorrelated
with the β5 sheet and α3 helix in H-Ras. The anticorrelation between F β sheet and β5 sheet
was portrayed by A3, and A4 together with A5 depicted the anticorrelation between two groups
of residues within NS1, implying a potential allosteric network. In the mutated system, all the
anticorrelation relationships described above were preserved, and remarkably, they all strengthened.
Additionally, new anticorrelation was found between the C and D β sheet in NS1 and β5 sheet as
well as α3 helix in H-Ras (A6 in Figure 2B). Moreover, more residues became anticorrelated with each
other within the chain of NS1 or H-Ras. The newly formed anticorrelation indicated that the mutation
disrupted the residues interaction network throughout the complex (A7–A11 in Figure 2B).

Figure 3. Cartoon structure of H-Ras–NS1 complex, with the major secondary structures specified.
SW1 and SW2 represent the Switch 1 and 2 regions, respectively. β sheets in NS1 and H-Ras are colored
in wheat and green, respectively. α helices in H-Ras are colored in cyan and loops are in gray.

The correlation motions within the wild type and R135K H-Ras–NS1 complexes were similar,
but they were enhanced after mutation. In wild type, C1 to C3 all showed the strong correlation
in local regions, while C4 portrayed the correlation of the residues within the α4 helix structure.
Several residues lying along the binding surface of H-Ras correlated with residues in the bottom of
F and G β sheets and the FG loop in NS1, as was shown by C5. After mutation, intra-molecular
correlation in NS1 did not change significantly, but the ones in H-Ras were much stronger. Besides C4,
local correlation was established within the β5 sheet and α3 helix respectively (C6 and C7 in Figure 2B
correspondingly). Two new correlations, C8 and C9, represented the correlation of α4-α3 and SW2-α3,
respectively. Moreover, in addition to the strengthened C5, correlation along the interface became more
significant after the mutation in spite of their relatively weak magnitudes. Collectively, the increase in
correlation reflected the fact that there was more interaction in the mutation system, which suggested
that the whole system became more elastic. More fluctuation emerged as a result of the increased
flexibility, especially for the interface part.

Besides DCCM, principal component analysis (PCA) was also carried out to characterize the
major motions and fluctuations of the wild type and R135K system. As shown in Figure 4, the major
conformation of these two systems was similar to each other, which was consistent with the results
from RMSD calculation. However, the distribution of the conformation of the mutated system was
broader than the wild type. This implied that there was more freedom and fluctuation in the R135K
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system, consistent with the RMSF results. Therefore, both DCCM and PCA analysis suggested a more
flexible and less constrained R135K H-Ras–NS1 system.

Figure 4. Projections of trajectories of the wild type (A) and R135K (B) H-Ras–NS1–GDP complexes
onto the corresponding first two principal components (PC1 and PC2).

2.3. MM/GBSA Free Energy Analysis

To clarify the energetics of the binding of NS1 quantitatively, we carried out the MM/GBSA
calculations. The binding free energy (∆Gbinding) of NS1 to the H-Ras–GDP complex was obtained as
results for the wild type and mutated system, respectively (Table 1). As was shown by the MM/GBSA
analysis, the ∆Gbinding for wild type H-Ras was −55.19 ± 7.88 kcal/mol, while for the mutated system,
the result was −38.47 ± 8.56 kcal/mol. A higher binding free energy for the mutated system showed
that the NS1 binding was not as favored as it was in the wild type, and the result was consistent
with the in vitro experiments [40]. A detailed analysis of the energy contributions showed that it was
electrostatic force that was mainly responsible for the increase in the free energy for NS1 binding,
because the difference between this parameter before and after mutation increased most significantly,
while others almost remained unchanged or decreased instead. Moreover, the unfavorable contribution
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to binding in the mutation system also stemmed from the increase in the gas free energy (∆Ggas),
which exhibited a significant rise.

Table 1. Free energy analysis (kcal/mol) for the binding of NS1 to H-Ras–GDP complex a.

Items WT R135K Energy Difference

∆EvdW
b −68.36 (4.36) −61.57 (5.49) 6.79

∆Eele
c −75.44 (31.88) −37.60 (39.73) 37.84

∆EGB
d 97.24 (28.18) 68.16 (35.80) −29.08

∆ESURF
e −8.63 (0.57) −7.46 (0.78) 1.17

∆Ggas −143.80 (32.67) −99.17 (40.27) 44.63
∆Gnonpolar 97.37 (1.22) 68.74 (10.14) −28.63

∆Gpolar −8.76 (0.13) −8.04 (0.12) 0.72
∆Gbinding −55.19 (7.88) −38.47 (8.56) 16.72

a Numbers in the parentheses are the standard deviations; b Energy contribution from the van der Waals force;
c Energy contribution from the electrostatic force; d Energy contribution from the Generalized-Born term; e Energy
contribution from the solvent-accessible surface term.

