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Abstract: The liquefaction of biomass is an important technology to converse the biomass into
valuable biofuel. The common technologies for liquefaction of biomass are indirect liquefaction and
direct liquefaction. The indirect liquefaction refers to the Fischer–Tropsch (F–T) process using the
syngas of biomass as the raw material to produce the liquid fuel, including methyl alcohol, ethyl
alcohol, and dimethyl ether. The direct liquefaction of biomass refers to the conversion biomass
into bio-oil, and the main technologies are hydrolysis fermentation and thermodynamic liquefaction.
For thermodynamic liquefaction, it could be divided into fast pyrolysis and hydrothermal liquefaction.
In addition, this review provides an overview of the physicochemical properties and common
upgrading methods of bio-oil.

Keywords: review; biomass; liquefaction; bio-oil; upgrading

1. Introduction

Fossil fuels, such as coal, oil, and natural gas, are non-renewable resources. They play a vital role
in human life and social progress. Although, the total amount of fossil fuels on the earth would meet
the needs of human beings for several decades, these non-renewable fossil fuels would eventually run
out [1]. In addition, the excessive emission of greenhouse gases (such as CO, CO2, NOx, SOx, and CH4)
into the atmosphere makes the global climate uncontrollable with the consumption of fossil fuels [2].
Hence, the renewable fuels (nuclear energy, solar energy, wind energy, and biomass energy) should
be further developed [3,4]. Biomass has a high utilization potential and is one of the most important
energy sources of the future.

Generally, biomass is usually grouped as follows [5–7]: (1) Agricultural and forestry residues,
(2) herbaceous crops, (3) aquatic and marine biomass, and (4) wastes. Biomass waste means the
materials generated in the process of production or consumption of biomass, including wood, straw,
animal dungs, and household garbage. Lignocellulose is a complex structure (Figure 1a), which is
composed of a mixture of cellulose (Figure 1b), hemicellulose (Figure 1c), lignin (Figure 1d), and
inorganic components. Cellulose and hemicellulose are tightly bound to lignin mainly by hydrogen
and covalent bonds. Cellulose is usually represented by (C6H10O5)n, and the polymerization degree of
the long polysaccharide chain is approximately 10,000, resulting in a high molecular weight (>500,000).
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Cellulose is formed by the β-1,4 glycosidic linkage of D-glucopyranose units. For hemicellulose, the
content in dry biomass is usually about 25%, and it is a low degree of amorphous heteropolysaccharide
with high degree branching of a straight-chain skeleton. The basic units in hemicellulose are xylan and
gulucomannan. Lignin is an amorphous aromatic natural polymer, which is linked primarily via ether
bonds with hydroxyl and methoxy groups. The solubility of lignin in water is very low. The main roles
of lignin in a plant are as follows: Strengthen their structure, regulate the flow of fluids, protect against
microorganisms, and store energy. As we know, biomass energy is the exclusive renewable organic
carbon resource to produce liquid fuels. Biomass is the renewable organic materials. While the biomass
waste still belongs to the macroscopic category of biomass. According to the statistics, the total amount
of biomass waste could reach 2 × 109 t/Y. Nevertheless, only about 40% of biomass waste is used for
fuel, building materials, feed, and power generation, and the residual parts are treated in an extensive
mode, for instance incineration, landfill, and centralized stacking, resulting in a waste of resources and
serious pollution of the environment. Therefore, it is the key component of sustainable development
for biomass waste resources. Recently, the mainly technologies of the utilization of biomass resource
are physical, thermochemical, and biological. Considering the type of products, it could be divided
into gasification, liquefaction, biorefinery, and combustion. Figure 2 shows the current conversion
technologies of biomass. For the dry biomass, the primary pathways are combustion, gasification,
and liquefaction. Moreover, the products of gasification of biomass could also be conversed to liquid
products. For the wet biomass, the primary pathways are hydrolysis fermentation, biorefinery, and
liquefaction. The products of biomass conversion are abundant, including syngas, bio-oil, biodiesel,
methyl alcohol, ethyl alcohol, etc.
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This review paper aims to provide a solution of the current liquefaction technologies of biomass,
including indirect liquefaction and direct liquefaction. In indirect liquefaction, we mainly discuss
the synthesis pathway of ethyl alcohol and summarize the common catalysts. In direct liquefaction,
we discuss the hydrolysis fermentation and thermodynamic liquefaction. In the end, the upgrading
technologies of bio-oil have been provided.

2. Indirect Liquefaction

2.1. Reaction Process

Indirect liquefaction is a promising technology, which is divided into two stages. The first stage is
a thermochemical gasification process [10,11]. In this process, the syngas is produced after the raw
material reacts with air or steam. In the syngas, the primary substances are CO, CO2, H2, and H2O.
The second stage is the well-established Fischer–Tropsch (F–T) process [12]. During the F–T process,
the mixture would be used to produce a range of chemicals, including methyl alcohol, dimethyl ether,
and ethyl alcohol, while there is little research on the higher alcohols derived from the biomass syngas.
The biggest challenges are the design of the novel catalytic reactor for the typically smaller scale of
biomass conversion processes and catalysts for specific chemicals according to the molar ratio of H2 to
CO. We take the synthesis of ethyl alcohol as an example to introduce the indirect liquefaction process.

2.2. Reaction Mechanism

There are two approaches to produce ethyl alcohol [13]. The first pathway is hydrogenation of CO,
and the reaction equation is shown in Equation (1). From the equation, it indicates that hydrogenation
of CO is a highly exothermic and favorable reaction. Figure 3a shows the thermodynamic analysis
of the hydrogenation of CO, and the reaction conditions (H2/CO = 2.0, 30 bar) are assumed. The
results release that the concentrations of ethyl alcohol and water decrease with a temperature increase,
while the concentrations of H2 and CO increase with a temperature increase. Hence, the suitable
reaction temperature should be below 350 ◦C via the hydrogenation of CO to produce ethyl alcohol.
The second pathway is hydrogenation of CO2, and the reaction equation is shown in Equation (2).
From the equation, it indicates that hydrogenation of CO2 is also a highly exothermic and favorable
reaction. The thermodynamic analysis of the hydrogenation of CO2 is shown in Figure 3b. From the
results, the concentrations of ethyl alcohol and water decrease with a temperature increase, while the
concentrations of CO2 and H2 increase with a temperature increase. The reasonable temperature for
the synthesis of ethyl alcohol via the hydrogenation of CO2 should also be below 300 ◦C. However, the
by-products would be formed during the F–T process. For hydrogenation of CO, the H2O product
would react with CO quickly, and the by-products of CO2 and H2 would be formed, which refers to
the water gas shift reaction (Equation (3)). On the contrary, the reverse water gas shift reaction may
be occurred in the hydrogenation of the CO2 process, and the by-product is CO. It indicates that the
two pathways proceed through a common intermediate. In addition, the methanation (Equations (4)
and (5)) would occur along with the hydrogenation of CO or CO2, and CH4 is the most significant
by-product [14]. Figure 4 shows the equilibrium concentrations of an initial mixture syngas. From
the results, it indicates that the suitable temperature should be below 400 ◦C at 30 bar with no CH4

formation. However, if CH4 is allowed as a product under the same conditions, the content of ethyl
alcohol is virtually zero. Therefore, CH4 must be kinetically limited to improve the yield of ethyl
alcohol. Moreover, the equilibrium concentration of ethyl alcohol increases with the reaction pressure
increase. As shown in the literature, there are little researches that studied the hydrogenation of CO2 or
the mixture of CO and CO2, and the primary researches studied the hydrogenation of CO. The catalyst
is the key factor for this reaction, and it could be divided into four groups, including Rh-based materials,
modified CH3OH synthesis catalysts, modified F–T catalysts, and modified Mo-based catalysts [15,16].

