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Estimating the phase volume 
fraction of multi‑phase steel 
via unsupervised deep learning
Sung Wook Kim1, Seong‑Hoon Kang2, Se‑Jong Kim2* & Seungchul Lee1,3,4*

Advanced high strength steel (AHSS) is a steel of multi‑phase microstructure that is processed under 
several conditions to meet the current high‑performance requirements from the industry. Deep 
neural network (DNN) has emerged as a promising tool in materials science for the task of estimating 
the phase volume fraction of these steels. Despite its advantages, one of its major drawbacks is its 
requirement of a sufficient amount of training data with correct labels to the network. This often 
comes as a challenge in many areas where obtaining data and labeling it is extremely labor‑intensive. 
To overcome this challenge, an unsupervised way of learning DNN, which does not require any manual 
labeling, is proposed. Information maximizing generative adversarial network (InfoGAN) is used to 
learn the underlying probability distribution of each phase and generate realistic sample points with 
class labels. Then, the generated data is used for training an MLP classifier, which in turn predicts the 
labels for the original dataset. The result shows a mean relative error of 4.53% at most, while it can be 
as low as 0.73%, which implies the estimated phase fraction closely matches the true phase fraction. 
This presents the high feasibility of using the proposed methodology for fast and precise estimation of 
phase volume fraction in both industry and academia.

Automotive steel products are required to have good mechanical properties with high toughness and strength, 
which are mainly accomplished by controlling the distributions of micro-constituents in steels. Numerous studies 
have investigated the formulation of various steel microstructures based on parameters such as temperature, the 
concentration of carbon, time, and thermomechanical processing, including heat treatments, cooling, anneal-
ing, etc. Nonetheless, only a few studies have been successful in the identification and quantification of micro-
structures, which is of paramount interest in the steel-making industry and academia. The separation of phases 
becomes more challenging and ambiguous, as the number of micro-constituents gets larger due to the complex 
characteristics of microstructures under different conditions. For example, complex micro-constituents can often 
possess the same crystallographic arrangement but with varying degrees of defects in the  cells1, which makes it 
difficult to distinguish between themselves.

The basic form of phase identification as well as the estimation of phase volume fraction consists of manually 
counting the appearances of each micro-constituent through optical microscopy (OM) or scanning electron 
microscopy (SEM). The so-called point counting methodology is often used as a reference in the  literature1–4 
for verifying if a proposed quantification method is appropriate. Even though it generally assures high accuracy 
of the actual phase volume fraction, it is often limited in its usage for the enormous amount of time and a large 
number of images necessary to obtain a 95%  reliability4,5.

Electron backscatter diffraction (EBSD) has recently become a widely used tool to make microstructural 
classification of  steels1,2,6–8. EBSD offers several features, including image quality that allows us to show detailed 
features of the microstructures such as the boundaries. It also allows phase identification by phase contrast pre-
sented from different diffraction intensities of each phase. As such, we also utilize EBSD images in this study to 
extract raw training data. Wilson et al.9 distinguished martensite from ferrite simply using a threshold pattern 
quality (PQ) value. Pixels with lower PQ than the threshold were classified as martensite, in another case as fer-
rite. However, the method is valid only when the PQ profile exhibits a clear bimodal distribution. Kang et al.1 
proposed applying a grain-average function to process the PQ profile and unveil the dominant distribution peaks. 
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The author suggests extracting martensite from a ferrite matrix in DP steels using the average band contrast 
and identifying bainite of TRIP steel with the local variations of band contrast and orientation inside a grain. 
However, the study emphasizes the dependency of phase volume fraction on the user-defined definition angle 
of grain boundary, which is the case for most EBSD-based identifications. Tomaz et al.2 presented an almost 
identical phase fraction estimation on a low manganese HTP steel utilizing EBSD with a maximum fraction 
difference of 5%, but the author also acknowledges criteria for separation would vary for different types of steels 
and processing parameters.

Not only are EBSD-based methods unreliable for different types of steel and processing parameters, but they 
are also labor-intensive. In recent years, such a disadvantage led to the development of numerous data-driven 
techniques and  studies3,10–13 along with the rise of machine learning. Gola et al.11 used a few data mining methods 
such as standardization and successive backward elimination to pre-process raw data and made classification 
by nonlinear SVM. The study achieved the classification accuracy of 87.15% on dual-phase steel consisting of 
ferrite and martensite when used with feature elimination and standardization. Azimi et al.12 first demonstrated 
an automated EBSD image labeling scheme using the deep learning-based image segmentation method reaching 
the state-of-the-art classification accuracy of 93.94%. Bulgarevich et al.13 similarly demonstrated an automated 
optical microscopy steel image labeling at pixel-level using a fast Random Forest statistical algorithm, which 
showed a high percentage and location areas agreed between machine learning and manual examination results. 
Though it is difficult to tell which result is the best due to unmatched test data and criteria for evaluation, high 
accuracy was guaranteed only if there had been substantial manually labeled training data. In this sense, the ease 
of implementation has not been enhanced significantly for data-driven methods than the traditional methods 
for the estimation of phase volume fraction.