In order to reveal the underlying molecular mechanisms of the decrease in binding free energy
after mutation, we employed PISA (Proteins, Interfaces, Structures and Assemblies) [55] to analyze
the interactions within the wild type and R135K mutated systems. Hydrogen bonds and salt bridges
within two systems were uncovered as results. In the wild type complex, there existed 17 hydrogen
bonds and 9 salt bridges in the interface, while after mutation, only 13 hydrogen bonds and 6 salt
bridges remained. Specifically, we focused on these interactions involving the mutated site, and we
found that R to K mutation also led to the reduced molecular interactions on it (Table 2).

Table 2. Summary of the hydrogen bonds and salt bridges between R135 and NS1 in wild type (up)
and R135K (down) H-Ras–NS1.

Number H Bonds or Salt Bridges Distance (Å)

Hb1 NS1-D30-OD2 H-Ras-R135-NH2 3.75
Hb2 NS1-E49-OE1 H-Ras-R135-NE 2.73
Hb3 NS1-E49-OE2 H-Ras-R135-NH1 2.89
Hb4 NS1-Y82-OH H-Ras-R135-NH2 2.91
Sb1 NS1-D30-OD2 H-Ras-R135-NH2 3.75
Sb2 NS1-E49-OE1 H-Ras-R135-NE 2.73
Sb3 NS1-E49-OE1 H-Ras-R135-NH1 3.49
Sb4 NS1-E49-OE2 H-Ras-R135-NE 3.67
Sb5 NS1-E49-OE2 H-Ras-R135-NH1 2.89

Number Salt Bridges Distance (Å)

Sb1 NS1-E49-OE1 H-Ras-K135-NZ 3.76
Sb2 NS1-E49-OE2 H-Ras-K135-NZ 3.96

Between NS1 and H-Ras, R135 formed 4 hydrogen bonds and 5 salt bridges in the wild type
complex, both of which were highest among all residues, implying its critical role in NS1’s binding
to H-Ras (Figure 5A). Nevertheless, in the mutated system, all the hydrogen bonds were lost,
and only 2 salt bridges were preserved, suggesting a weak interaction in the mutant (Figure 5B).
Moreover, besides hydrogen bonds and salt bridges, in the wild type complex, a cation-pi interaction
was formed between R135 of H-Ras and Y31 of NS1. However, after mutation such interaction was
lost due to conformation changes of these two residues, especially the movement of the phenyl group
in Y31 of NS1 (Figure 5). In H-Ras, R135K mutation affected the conformation of the mutation site as
well as the surrounding residues, which led to reduced inter-molecular interactions. Loss in hydrogen
bonds, salt bridges, and cation-pi were convincing reasons for the NS1 unbinding, and it could also
explain the sharp increase in the binding reaction free energy.
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Figure 5. Detailed interaction around mutation site in wild type system (A); and R135K system (B).
R135(K) in H-Ras was in yellow, and important residues in NS1 interacting with R135 were in cyan.
Inter-molecular hydrogen bonds were depicted by green dashed lines, and the overall structures of
NS1 were in gray. For clarity, non-polar hydrogen atoms were omitted.

To quantify the contributions of each residue to free energy change in detail, we decomposed the
total binding free energy into each residue (Figure 6), and the ones that contributed to the increase
of the binding free energy in the mutation system for at least 0.3 kcal/mol were specified (Table 2).
Residues whose contribution to binding free energy increased more than 0.3 kcal/mol included D29,
Y30, K44, W72, W74 and Y79 from NS1, and R128, Q131, R135K, I142 and E143 from H-Ras. Most of
these residues were distributed along the interface between NS1 and H-Ras (Figure 7). W74 and Y79 in
NS1 both situated on the interface between NS1 and H-Ras, while W72, K44, Y30 and D29 all located
farther from the interface, implying a possible allosteric effect involved in the NS1 binding. As for
H-Ras, all of the residues specified located along the α4-β6-α5 interface, with R135K, Q131, and R120
in α4 helix and I142 and E143 in β6 sheet. Although for most of the residues in the complex structure,
no significant free energy difference was observed, there were still some regions transformed into
more flexible and less stable states. A more than 0.3 kcal/mol increase in free energy contribution
reflected that the residues mentioned above existed in a higher energy state, which was unstable and
negatively affected the binding of NS1 to H-Ras, and it was these local changes in energy states that
were responsible for the disassociation of NS1 from H-Ras. Interestingly, the R135K mutation did
not influence the nearby residues, and instead, its negative effect was coupled with several “remote”
residues, at least 4 residues away. Such long-range effect and the coupling implied that there was
topological linkage among these residues, and the mechanism underlying the effect of the mutation
was allosteric.