2CO + 4H2→ C2H5OH, ∆H = −61.2 kcal·mol−1, ∆G = −29.3 kcal·mol−1, (1)
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2CO2 + 4H2→ C2H5OH, ∆H = −41.5 kcal·mol−1, ∆G = −15.7 kcal·mol−1, (2)

CO + H2O→ CO2 + H2, (3)

CO2 + 4H2→ CH4 + 2H2O, (4)

CO + 4H2→ CH4 + H2O. (5)
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3. Direct Liquefaction

3.1. Hydrolysis-Fermentation Liquefaction

3.1.1. Main Steps

In the last few decades, ethyl alcohol has attracted a great deal of attention as a potential alternative
to fossil fuels [9]. Currently, fermentation of biomass is the main industrial technology to produce
ethyl alcohol, which the primary raw materials are glucose (obtained from corn) and sucrose (obtained
from sugar cane and beets) [17]. While, there are the same negative effects on ethyl alcohol production
using starch or sugar as the raw material, which would compete with food production directly [18,19].
Up to now, corn straw has been considered as possible raw material for ethyl alcohol production [20].
The flow diagram of enzymatic ethanol production process is shown in Figure 5. Once the biomass is
transported to the production plant, it would be stored in the warehouse to prevent from fermentation
and bacterial contamination. Then, the raw material would be pre-treated to make it more accessible
for extraction. In the fermentation process, hydrolysate, yeasts, nutrients, and other ingredients would
be added. The fermentation is usually executed at 25–30 ◦C and the suitable reaction time would
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last for 6–72 h. The parameters are primarily dependent on the components of hydrolysate, type,
density, or activity of yeasts. The recycle yeasts are employed to improve the activity and productivity
of fermentation. The concentration of ethyl alcohol in the broth typically contains 8–14%, while the
activity of yeasts would be inhibited above this concentration. After distillation, a mixture may be
obtained, which is often termed “hydrous” or “hydrated” ethyl alcohol (95% alcohol, 4% water). The
hydrated ethyl alcohol would be then dehydrated to obtain “anhydrous” ethyl alcohol (99.6% alcohol,
0.4% water). The remaining vinasse or stillage from the distillation column could be valorized to
produce process steam and electricity, products for feeding animals, fertilizer, and other valuable
by-products. During the hydrolysis-fermentation process, pre-treatment has been recognized as a
necessary upstream process.
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3.1.2. Pre-Treatment

Cellulose in biomass has a straight chain structure composed of dehydrated glucose groups
connected β-1,4 glucoside bonds resulting in a high degree of polymerization and stable property [22].
It is difficult to dissolve in water at room temperature, even at high temperature the dissolution is
also very slow [23]. The representative pre-treatment includes a physical pre-treatment [24], chemical
pre-treatment [25], and biological treatment pre-treatment [26]. The advantages and weaknesses
of selected pre-treatment processes are listed in Table 1. Biological pre-treatment is an eco-friendly
technology, while the efficiency is very low (residence time: 10–14 d) for industrial purposes [27]. In
addition, careful growth conditions, a large amount of space, and a high cost of enzymes make it difficult
to attract an entrepreneur’s attention [28]. Physical pre-treatment refers to the reduction of physical size
of raw materials to increase enzyme-accessible surface areas [29], and the primary pathways of physical
pre-treatments are mechanical comminution [30], pyrolysis [31], and steam explosion [32]. Chemical
pre-treatment refers to the process of using chemicals to remove or modify hemicelluloses and lignin.
The primary pathways of chemical pre-treatments are acidic pretreatment [25], alkali pre-treatment [33],
sulfur dioxide [9], organosolv [34], liquid hot water (LHW) [35], and wet oxidation [36]. Currently,
dilute acid pre-treatment, steam explosion, and liquid hot water (LHW) pre-treatment have the
best performance.
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Table 1. Advantages and weaknesses of selected pretreatment processes.

Pretreatment Yield of FS * Chemical
Recycling Wastes Investment

Physical Mechanical - ++ ++ +

Physico-chemical
Steam explosion + ++ + -

Ammonia fiber explosion +/- – + -
Carbonic Acid ++ ++ ++ +

Chemical

Dilute acid ++ – - +/-
Concentrated acid ++ – - -
Alkaline extraction ++/+ – - ++

Wet oxidation +/- ++ + +
Organosolv ++ – + –

* FS: Fermentable sugars; ** ++: very good; +: good; -: bad; –: very bad.

(1) LHW Pre-Treatment
In the LHW pre-treatment process, the liquid water is used to promote disintegration and

separation of lignocellulose, which the water could maintain a liquid phase at high temperature and
pressure [9,35]. The typical temperature ranges from 160 ◦C to 240 ◦C, and the reaction time ranges from
5 min to 1 h. The parameters are dominated by the types of biomass and sugar formation [37]. During
this pre-treatment, no acid and chemical catalysts are required, and there is a high xylose recovery
(88–98%) [38]. Although this method is economically interesting and environmentally attractive, it
requires higher energy due to high temperature and pressure and a large amount of water [39].
(2) Acidic Pre-Treatment

The most studied method is acidic pre-treatment for biomass, and it could provide the satisfactory
cellulose conversion [25]. According to the literature, H2SO4, HCl, H3PO4, and HNO3 have been studied,
and these acids would promote the hydrolysis of hemicelluloses and amorphous cellulose [25,40–42].
However, the concentrated acids are not favored due to the corrosion and toxicity in nature. In
the industrial scale, dilute acid pre-treatment is more popular. Generally, dilute acid refers to the
concentration of 0.5–1.5% [43]. The yield of sugars is high from hemicelluloses. In this pre-treatment
process, the lignocellulose could be usually executed at high temperature (about 180 ◦C) for a shorter
period of time (less than 15 min), while the materials could be also performed at low temperature
(about 120 ◦C) for a long reaction time (about 30–90 min) [44]. For instance, the total sugar recovery
from poplar wood is about 83% with a loading of 15 FPU/g cellulose [45]. During this process, different
simple sugars are released from hydrolysis of hemicellulose, e.g., xylose, arabinose, mannose, and
galactose, while it also releases some other compounds, which could inhibit the enzymatic hydrolysis
and fermentation. Finally, part of the CH3COOH, H2SO4, and other inhibitors produced during the
degradation are removed, and neutralization is formed. However, dilute acid pre-treatment only
provides satisfactory enzymatic cellulose conversion for hardwood. Cellulose conversion is only about
40% when using softwood as the raw material [46].
(3) Steam Explosion