Therefore, we propose a novel means of estimating the phase volume fraction of multi-phase steel without the 
manual labeling of phases, following an unsupervised manner. This is demonstrated by using a type of generative 
model, InfoGAN to generate points of specific labels, followed by the training of Multi-layer Perceptron (MLP) 
classifier using the generated sets. InfoGAN is an extension to vanilla generative adversarial network (GAN) 
that allows for disentangled latent representation learning by training given input samples along with codes. The 
disentangled latent representation allows for users’ control because unlike GAN, users can expect what samples 
would be generated by controlling the codes to certain directions. To validate that our proposed model is appli-
cable for a wide range of AHSS alloys, six different types of steels with varying compositions of microstructures 
are made and tested on it. The result shows that regardless of the chemical compositions, the model estimates the 
phase volume fraction very well with the mean relative error of 0.73% at best. As far as we are concerned, this is 
the first study on the quantification of multi-phase steel based on unsupervised deep learning.

The rest of the paper is broken down as follows. “Revision of recent generative deep learning techniques” 
provides a recap on the related deep learning techniques encountered in this study whilst “Methodology” details 
the proposed methodology. The experimental result is discussed in “Results and discussion” and finally, the paper 
is concluded in “Conclusion”.

Revision of recent generative deep learning techniques
Generative adversarial network (GAN). Since its first advent as a novel framework of a generative 
model,  GAN14 has stimulated an explosion of related works in the deep learning community especially for gen-
erating realistic images of human beings, animals, objects, and backgrounds. GAN is known to learn data dis-
tributions implicitly, which is why it can often be very powerful in imitating the distributions. It is composed 
largely of two components, a generative model G that captures the data distribution and a discriminator D that 
figures out whether or not a sample came from the training data. GAN is frequently referred to as a minimax 
game since the two models compete against each other for simultaneous optimization. Both models are usually 
differentiable multilayer perceptrons. The ultimate goal of the algorithm is to reach the equilibrium state in 
which the probability of D is equal to 0.5. The objective function is as follows:

As few weaknesses of GAN (e.g., mode collapse) were reported, numerous variants of GAN have been 
introduced in addition to various training  techniques15 that made it possible to solve the issues. Information 
maximizing generative adversarial network (InfoGAN) is one that fixes the problem of learning entangled latent 
representation.

Information maximizing generative adversarial network (InfoGAN). InfoGAN16 is an extension 
to GAN, which can learn disentangled latent representation in an unsupervised manner. Disentangled repre-
sentation allocates a separate set of dimensions for each salient attribute that is informative for distinguishing 
data of different categories. Learning in such a way brings an advantage over the traditional GAN in that it can 
control what to output. This is made possible by having an extra term in the objective function, which maximizes 
the mutual information between an observation and a latent variable during training. InfoGAN decomposes the 
input noise vector into two parts that are denoted by z , a source of noise, and c , a latent code. The latent code 
c represents the salient attributes or the semantic features of the data distribution. The objective function of 
InfoGAN is as follows:

Mutual information between the latent code c and the generated sample is denoted by I(c,G(z, c)) . The 
intuitive interpretation of mutual information is the reduction of uncertainty in c when G(z, c) is observed. By 

(1)min
G

max
D

V(D,G) = Ex∼Pdata(x)[log(D(x))] + Ez∼Pz(z)[log(1− D(G(z)))]

(2)min
G

max
D

V(D,G) = V(D,G)− �I(c,G(z, c))
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maximizing it, the model will be trained so that c and generated samples are relevant to each other. In reality, 
however, the computation of the term is costly because of posterior P(c|x)16. suggests estimating it using a lower 
bound by replacing the posterior with an auxiliary distribution Q(c|x) for approximation, a technique known as 
Variational Information  Maximization17.