Figure 6. Cont.
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Figure 6. Free energy contributions to the binding of NS1 to H-Ras decomposed into each residue
corresponding to the NS1 (A) and H-Ras (B). The residues whose energy contribution was greater after
mutation for more than 0.3 kcal/mol were specified respectively.

Figure 7. A snapshot of the structure of the interface between NS1 and H-Ras, with the important
residues mentioned above highlighted (colored in yellow).

2.4. Superposition of the Wild Type and Mutation Structures

To visualize the conformation changes between the wild type and R135K mutation complex,
structures of these two complexes after 200-ns MD simulation were superimposed. For H-Ras, most of
the protein was only slightly changed, and significant conformational alterations were mainly observed
on the binding surface of NS1, especially for the helices. As for the NS1, there were more structural
changes due to its monobody nature, but the most obvious ones were also found along the interface.

In the α4-β6-α5 sandwich structure, α4 helix of H-Ras in the R135K mutant moved backward
for about 2.0 Å compared to that in the wild type (Figure 8A). The α5 helix slightly shifted away
from the interface, while β6 sheet was not significantly influenced by the mutation (Figure 8B).
Similar with the α4 helix, the α3 helix altered significantly, particularly for its top, shifting for at
least 6.0 Å (Figure 8C). Near the α3 helix, SW2 in the mutated state moved slightly away, but the
whole structure was generally unchanged. In contrast, as a loop, SW1 was significantly affected by
the mutation. It changed irregularly, and took on a completely different conformation (Figure 8D).
Given the significant conformational changes induced by the R135K mutation, it was reasonable
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that there was an allosteric network within the H-Ras structure, and the point mutation disrupted
this network, especially for the part near the binding interface, and therefore negatively affected the
interaction between NS1 and H-Ras.

Figure 8. Detailed superposition structures analysis of α4 helix (A); α5 helix and β6 sheet (B); α3 helix
(C) and SW1 (D). Wild type H-Ras–NS1 complex is colored in cyan, while R135K H-Ras–NS1 complex
is in pink.

2.5. Allosteric Network Analysis

To demonstrate that R135K mutation disrupted the original allosteric network within H-Ras,
and to identify the signal propagation pathways, dynamics network analysis was carried out with the
NetworkView plugin in VMD [56]. This process produced the shortest (optimal) signaling pathways
and the suboptimal pathways as results. Analysis focused on the mutation site and the residues whose
binding free energy were significantly affected by R135K mutation (an increase greater 0.3 kcal/mol).
The results are shown in Table 3.

Table 3. Free energy contribution (kcal/mol) by residue and the corresponding free energy difference
of H-Ras–NS1–GDP a.

Residue WT R135K Energy Difference b

NS1

D29 −3.25 (2.59) −1.56 (2.39) 1.69
Y30 −3.02 (0.48) −2.05 (0.77) 0.97
K44 1.24 (0.65) 1.62 (1.39) 0.38
W72 −6.02 (0.68) −5.32 (0.73) 0.70
W74 −2.11 (0.91) −1.52 (0.88) 0.59
Y79 −8.96 (0.87) −8.04 (1.07) 0.92

H-Ras–GDP

R128 −3.40 (2.33) −1.15 (2.38) 2.25
Q131 −2.68 (1.36) −2.01 (1.21) 0.67

R135K −10.56 (1.94) −2.75 (3.27) 7.81
I142 −2.65 (0.76) −2.34 (0.76) 0.31
E143 −1.70 (1.09) −0.94 (1.29) 0.76

a Number in the parentheses are the standard deviations; b Energy difference was calculated by GR135K-GWT.
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The optimal pathways between two selected residues would be considered as the potential
allosteric pathway, and for both the optimal and suboptimal pathways, the residues involved were
revealed. In such analysis, shorter length of the optimal pathway, less involved residues, and larger
number of suboptimal pathways all indicated a stronger allosteric relationship between the two
chosen residues. In Table 4, the first two pathways, R135-R128, and R135-Q131 all displayed these
characteristics, and hence for these two pairs of residues, the allosteric signal between them was more
intense in the wild type complex. On the other hand, despite the phenomena that the length of the
R135(K)-I142 and R135(K)-E143 paths were slightly longer in the wild type system compared with the
mutant, combined with the fact that in the wild type complex, less residues were involved, and more
suboptimal pathways existed, it still suggested that the allosteric signaling was stronger in the wild
type system. Therefore, it could be concluded that the allosteric pathways connecting these residues
were disrupted by the R135K mutation.