Steam explosion is another effective pre-treatment for biomass. During the process, steam would
make the biomass reach to the target temperature rapidly without excessive dilution of sugars [32].
Generally, the raw material is treated by hot steam under high pressure, e.g., 180–240 ◦C, 1–3.5 MPa, and
then the lignocellulosic structure would be destroyed [26]. The sudden release of pressure contributes
to defibrillation of cellulose bundles, which improves the accessibility of cellulose for enzymatic
hydrolysis and fermentation. There are two stages in the steam explosion process: Auto-hydrolysis
and de-pressurization [47]. In the auto-hydrolysis process, the hydrolysis of hemicellulose occurs when
acetic acid from acetyl groups connected with hemicellulose is formed at high temperature. The acetic
acid would further catalyze the hydrolysis of hemicelluloses [48]. Then the particle size of raw materials
would be reduced resulting in the high enzymatic accessibility of cellulose in the depressurization
process. This method leads to a remarkable breakdown of lignocellulose, hydrolysis of hemicellulose,
depolymerization of lignin, accessibility of enzymes [47]. The primary advantages of this method
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are less hazardous chemicals, high energy efficiency, and low environment pollution. In order to
further improve the energy efficiency, some scientists reported that the addition of SO2, CO2, and NH3

would achieve this goal [49,50]. The method also names the acid-catalyzed steam pre-treatment. For
instance, the raw materials are impregnated with acid catalyst either in the gas phase with SO2 or in
the aqueous phase with H2SO4 before steam pre-treatment. We think that the acid-catalyzed steam
pre-treatment is actually another form of the dilute acid pre-treatment. Typical acid or SO2 charge on
biomass varies from 0% to 5%, and the temperature ranges from 190 to 220 ◦C. Reaction time varies
from 1 to 10 min [49,50]. The addition of NH3 (ammonia fiber explosion) would also greatly improve
the conversion efficiency [51]. In ammonia fiber explosion, lignocellulose biomass is exposed to liquid
ammonia at a moderate temperature (60–100 ◦C) under a high pressure (1.5–2.0 MPa) for a period of
time, and then the pressure is suddenly released [52,53]. However, the important limitation is that
hemicellulose would not be removed significantly, leading to a lower enzyme accessibility and yield
of sugars.

3.2. Thermodynamic Liquefaction

In general, there are two types for thermodynamic liquefaction of biomass depending on the
operating conditions: Pyrolysis liquefaction [31] and hydrothermal liquefaction [54]. In pyrolysis
liquefaction, it could be divided into slow pyrolysis, fast pyrolysis, and flash pyrolysis [55]. Bio-oil,
which is also regarded as pyrolysis oil or pyrolytic oil, could be obtained from both of these two
methods. As shown in the literature, bio-oil is the extremely complex substance and composed of
hundreds of organic compounds, e.g., alkanes, aromatic hydrocarbons, phenol derivatives, ketones,
esters, ethers, sugars, amines, and alcohols [56,57]. In addition, the molar ratio of H to C in bio-oil is
higher than 1.5. The pyrolyze bio-oils could be directly burned in boilers, or upgraded to produce
valuable fuels and chemicals using the following methods: Extraction [58], emulsification [59],
esterification/alcoholysis [60], supercritical fluids [61], hydrotreating [62], catalytic cracking [63], and
steam reforming [64].

3.2.1. Fast Pyrolysis

Slow pyrolysis is usually executed at a low reaction temperature, heating rate, and a long residence
times, which produces a little of bio-oil. In the flash pyrolysis process, the reaction time is only or less
than several seconds with a very high heating rate and small particle size, and the primary product is
syngas [65]. Fast pyrolysis also proceeds at a high heating rate (less than in flash pyrolysis) and short
residence time of the vapor [66]. The favorable product in the process is bio-oil. This technology has
developed considerably in the last years, due to the low investment costs, high energy efficiencies, and
environmental acceptability [67,68]. In the fast pyrolysis, the core technology is the reactor design.
During the last decades, in order to realize rapid heat-transfer, several different reactor designs have
been developed [68–70], such as fixed bed, bubbling fluidized bed, circulating fluidized bed, rotating
cone reactor, Auger reactor, and vacuum reactor. The choice of the technology and quality of bio-oil
are affected by many parameters, including raw material, reaction temperature/time, particle size of
raw material, residence time of volatiles, heat transfer rate, and feed rate.

Operating Parameters

(1) Raw Material
The main components in biomass are cellulose, lignin, hemicellulose, and inorganic substance,

and the percentage of these components is mainly influenced by the biomass species [71]. Even with
the same biomass, the percentage of these components is also dependent on soil, age, or planting
conditions [72,73]. The percentage of the components affects the yield and distribution of bio-oil. The
higher yield of bio-oil would be obtained from the higher contents of cellulose and hemicellulose than
that obtained from a higher content of lignin component [74,75]. As the greater structural stability,
lignin component is difficult to be decomposed and the primary pyrolysis product is biochar [76].
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Quan et al. [77] reported that the yield of bio-oil obtained from cellulose is 18.67%, the yield of bio-oil
obtained from hemicellulose is 30.83%, and the yield of bio-oil is only 0.5% using the lignin as the raw
material. Stefanidis et al. [78] studied the pyrolysis products using cellulose, hemicellulose, and lignin
as the raw material. It indicates that the main liquefaction products of cellulose are sugars, levoglucosan,
and low concentrations of phenols, ketones, aldehydes, and alcohols, the main liquefaction products of
hemicellulose are ketones, phenols, acids, and aldehydes, and the main liquefaction products of lignin
are complex phenols with high molecular weights. Moreover, ash also has a significant effect on the
proportion and distribution of fast pyrolysis products [79]. High content of ash component leads to a
low yield of bio-oil and high proportions of biochar and gas-phase substance [80]. Especially, Na and
K could reduce the yield of liquid-phase products, and S and P could also reduce the yield of bio-oil
resulting in the higher biochar formation [80,81]. The content of moisture is another critical factor in
the fast pyrolysis process [82]. The production and collection of raw material affects the content of
water [83]. The water in bio-oil is the result of the absorbed water in raw materials and dehydration
reactions during the pyrolysis process. Generally, the maximum moisture content is 10% in the raw
material to minimize the water content in the bio-oil [17].
(2) Reaction Temperature

The reaction temperature is the key factor in the fast pyrolysis process. It could provide the
necessary energy for the decomposition of biomass bonds [84]. The decomposition efficiency increases
with reaction temperature increase, because the high temperature could provide the high energy to
break the biomass bonds [85]. Numerous studies have shown that the high yield of bio-oil generally
ranges from 450 ◦C to 500 ◦C [86–88], while the temperature changes with the raw material or the
other variables. Although the high temperature may cause a positive effect on the yield of bio-oil, the
extremely high temperature often has the negative impact on the yield, which may occur the secondary
cracking of the volatiles [89]. Table 2 lists the suitable temperatures for different biomasses. Besides
the yield, the temperature also has a significant effect on the quality of bio-oil. At low temperatures,
the main components in bio-oil are alkenes, alkanes, long-chain fatty acids and esters, aliphatic nitriles,
and amides, while the components obtained at higher temperature change to short aliphatic carbons
and lower-molecular-weight compounds of alcohols, ketones with lower H/C ratio [90,91].