By treating H(c) as a constant and using the formula Ex∼X,y∼Y |x

[

f (x, y)
]

= Ex∼X,y∼Y |x,x
′
∼X|y[f (x

′
, y)] , a 

variational lower bound LI (G,Q) of mutual information is defined as follows:

In Eq. (3), it is notable that as the auxiliary distribution Q becomes similar to the true distribution P , the lower 
bound becomes closer to the mutual information term. Hence, the maximal mutual information is achieved 
when the lower bound attains its maximum LI (G,Q) = H(c) . To conclude, the objective function of InfoGAN 
can be rewritten as follows:

The intuition behind the InfoGAN model is to find an auxiliary distribution Q that changes G(z, c) to the right 
c and at the same time, a generator G that generates the right G(z, c) so that Q operates well.

Methodology
General workflow. The overall workflow of the proposed method is illustrated in Fig. 1. It is largely divided 
into two parts. The first part in which InfoGAN is trained using unlabeled raw data is named unsupervised 
learning. This corresponds to Phase I of Fig. 5. The next part in which an MLP classifier is trained to learn a deci-
sion boundary and predict labels on the raw data is named supervised learning. This corresponds to Phase II of 
Fig. 5. Lastly, the phase volume fraction is estimated by summing up the areas of the identically labeled samples.

Estimation of phase volume fraction. In this study, six different types of steels with varying composi-
tions of microstructures were built for both training and testing. Figure 2 shows examples of EBSD images. 
Table 1 shows the underlying microstructures that make up each type of steel and its proportions while Table 2 
shows the chemical composition of each steel.

As shown in Table 2, the steels can be divided largely into two different sets. The first set of steels (A, B, C, and 
D) differs from the second set of steels (E and F) in that a different combination of chemical composition was 
intentionally formed to create a scenario where the sets come from statistically different distributions. Each steel 
was constructed under different processing conditions. To estimate the true phase fraction of Steel A, B, C, and 
D, a quench-type dilatometer (Dilatronic III, Theta Inc.) was used and the dilatometric strain is plotted against 
temperature as shown in Fig. 3. For Steel E and F, JMatPro was used. Before any measurement, a specimen was 
heated with an induction coil in a vacuum, and a Pt-PtRh (Type R) thermocouple was attached to its surface to 
measure the temperature and dilatometric data at the same  time18.

A dilatometer measures the thermal expansion strain of a specimen during a heat cycle. If a phase transforma-
tion occurs leading to a change in the thermal coefficient, there will be an inflection in the dilatometric curve, 

(3)

I(c,G(z, c)) =H(c)−H(c|G(z, c))

=Ex∼G(z,c)

[

Ec′∼P(c|x)[logP(c
′|x)]

]

+H(c)

=Ex∼G(z,c)

[

DKL(P(·|x)||Q(·|x))+ Ec′∼P(c|x)

[

logQ(c′|x)
]]

+H(c)

≥Ex∼G(z,c)

[

Ec′∼P(c|x)

[

logQ
(

c′|x
)]]

+H(c)

(4)

LI (G,Q) =Ec∼P(c),x∼G(z,c)

[

logQ(c|x)
]

+H(c)

=Ex∼G(z,c)

[

Ec′∼P(c|x)[logQ(c
′|x)]

]

+H(c)

≤I(c,G(z, c))

(5)min
G,Q

max
D

VInfoGAN (D,G,Q) = V(D,G)− �LI (G,Q)

Figure 1.  The workflow of the proposed method.
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which indicates the start of the transformation. As shown in Fig. 3, Steel A is cooled down to room temperature 
at the rate of 100◦ C per second. Steel B had the slope of the dilatometer curve unchanged until the transforma-
tion to a specific phase when it was cooled down from 820◦ C to room temperature. This indicates it is composed 
of ferrite and another phase. We could assume that the phase other than ferrite was martensite by calculating 
the transformation temperatures using the given empirical  formula19. For calculating the formula, the chemical 
composition of the austenite phase at transformation is assumed equal to the chemical compositions of the raw 
material and of the austenite in the two-phase equilibrium since the change in slope of cooling curve before phase 
transformation is unclear. To be specific, based on the formula, the MS temperatures turned out to be 403◦ C 
and 369◦ C for Steel A and B respectively. As the measured transformation temperatures (396◦ C and 358◦ C) 
turned out to be lower than the calculated ones and the transformation was fast (please refer to Figure S2 in Sup-
plementary Information for transformation speed), we decided the phase was martensite. The proportion of the 
two phases was estimated using SEM images of etched specimens by labeling the percentage of the bright regions 
as ferrite and the dark regions as martensite. For the case of Steel C, it was cooled down from 820 to 400◦ C and 
left there for 10 min before it was cooled down again. Since Steel C and D saw no transformation of austenite to 
ferrite during the cool down above 400◦ C, they were considered to have the same amount of ferrite as Steel B. We 
knew that bainite was created because the transformations at 400◦ C occurred at a higher temperature than the 
calculated MS temperature of Steel B, and they happened at a relatively slower pace. To estimate the percentage 

Figure 2.  EBSD band contrast (BC) images of different steels. (a–f) corresponds to Steel A—F in the alphabetic 
order. Pixel size of images are 1592 by 1196.