Table 4. Allosteric pathways analysis between R135K and residues important for NS1 binding.

Pathway
Length a Residue b Subopt c

WT R135K WT R135K WT R135K

R135(K)-R128 38 60 3 8 12 1
R135(K)-Q131 21 29 2 5 1 1
R135(K)-I142 68 61 4 8 9 0
R135(K)-E143 86 84 4 9 12 1

a The length of the shortest pathway of the corresponding residues; b The number of residues involved in the
shortest pathway; c The number of suboptimal pathways.

The products of NetworkView, the optimal pathways in the wild type system are shown as follows:

R135→Q131→R128

R135→Q131

R135→A134→Y141→I142

R135→A134→Y141→E143

None of these pathways were preserved in the mutation system, which suggested that the
point mutation at the starting point of these pathways significantly influenced the original allosteric
relationship within the wild type complex, and since the destination of these pathways all located
on the interface of the binding of NS1 towards H-Ras, it was not surprising that the binding affinity
was severely negatively affected by the mutation. Moreover, the result above implied that R135 might
be a critical node within the topological network of H-Ras, which would be worth further study.
Hence, the unfavored binding of NS1 in R135K system was a result of the disruption of the allosteric
pathways due to the mutation at the critical node of the allosteric network.

3. Materials and Methods

3.1. Construction of Simulation System

The crystal structure of the H-Ras and NS1 and GDP complex at 1.4 Å (PDB ID: 5E95) [40] was
obtained from the RCSB Protein Data Bank [57]. Point mutation at number 135 amino acid was
introduced using Maestro 10.2 (Maestro, Schrödinger, LLC, New York, NY, USA), and the original
arginine was mutated into lysine.
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3.2. MD Simulations

Amber 14 [58] was employed for MD simulations for the wild type complex and the R135K
mutated complex. The force field parameters of the complex system were calculated based on the
Amber ff03 force field and the general amber force field (GAFF). The H-Ras–NS1–GDP complex was
first solvated using the TIP3PBOX water model, and then sodium ions were added to neutralize
the whole system. After these preparations, the complex system underwent two rounds of energy
minimization. In the first step, the macro-molecules scaffold was held rigid, and the energy of the
water molecules and counterions was minimized after 5000 steps of maximum minimization cycles,
and in the second round, the whole system was relaxed and underwent minimization without any
restriction. After minimizing energy, the whole system was heated from 0 to 300 K within 300 ps,
under a positional restraint of 10 kcal/(mol Å2) in a canonical ensemble (NVT). Then equilibration of
the system was carried out at 300 K, also with a 10 kcal/(mol Å2) positional restraint, in a canonical
ensemble (NVT) for 700 ps. Finally, 200 ns MD simulation was performed for both the wild type and
mutated system in isothermal and isobaric ensemble with periodic boundary conditions. The particle
mesh Ewald method [58] was employed to analyze the long-range electrostatic interactions and a cutoff
of 10 Å was applied to treat the short-range electrostatics and van der Walls interactions. All covalent
bonds involving hydrogen atoms were restricted by the SHAKE method, and the final trajectories
were written out every 5 ps.

3.3. Principal Component Analysis

Principal component analysis (PCA) was carried out with the help of the cpptraj plugin of the
Amber [59]. Equation (1) was used to calculate the covariance matrix Z of the complex system:

Zij =
〈
(xi − 〈xi〉)

(
xj −

〈
xj
〉)〉

(i, j = 1, 2, 3, . . . 3N) (1)

where xi stands for the Cartesian coordinate of the Cα atom at the number i, 〈xi〉 represents the time
average over the selected configurations in the trajectories, and N represents the total number of
Cα atoms.