Table 2. Suitable temperatures for different biomasses.

Raw Material Temperature Yield Ref.

Rice husk 450 70 wt. % [91]
Plam 500 72.4 [92]

Neem deoiled cake 400 40.2 [93]
Cynara cardunculus L. 400 46.23 [94]

Olive bagasse 600 46.3 [95]
Sugarcane bagasse 475 56 [96]
Cassava rhizome 472 63.23 [97]

Cassava stalk 472 61.39 [97]
Jatropha seed shell cake 470 48 [98]

Poplar 455 69 [99]
Pistachio shell 550 20.5 [100]

Bamboo sawdust 510 61 [101]

(3) Residence Time
A large amount of vapor would be released during the fast pyrolysis process. After the reaction,

the vapor should be removed rapidly from the reactor. If the vapor were not removed in the minimum
time, the secondary reactions would occur [74,102], such as thermal cracking, repolymerization, and
recondensation of the biochar residue. The secondary reactions would cause a decrease in the yield of
bio-oil. In order to purge the pyrolysis vapor, N2 is the most popular gas due to being inert, cheap,
and readily available. In the process, a higher inert gas flow should be introduced to reduce vapor
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residence time [103]. Several studies analyzed the effect of inert gas flow on the yield of bio-oil show
that the increase in the flow of inert gas causes an improvement in the bio-oil yield (Table 3). However,
a very high gas flow would lead to a lower yield of bio-oil, because the uncompleted condensation of
vapors and biomass are swept out of the reactor, resulting in a low yield of bio-oil and high yield of the
gas-phase products.

Table 3. Suitable residence time for different biomasses.

Raw Material Gas Flow Rate/Time Yield of Bio-Oil Ref

Safflower seed 100 cm, 3/min 67 wt. % [104]
Palm kernel shell 1 L/min 50 wt. % [7]

1.5 L/min 53 wt. %
2 L/min 57 wt. %

Sewage sludge 300 mL/min 45.3 wt. % [6]
Rice husk 3 L/min 45 wt. % [102]

4 L/min 47.5 wt. %
5 L/min 49 wt. %

Cassava stalk 0.1 L/min 48 wt. % [105]
0.5 L/min 51 wt. %
1.5 L/min 53 wt. %
3 L/min 52 wt. %

Sugarcane bagasse 5 s (8 L/min) 56+1.3 wt. % [106]
10 s (4 L/min) 52+2.5 wt. %
20 s (2 L/min) 47.5+28 wt. %

Jatropha cake 1.25 m, 3/h 37.78 wt. % [107]
1.75 m, 3/h 64.25 wt. %
2.4 m, 3/h 30.5 wt. %

Babool seeds 100 cm, 3/min 44 wt. % [86]
400 cm, 3/min 30 wt. %

Rice husk 0.255 m/s 19.5 wt. % [108]
0.340 m/s 20.5 wt. %
0.425 m/s 17.9 wt. %

Euphorbia rigida 400 cm, 3/min 31.5 wt. % [109]
Sunflower pressed bagasse 200 cm, 3/min 45.7 wt. %

Hazelnut shells 100 cm, 3/min 23.1 wt. %

(4) Particle Size
As a poor conductor of heat, of biomass, it is difficult to transfer heat into biomass in the pyrolysis

process. Hence the yield of bio-oil is dependent on the particle size, and decreasing the particle size
is a vital task in minimizing the heat transfer problem [74]. Shen et al. [110] reported that the yield
of bio-oil with a 0.3 mm particle size increased by 12–14% compared to that with a 1.5 mm particle
size. Garg et al. [86] reported that the yield of bio-oil increases when the particle size of a babool seed
decreases in the fixed bed reactor, and the raw material with less than 0.4 mm leads to a maximum
yield of bio-oil (32%). Kang et al. [111] observed similar results. However, there are some negative
opinions in the effect of particle size. Encinar et al. [94] reported the fast pyrolysis of grape bagasse,
Cynara cardunculus L. and soybean cake in the fixed bed reactor. The result indicates that it has less
effect on the yield of bio-oil when the particle size of the raw material is up to 2 mm. Abnisa et al. [112]
believed that the yield of bio-oil is independent of the particle size, and they observed the opposite
effect in palm shell pyrolysis. The result indicates that the yield of bio-oil increases to 69.6 wt. % when
the particle size increase from 0.5 mm to 2 mm. Generally, it is known that the smaller particle size has
the faster and uniform heating resulting in the higher yield. However, the fine raw material would
reduce the yield of bio-oil as the uncompleted fine biomass would be removed out of the reactor by
inert gas [106].
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(5) Other Factors
Reaction time refers to the time sustained in the reactor for the raw material at the specific pyrolysis

temperature. In order to obtain the high yield of bio-oil, a sufficient reaction time is required during
the pyrolysis process. If the reaction time is too long, the secondary reactions would be occurred for
the pyrolysis vapors, e.g., carbonization, gasification, or thermal cracking, resulting in a lower yield
of bio-oils [113]. Moreover, this parameter is vital to the reactor design. The reaction time for some
biomasses is listed in Table 4. Feed rate is another factor in the fast pyrolysis process that affects the
product distribution and quality. The formation of gas and organic vapor occurs under the low feeding
rate and fast heat transfer, which contributes to faster liquefaction [7]. However, as the yield of the
gas-phase products with low feed rate is lower than that with fast feed rate, the higher residence time
is required, which leads to an increase in the yield of biochar due to the long interaction between vapor
and biochar. Furthermore, the long residence time could also cause secondary reactions [114].

Table 4. Suitable reaction time for different biomasses.

Raw Material Reaction Time/min Yield of Bio-Oil Ref

Rice husk 1 36 wt. % [5]
2 41 wt. %
4 40 wt. %
8 39 wt. %

Rice straw 1 9 wt. % [115]
2 10 wt. %
4 9.5 wt. %
8 8 wt. %

Bagasse 1 7 wt. %
2 16 wt. %
4 11 wt. %
8 10 wt. %

Coconut shell 1 5 wt. %
2 13 wt. %
4 7.5 wt. %
8 11 wt. %

Pistachio shell 10 52.96 wt. % [116]
20 53.08 wt. %
50 50.13 wt. %

Physic nut 15 27 wt. % [117]
240 22.5 wt. %
30 28 wt. % [118]
60 46 wt. %
90 45.5 wt. %

120 45 wt. %
150 45.8 wt. %

Cassava stalk 60 52 wt. % [4]
180 39.5 wt. %

Cassava rhizome 60 50 wt. %
180 42 wt. %

Reactor Types

(1) Bubbling fluidized bed reactor
As is well known, the bubbling fluidized bed reactor has become popular in the petrochemical

industry for decades [119]. The reactor design could provide a high heat transfer rate and uniform bed
temperature in the fast pyrolysis process of biomass. Generally, the residence time in the freeboard
section above the bed ranges from 0.5 to 2.0 s dependent on the size of the bed fluidizing media [120].
The reaction temperature is usually set to 500–550 ◦C resulting in the highest yield of bio-oil, while the
temperature and residence time could be operated at a low level in the larger systems. The parameters
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are also influenced by the type of raw material. During the reaction, the yield of bio-oil would be
oxidized using the flue gases as the direct heating media. The small particle size (2–3 mm) is required
to reach the good heat transfer. Self-cleaning is an advantage of this reactor with a relatively narrow
particle size distribution, as the biochar (by-product) would be carried out with the gas and vapor. If
the biomass particle size is too large, the biochar could not be entrained out of the reactor and then the
lower density of biochar would stick on the top of the bed [121]. Figure 6 shows the schematic of a
typical bubbling fluidized bed [122,123]. The biochar on the top of the bed would act as the role of the
catalyst to converse the vapors when they pass through the biochar, resulting in the lower yield of
bio-oil. If the size of the raw material is too fine, it must be introduced lower in the bed to prevent
the fine feed from entraining out of the bed before complete pyrolysis. Hence, a mean should be
designed for skimming and discharging biochar from the top of the bed. If it is not to be designed,
the raw material should carefully grind to obtain a narrow particle size distribution leading to a high
cost. Otherwise, heat applied to the reactor in different ways should be also designed to improve the
flexibility of the reactor.
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(2) Circulating fluidized bed
Circulating fluidized bed technology has been extensively applied to biomass pyrolysis. The

advantage of the reactor is high heat transfer rates and short vapor residence times [124]. Figure 7
shows the schematic of this circulating fluidized bed system [125,126]. In the design, large quantities
of sand should be moved into the reactor resulting in the high challenge of the operability. The hot
sand could be circulated between combustor and pyrolyzer units. The most important difference is the
supplying heat method for various developed system designs. The first generation contains the simple
units, e.g., single indirectly heated reactor, cyclone, and standpipe configuration. In this system, the
particle size of the raw material should be smaller than that in bubbling beds, and the residence time
would only have 0.5–1.0 s (s) in the high heat transfer pyrolysis zone [127]. For the large particle size of
the raw material, there is not enough time to transfer the heat. Especially, biochar is formed on the
surface of biomass, which plays a vital role to prevent further penetration of heat. The incomplete
pyrolyzed larger particles would be burned in the char combustor with a low yield of bio-oil. Hence,
the suitable particle size is 1–2 mm [128].
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(3) Rotating cone reactor
The rotating cone reactor has been in development since the early 1990s, and the processing

capacity has been improved to 200 kg/h. The schematic for the rotating cone reactor [129] is shown in
Figure 8. Similar to the circulated fluidized bed, the pyrolysis reaction executes with the mixture of hot
sand and biomass. While, the primary distinction between them is that the carrier gas is replaced by
the rotary cone to form a centrifugal force. Firstly, the raw material and sand are introduced to the
base of the rotating cone, and then the mixture is moved to the lip of the cone under a centrifugal force.
Finally, the mixture spills over the lip of the cone, and the pyrolysis vapor would be introduced to the
condenser. The sand would be re-heated after introducing biochar and sand into the combustor at the
base of the cone. The literature demonstrates that the yield of bio-oil would achieve to a 70% yield and
there are two advantages in this design. The first is that the bio-oil would recover easier without the
carrier gas, and the second is that the wear problems are reduced because the transport dynamics of
sand and biomass are not as aggressive as in the circulating fluid bed. However, the disadvantages are
a complex integrated process and scale up issue [130].
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(4) Auger reactor
The important advantage of an Auger reactor has been identified for its potential to reduce

operating costs [131]. However, this reactor is not suitable for large-scale pyrolysis [132]. Figure 9
shows a schematic for the Auger reactor. In the reactor, the Auger system plays the role of the
commingler for the hot sand and raw material. Generally, the design contains hot, heating, and
circulation systems. Once the raw material is introduced into the reactor, it would direct contact with a
bulk solid heat transfer medium. The materials of the heat transfer medium are usually sand or a steel
shot, which is heated independently before sending into the reactor. According to the gravimetric basis,
it is suggested that the feed rate of the heat transfer medium is 20 times to that of the raw material. It is
effective when the biomass and heat transfer medium are combined with two intermeshing, co-rotating
augers quickly in a shallow bed during the pyrolysis reactions. This is an unintelligible mechanical
mixing process. Finally, the vapors and aerosols are introduced out of the different ports respectively,
and biochar would be transported through a long section and stored in a canister with the heat transfer
medium [133,134].
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(5) Vacuum pyrolysis
The vacuum pyrolysis process has been developed by Canada. In fact, vacuum pyrolysis belongs

to the slow pyrolysis process. The low heat transfer rate and short vapor residence time would
produce the bio-oil product [135]. The yield of bio-oil is only half of that obtained by the fluid bed
technologies [136]. Figure 10 shows the schematic design of vacuum pyrolysis. In this design, the
raw material is moved by gravity and rotating scrappers through multiple hearth pyrolyzers, and the
reaction temperature changes from 200 ◦C to 400 ◦C. Furthermore, a larger particle size and a little
carrier gas are required. The raw material would be carried into the high temperature vacuum chamber
using a moving metal belt. The biomass on the belt is stirred by the mechanical agitator periodically.
All of this mechanical transport is being done at 500 ◦C. The special devices of feeding and discharging
are required to achieve a good seal at all times. However, the high investment and maintenance cost
limit its development [137,138].
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3.2.2. Hydrothermal Liquefaction

Hydrothermal Processing

According to the literature, the content of water in the biomass raw material is usually more than
40% for pyrolysis liquefaction [139]. Hence, it is usually required to pre-treat the biomass to make it
suitable for pyrolysis application. The reported pre-treatments are atmospheric drying, solar drying,
and evaporation [140,141]. Few studies suggest that the water could be mechanically dehydrated via
atmospheric drying. Although the cost of the solar drying method is low, it requires a long dehydrated
time to lower the water content [142,143]. The presence of water in the raw material could consume
more energy to evaporate it, which limits the operability and economy of this technology [140,144].
Compared to the pyrolysis liquefaction, hydrothermal liquefaction of biomass is one of the effective
methods to treat the biomass with high water content [54,144]. This liquefaction of biomass is not
affected by the level of water content and the types of biomass with high conversion and relatively
pure products [145]. The suitable properties for liquefaction of biomass are demonstrated [146],
including a high density, good heat, mass transfer capability, fast decomposition, and extraction under
hydrothermal conditions. This is an environment friendly technology, and the heteroatom in biomass
could be converted into undesired by-products. Biomass and O element would be rapidly oxidized to
form CO2 or H2O [142]. N element in biomass is mainly converted to N2 or N2O. S, Cl, and P elements
are mainly oxidized to their inorganic acids, which would destroy the vessel lining [147]. Hence,
extreme operating conditions, corrosion, and scaling are major limitations of hydrothermal liquefaction.