3.4. Molecular Mechanics Generalized Born Surface Area Calculations

Molecular Mechanics Generalized Born Surface Area (MM/GBSA) calculation was carried out
using the MMPBSA.py plugin. Free energy for the complex system, receptor (GDP-bound H-Ras),
and ligand (NS1) was calculated respectively, and the total free energy difference for the ligand binding
was given by the following Equation (2):

∆G = Gcomplex − Greceptor − Gligand (2)

In Equation (2), the free energy terms equaled to the sum of the gas phase molecular mechanical
energy (∆Egas) and the solvation free energy (∆Gsolvation) and the entropy term (−T∆S):

∆G = ∆Egas + ∆Gsolvation − T∆S (3)

∆Egas originated from the van der Waals energy (∆EvdW), electrostatic energy (∆Eele) and gas
phase internal energy (∆Eint):

∆Egas = ∆EvdW + ∆Eele + ∆Eint (4)

The solvation free energy, obtained by the continuum solvent methods, were divided into the
polar contribution (∆GPB/) and the non-polar contribution (∆Gnonpolar):

∆Gsolvation = ∆GPB/ + ∆Gnonpolar (5)
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The finite difference PB model was used to calculate the electrostatic solvation energy. 1 and
80 were chosen as the interior (solute) and exterior (water) dielectric constants respectively.
The non-polar contribution (∆Gnonpolar) to the solvation free energy (∆Gsolvation) was calculated
according to the solvent-accessible surface-area with Equation (6):

∆Gsolvation = γSASA + b (6)

SASA represented the solvent-accessible surface-area, solvation parameter γ was 0.00542 kcal
(mol−1 Å−2) and another solvation parameter b was 0.92 kcal/mol. The conformation entropy (−T∆S)
was usually calculated by normal mode analysis with quasi harmonic model, but it could be omitted
here due to the relative low RMSD of two complex systems. Additionally, NS1 is a protein and
computation of the conformation entropy for the protein-protein interactions represents a challenging.
Considering the potential difficulties and the similar overall structural mode, we only focused on the
relative ordering of the free energy changes without calculation of the −T∆S term. Decomposition of
the binding free energy into residues interaction pairs was carried out using the MM/GBSA method.
The binding energy of each interaction pair consisted of three parts: ∆EvdW, ∆Eele, and ∆GGBSA.

3.5. Dynamic Network Analysis

Dynamic cross-correlation matrix (DCCM), which revealed the correlation between two residues,
was produced from the cpptraj plugin. The Cα were selected as the representative of every residue,
and the cross-correlation coefficient Xi,j for Cα pairs were calculated by Equation (7):

Xij =

〈
(ri − 〈ri〉) ·

(
rj −

〈
rj
〉)〉√

〈(ri − 〈ri〉)〉2
〈(

rj −
〈
rj
〉)〉2

(7)

The products of Equation (7) were then applied to analysis the residues network of the
complex topologically. One of the plugin of VMD, NetworkView [56], was used for the topological
network analysis of the complex to explore the allosteric network in the protein and monobody
system. Every residue in the complex, represented by their Cα, was regarded as a node in the
topological network, and edges were drawn between these nodes if they were related to each other.
The cross-correlation coefficient Xi,j was used to calculate the distance (dij) of the edges between nodes,
with the length equaling the product of Equation (8):

dij = −log(|Xi,j|) (8)

in which i, j stood for two nodes, and Xi,j was given by Equation (7). Additionally, suboptimal pathway
was also calculated. All pathways within in a distance of 20 to the shortest (optimal) pathway were
analyzed, and the number of the suboptimal pathways and the residues involved in these pathways
most frequently were produced as results.

4. Conclusions

In the present study, we explored the unbinding of NS1 to H-Ras caused by R135K mutation
using MD simulations and dynamic network analysis. The overall conformation of the complex was
not significantly influenced by the mutation, but some regional changes occurred, especially in the
monobody-protein interface. Most of hydrogen bonds, salt bridges and cation-pi interaction at the
interface in the wild type complex were disrupted by the R135K mutation, and the critical residues
responsible for binding were identified. Furthermore, the identified allosteric pathways in the wild type
were also disrupted by the R135K mutation. These collective results resulted in the unbinding of NS1
to H-Ras induced by the mutation. Our discovery of the critical role of R135 in H-Ras allosteric network
and the detailed monobody binding mechanisms provided structural basis for the optimization of NS1,



Int. J. Mol. Sci. 2017, 18, 2249 13 of 16

and offered a guidance for future development of drugs targeting Ras. Protein-protein interactions
are important targets in drug discovery [60–62], and recently, peptidomimetics have become a new
direction in targeting protein-protein interactions [63]. With the hotspot residues for NS1-H-Ras
interaction identified in our study, monobody NS1 could be optimized and related peptidomimetics
modulators could be designed based on the discovery here. Moreover, the findings of the allosteric
network also shed light on regulating the Ras protein through allostery.
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