Operating Parameters

(1) Temperature
It is known that the yield of bio-oil and the biomass fragmentations would be increased with

the temperature increase [145,148]. The depolymerization of biomass would occur extensively when
the reaction temperature is higher than the activation energies for the bond cessation. However,
the high temperature increases not only the concentration of free radicals, but also the probability
of repolymerization of fragmented species [140,149]. The suitable reaction temperature for bio-oil
production is the competitive result of hydrolysis, fragmentation, and repolymerization. At the initial
stage, depolymerization of biomass is the dominant reaction, and the biochar would be formed via
repolymerization at the later stage [150]. Hence, the higher yield of bio-oil would be obtained at the
intermediate temperature. As the properties of water would change rapidly under a super-critical
condition, it is a huge challenge to select the optimum temperature [151]. The yield of bio-oil is
influenced by the reaction temperature sequentially. The reaction temperatures for bio-oil production
via hydrothermal liquefaction of some biomass are listed in Table 5. Generally, when the temperature
is lower than 374 ◦C, the yield of bio-oil increases with the reaction temperature. While, the gas-phase
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products would increase when the temperature is higher than 374 ◦C. Furthermore, it is not suitable to
produce bio-oil at a high temperature considering the operational cost and bio-oil yield. A large amount
of gas-phase products would be formed via secondary decompositions and Bourdard gas reactions,
and formation of biochar would be produced due to the recombination of a high concentration of free
radical [152,153]. In addition, the yield of bio-oil would be suppressed by the incomplete decomposition
of components when the temperature is lower than 280 ◦C. Hence, the effective temperature range
would be located from 300 ◦C to 350 ◦C for hydrothermal liquefaction of biomass.

Table 5. Reaction temperatures via hydrothermal liquefaction for some biomasses.

Raw Material Temperature Yield Ref.

Enteromorpha prolifa 300 21 [154]
Cattle manure 315 38 [155]

Grassland perennials 300 77 [156]
Eucalyptus 305 36 [151]

Cunninghamia lanceolata 305 76 [157]
Dunaliella tertiolecta 360 22 [152]

(2) Pressure
In general, pressure is another key factor for the hydrothermal liquefaction of biomass. The

single-phase solvent would be maintained under the high pressure, and the large heat is required to
maintain the energy of the reaction system for the two-phase system [158]. When the pressure of the
system is higher than the critical pressure of the solvent, the favorable reaction pathway would be
enhanced for the production of liquid fuels. On the other hand, the solvent density would be improved
under the high pressure, and the molecules of biomass components could be penetrated by the high
density solvent, which enhances the pyrolysis and extraction. While, there is little influence on the yield
of bio-oil when the reaction pressure overcomes the supercritical conditions for liquefaction [153,154].
(3) Residence time

The residence time is also the key factor for the hydrothermal liquefaction of biomass, and the
products components and conversion of biomass would be defined by the residence time [157]. In the
supercritical conditions, the reaction rate of hydrolysis and decomposition is rapid, so the short reaction
time is contribution to the decomposition of the raw material [159]. However, the reaction time is
required to optimize the destruction of the organic compounds in different biomasses [160]. Different
researches have studied the function of reaction time on the yield of bio-oil. Boocock et al. [161]
reported that the yield of bio-oil decreases for a long residence time except for a very high mass ratio
of biomass to water. Generally, the breakage of C–C bands leads to the depolymerization that biomass
depends upon. However, the cage effect for C–C bands would inhibit C–C bonds breakage under the
supercritical pressures, resulting in a low fragmentation.
(4) Other parameters

Firstly, the higher heating rate would promote the fragmentation of biomass and inhibit the
formation of biochar, while there is a low effect on the product distributions [162]. The reason for the
phenomenon is that the fragmented species would be dissolved and stabilized in the supercritical
conditions [156,162]. Secondly, the particle size of raw material also affects the yield of bio-oil. In order
to achieve the high-efficiency hydrothermal liquefaction, reducing the particle size of raw material
would increase its accessibility [156]. While, the treatment would improve the consumption of energy
resulting in the increase of cost. Hence, the hydrothermal liquefaction should be executed with an
optimum particle size at a low grinding cost. In fact, it has a low effect in hydrothermal liquefaction
for the particle size of biomass [163]. The sub/supercritical water acts as not only a heat transfer
medium but also an extractant, and it could overcome the heat transfer limitations. Therefore, the
particle size of the biomass is less important, it is not needed for excessive size reduction of the raw
material. Thirdly, there is the potential effect of the solvent type and density on the yield of bio-oil in
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hydrothermal liquefaction. The common solvents in the reported researches are water, methyl alcohol,
ethyl alcohol, and other organic solvents [148]. For solvent density, it is a key factor for the mass
ratio of solvent to biomass. The high mass ratio of solvent to biomass contributes to the high yield of
bio-oil and gas products, which is because the products would be exacted by the solvent medium [162].
Wang et al. [164] reported that the high mass ratio of solvent to biomass could increase the amount of
bio-oil, meanwhile there is a decrease in the yields of residues and gas-phase products. It indicates that
the solvent could enhance the stability and solubility of fragmented components. When the mass ratio
of biomass to solvent is high, the relative interactions between biomass components and the solvent
become weak, leading to a low dissolution capacity of biomass components.

3.2.3. Upgrading of Bio-Oil

Bio-Oil Characteristics

Bio-oil is the dark brown and viscous liquid with a distinctive odor [66,92]. Bio-oil is a complex
mixture of several hundreds of chemical composition, and affected by the type of raw material,
thermochemical process, and operating parameters [91,141]. The main components in bio-oil are
acids, alcohols, aldehydes, esters, ketones, phenols, and guaiacol [55,165]. The undesirable properties
of bio-oil are caused by these compounds. The physical characteristics of liquefaction-derived
bio-oil [59,166–168] are listed in Table 6. As shown in the table, the concentrations of water and the O
element in bio-oil are higher than that in heavy petroleum fuel oil, resulting in a lower heating value
of bio-oil (about 35 MJ/kg). In addition, the concentration of the N element in bio-oil is also higher
than that in heavy petroleum fuel oil. The pH value of bio-oil ranges from 3.5–4.2 leading to a high
corrosivity. For instance, the acidity and corrosiveness is the result of a considerable amount of fatty
acids. Moreover, the side reactions would proceed during the storage period, e.g., polymerization and
evaporation would cause a slow increase in viscosity [90,169]. Besides, aldehydes are the most unstable
component in bio-oil. The above undesired characteristics of bio-oil have limited its application as a
transportation fuel. Hence, it is necessary to upgrade the quality of bio-oil.

Table 6. Physical characteristics of liquefaction-derived bio-oil and heavy petroleum fuel oil.

Properties Bio-Oil Heavy Petroleum Fuel Oil

pH 3.8–4.0 -
Acid value (mgKOH/g) 1.8 -

Density (g/cm3) 1150–1200 at 40 ◦C 940
Viscosity (cP) 650 at 40 ◦C 180 at 40 ◦C
HHV (MJ/kg) 28.42 40

C (wt. %) 66 85
H (wt. %) 11 11
O (wt. %) 12 1.0
N (wt. %) 9 0.3
S (wt. %) 1 -

Water content (wt. %) 13–12 0.1
Ash content (wt. %) 0.4–0.7 0.1

Bio-Oil Upgrading

Reported by the literature, there are physical and chemical methods to upgrade bio-oil, including
extraction, solvent addition, emulsification, esterification/alcoholysis, supercritical fluids (SCFs),
hydrotreating, catalytic cracking, and steam reforming. Table 7 lists the process conditions, advantages,
and disadvantages for each method [58–63].
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Table 7. Brief description of bio-oil upgrading techniques.

Upgrading Techniques Process Conditions Pros. Cons.

Extraction Mild conditions, solvents Extracts valuable chemicals from bio-oil Low cost separation and refining techniques are still needed

Solvent addition Mild conditions, polar solvents Simple No chemical reaction to convert or remove
undesired compound within bio-oil

Emulsification Mild conditions, surfactant Simple High energy consumption, no chemical reaction to convert or
remove undesired

Esterification/alcoholysis Mild conditions, alcohol Relatively simple, mild conditions, low cost of
alcohol if methanol is used

Not effective to remove nitrogen-containing
compounds

Supercritical fluids (SCFs) Relatively high pressure and temperature,
organic solvents Effective to increase HHV and reduce viscosity Needs high pressure equipment, some solvents are expensive

Hydrotreating Relatively high pressure and temperature,
catalysts

Removes N, O, and S as NH3, H2O, and H2S, and
increase HHV, commercialized already

Needs high pressure equipment, high cocking and catalyst
deactivation

Catalytic cracking Relatively high temperature, atmospheric
pressure, catalysts, Produces large amounts of light products Needs high pressure equipment, catalyst

deactivation
Steam reforming High temperature, catalyst Produces H2 as a clean energy resource Needs high temperature equipment
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(1) Extraction
As listed above, there are a large number of chemicals in bio-oil, and some of the chemicals have

industrial applications, e.g., phenol for resin industry, organic acids, and alkanes [170]. Therefore, the
chemicals extracted from bio-oil are effective in increasing the value of bio-oil. Similar to petrochemical
plants, extraction from bio-oil is the separation technology [171]. The technology includes absorption,
distillation, and fractionation. The solvent for adsorption is acetone, and the fractionation is divided
into phase separation and aqueous extraction [172]. In Eboibi et al.’s work [173], they reported
that there is a decrease in the concentration of the O element, and an increase in HHV. In order for
commercialization, the low-cost separation and refining techniques must be developed [174].
(2) Solvent addition

Using polar solvents to reduce viscosity of bio-oils has been popularized for several decades,
and the common polar solvents include ethyl acetate, acetone, methanol, and ethanol [175,176]. After
polar solvents addition, the heating value increases as the solvents has the higher heating value than
bio-oil [177]. On the other hand, the viscosity of bio-oil would be reduced because there is a physical
dilution and chemical reaction between solvent and bio-oil components.
(3) Emulsification

Emulsification with other chemicals is another method for bio-oil upgrading. While, it is difficult
to mix bio-oil derived from biomass and fuels derived from petroleum, so the surfactants are commonly
used [178]. The ignition property of bio-oil emulsions is excellent, while higher corrosion is observed
in engine applications. Emulsification is a short-term pathway to upgrade bio-oil without a chemical
reaction [59]. Although, this pathway could improve the ignition characteristics, there is no significant
improvement in heating value, corrosiveness, and cetane number [179]. Emulsification is a relatively
simple technique to upgrade bio-oil with diesel or bio-diesel, however the addition of surfactants and
the high energy consumption result in a high cost [180].
(4) Esterification/alcoholysis

In order to obtain bio-diesel, esterification (also named alcoholysis) of free fatty acids to alkyl ester
is popular [181]. Acid catalyst plays an important role in the process for the reaction between fatty acids
and alcohol to produce alkyl ester or bio-diesel under atmospheric pressure [182]. Due to the low cost,
the most common alcohol is methanol for esterification. The reaction is usually carried out at a lower
temperature (<60 ◦C), which is lower than the boiling point of methanol. The esterification reaction
could also be performed under super-critical conditions. The super-critical upgrading of bio-oil is
more effective than sub-critical upgrading. However, there is plenty of water formation in the reaction
as the by-product. Esterification is a reversible reaction, and water could be separated and removed to
increase the yield after reactive distillation. Although the catalysts for esterification could be divided
into homogeneous and heterogeneous, the easier separation from the products have been preferred to
apply in bio-oil upgrading, and the popular catalysts are HZSM-5 and aluminum silicate. Besides
fatty acids, there is also the esterification reaction for aldehydes to produce acetal. Some characteristics
of bio-oil have been improved after esterification and acetalization, such as viscosity, density, aging
rate, acidity, oxygen content, and water content, leading to a high heating value. However, there is no
literature that reported significant nitrogen removing. In brief, the advantages of esterification are
simplicity, low temperature, pressure, and cost of alcohols, which seems to be one of the promising
techniques for upgrading bio-oil [183].
(5) Supercritical fluids (SCFs)

A supercritical fluid is a new method for upgrading bio-oil and has attracted a lot of attention.
Beyond the critical point of the solvent, the solvent would maintain a fluid at a high temperature
and pressure [184], which refers to the super-critical fluid, and it is difficult to distinguish the liquid
phase and gas phase [185]. The material could be dissolved in the super-critical fluid, while it could
also diffuse through solids like a gas [186]. It is a promising alternative to organic solvents. In the
supercritical fluid, the ability of undissolved materials could be improved [187]. The unique properties
of the technology are liquid-like density, gas-like diffusivity and viscosity, and faster rates of mass and
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heat transfer. According to the literature [188–191], some solvents have been studied to upgrade bio-oil,
including ethanol, methanol, and water. It is similar to esterification under super-critical conditions
using alcohol as a solvent and acid catalyst as a catalyst [192]. Xu et al. reported that the properties
of bio-oil would be improved using supercritical 1-butanol on Ru/C catalyst [193]. Duan et al. [194]
reported the upgrading of bio-oil at high H2 pressure under a supercritical condition with a Pt/C
catalyst. After treatment, the higher heating value of bio-oil increases, and acid number, O and N
contents, and viscosity decrease.
(6) Hydrotreating

It is generally recognized that the higher content of hydrogen in the fuel product leads to a better
quality [184]. Hydrotreating of bio-oil is an established process to reduce the concentrations of O, S,
and N, and this technology would be executed with a catalytic reaction under high pressure hydrogen
(10–20 MPa) at moderate temperatures (250–450 ◦C) [195]. O element is removed in the form of water,
N element and S element are also removed in the form of NH3 and H2S respectively [196]. The primary
methods for hydrotreating technology are hydrogenation and hydrodeoxygenation [65].

For hydrogenation, it aims to improve the quality and stability of bio-oil via reducing the contents
of reactive compounds, e.g., organic acids and aldehydes [197,198]. The traditional technology for
hydrogenation of bio-oil is single, which is carried out at specific conditions, e.g., high hydrogen
pressure, high temperature, and suitable catalysts [14,199]. The catalysts used in the hydrogenation
of bio-oil are usually Al2O3-based catalysts and the Ru/SBA-15 catalyst. After upgrading, all of
the pH value, water content, and H element concentration increase, while the viscosity of bio-oil
decreases to some extent [194,200]. Currently, the new hydrogenation method names one-step
hydrogenation-esterification (OHE). In OHE, acids and aldehydes could be converted to stable and
combustible substances, and the common catalysts are bifunctional, e.g., Pd-Al-SBA-15 catalyst [201,202].
The bifunctional catalysts could offer the abilities to upgrade bio-oil via hydrogenation and esterification.
Yu et al. [203] reported that 5 wt. % Pd@Al2(SiO3)3 exhibits a catalytic performance, and it could convert
the unstable components in bio-oil to esters or alcohols via the effective OHE reaction. Tang et al. [204]
also reported similar results. Besides, the catalytic performance for bifunctional catalyst has been
improved via some treatments, and the OHE method is much better than the traditional method [205].

For hydrodeoxygenation (HDO), it is a variant of hydrogenation upgrading, and the O element in
many kinds of oxygenated chemical groups could be removed under high hydrogen pressure, e.g.,
acids, aldehydes, esters, ketones, and phenols [169,206]. The common catalysts in previous literature
for HDO focused on Ni-Mo or Co-Mo sulfide/supported hydrotreating catalysts (Table S1). Wang et
al. [207] reported that the mesoporous Pt/ZSM-5 exhibits a more excellent performance than Pt/ZSM-5
and Pt/Al2O3. However, there are typical disadvantages for the HDO, including by-product formation,
catalyst deactivation, and a high cost for noble metal. Hence, the novel and economical catalysts
should be developed that contains a high oxygen content. In China, the largest scale reactor is a 500
mL autoclave reactor with a 10 mm diameter and 420 mm length. Recently, the amorphous catalysts
have attracted the attentions as the excellent hydrodeoxygenation activity and selectivity. Amorphous
Co-W-B catalyst shows an excellent catalytic hydrodeoxygenation ability [208,209]. Simple preparation,
high stability and activity, and a low cost make the amorphous catalyst as the potential candidate
for HDO.
(7) Catalytic cracking

Catalytic cracking could be divided into two pathways to improve the quality of bio-oil: One is
traditional catalytic cracking and another one is the combination of catalytic pyrolysis and catalytic
cracking [63]. The traditional catalytic cracking means that bio-oil suffers a thermal conversion
treatment at a higher temperature with high pressure hydrogen flow using the proper catalysts in
a tubular fixed bed reactor. There are solid (coke), liquid, and combustible gases products after
the catalytic cracking process [210]. The liquid products could be divided into the organic phase
and aqueous phase. The common catalyst in this reaction is HZSM-5 [63], while the bottleneck for
sustainable application of catalysts is the coke deposition of this catalyst [211]. The combination of
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catalytic pyrolysis and catalytic cracking is the integration of catalytic pyrolysis and catalytic cracking.
The reactor design is divided into a traditional pyrolysis reactor and a decomposition of gaseous
intermediate apparatus. According to the literature, the length is 1.0 m with an inner diameter of 20
mm for the biggest reactor design using a 316 stainless tube [72]. The combined technology has the
superiority of improving the yield of bio-oil and the quality of fuel. Complementally, hydro-cracking is
the less popular catalytic cracking process with an external hydrogen source. The reaction temperature
is usually greater than 350 ◦C, and the reaction pressure exceeds 2000 psi. During the reaction, the
complex organic substances are cracked into simpler molecules. Currently, the C–C bands are broken
by hydrogen [212]. Moreover, it is popular for the combination of hydrotreating and hydro-cracking for
upgrading bio-oil. In the combination, the hydrotreating of bio-oil is carried out firstly and then heavy
components in the bio-oil are broken into light components after the hydro-cracking process [213,214].
Although hydro-cracking is an effective method to break heavy components in bio-oil, the high reaction
temperature and hydrogen pressure are required resulting in a high cost [215].
(8) Steam reforming

Steam reforming refers to a technology to produce synthesis gas from fossil fuels, and the target
products are hydrogen and carbon monoxide [216]. During the reaction, the liquid fuel is usually
reacted with a high temperature steam. The steam reforming of bio-oil is the extension of the steam
reforming of fossil fuels, and the target products are also syngases [217]. The technology is investigated
in a fixed bed reactor and luidized bed reactor [218]. The reaction temperature, steam-to-carbon ratio,
and catalyst-to-feed ratio play important roles in steam reforming of bio-oil, and the most common
catalysts in steam reforming of bio-oil are Ni-based catalysts [219,220]. Similar to hydrotreating, the
bottleneck for the sustainable application of catalysts is also the coke deposition of these catalysts [221].

4. Conclusion and Recommendations for Future Work

4.1. Conclusion

Fossil fuels may run out in several decades, and the renewable fuels (nuclear energy, solar energy,
wind energy, and biomass energy) should be further developed. Biomass has the potential to be used
on a large scale. The liquefaction of biomass is an important technology to converse the biomass into
valuable biofuel. Direct liquefaction of biomass is promising technology to converse the biomass into
biofuels, and the main methods are hydrolysis fermentation and thermodynamic liquefaction. Bio-oil
could be upgraded by physicochemical methods.

4.2. Recommendations for Future Work

(1) As we know that the components of biomass are very complex, and the types of biomass are
also various. These would be the key factors to affect the liquefaction process. Thus the liquefaction
method should be selected based on the type of biomass.

(2) Considering the indirect liquefaction, conversion CO2/CO and H2 to ethyl alcohol is a potential
technology for biomass utilization. In this process, the catalysts should be developed to achieve
efficient conversion.

(3) For the hydrolysis-fermentation liquefaction, this is a traditional technique. While the primary
issue is the long reaction period. The more efficient engineering bacteria should be explored based on
genetic technology.

(4) The liquid fuel (bio-oil) obtained from fast pyrolysis and hydrothermal liquefaction is the
potential mixture to replace fossil fuels. However, the high concentrations of water and the O element
in bio-oil limited its application. Further work should focus on the hydrotreating upgrading.
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