Table 1.  Six types of steels with varying compositions of microstructures (all units are in percentage).

Ferrite Bainite Pearlite Martensite Remarks

Steel A 0.0 0.0 0.0 100.0 Single phase

Steel B 9.52 0.0 0.0 90.48 Dual phase

Steel C 9.52 90.48 0.0 0.0 Dual phase

Steel D 9.52 35.5 0.0 54.98 Triple phase

Steel E 2.0 4.3 0.1 93.4 Quadruple phase

Steel F 5.7 22.8 0.5 70.9 Quadruple phase

Table 2.  Chemical composition of each steel (all units are in wt%).

Steel C Si Mn

A, B, C, D 0.24 1.50 1.15

E, F 0.42 0.16 0.60
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of bainite in the steels, the ratio of dilatation by bainite transformation during a 12-s hold ( l1 ) to dilatation by 
the transformation of austenite to bainite at 400◦ C ( l2 ) was multiplied by the percentage of austenite. No residual 
austenite was observed for any of the aforementioned process conditions. Further details regarding the estimation 
of phase ratio are provided in Supplementary Information (Figure S1, S2). Process conditions for Steel E and F 
are listed in Table S1. The dilatation curve plot of Steel E and F is not provided.

Description of extracted features. By using TIMS software developed by Korea Institute of Materials 
Science, we analyzed and extracted 19 features from each segmented EBSD image shown in Fig. 4. It should 
be noted that the images of different pixel sizes were segmented using the software based on grain boundary. 
The description of the features is summarized in Table 3. Some of the features include grain size (diameter), 
grain average misorientation (GAM), the standard deviation of KAM, solidity, area-weighted average sharpness, 
etc. They are commonly considered to be the main contributive factors to distinguish different microstructural 
classes in many works of  literature1,4,6,8,11, though there exists no rule-of-thumb for which one is more impor-
tant than another in distinctive cases. For an intuitive understanding of some of the features, further details are 
provided in Supplementary Information (Table S2). The training data consists of 116,811 samples without any 
labels. Although the true phase fraction of each steel is known in advance from observing the dilatometer curve, 
labels for each grain on the EBSD images are left to be discovered by the proposed method in this study. 20% of 
raw data was used as a test set.

p is the number of pixels in a grain. s is the step size.g is user-defined kernel and k is the number of kernel 
elements. Ai denotes the area of an image while Ac is the area of convex hull image.w and h are weight and height 
of grain respectively. wi = d × D/2 , where d and D are distance and convexity depth. I represents luminance.

Implementation of deep learning. For the implementation of deep learning, we used Python 3.5.2 and 
Keras 2.2.5. For training, a GPU (RTX 2080) was used for fast computation. In this study, 1D InfoGAN was 
implemented because the type of training data is numerical (a single row in the table corresponds to 19 extracted 
feature values for one segmented image). Training a GAN model is often difficult due to the stochasticity of its 
nature. For training images, the traditional method is to output the generated sample image, compute the evalua-
tion  scores20, and save the current model for every pre-defined epochs. This allows the user to check if the gener-
ated sample is realistic (to the eyes of the beholder) and use the saved GAN model of the same epoch. Training a 
1D GAN is particularly challenging in some aspects because, unlike images, there exists no established method 
to visualize high-dimensional data to effectively monitor the ongoing training status of the GAN model. There-
fore, an alternative is to monitor an appropriate evaluation score and visualize as many data distributions as 
possible. Here, L2 reconstruction error was used as the evaluation measure, and four different combinations of 

Figure 3.  Dilatation curve plot.

Figure 4.  Examples of segmented EBSD images by grain (Steel D). Pixel size of the leftmost image is 90 by 86.
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Table 3.  Description of input features.

Input feature Symbol and description

1 Grain size ds = 2×

√

p×s2

π

2 GAM GAM =
∑

iKAMi

p

3 Std. of KAM σKAM ,KAM(i,j) =

∑

g(i,j)g
−1
(i+x,j+y)

k

4 GOS GOS =
∑

i gaveg
−1
i

p

5 Solidity S = Ai
Ac

6 Avg. of misorientations at the boundary µmis

7 Aspect ratio AR = w
h

8 Weighted avg. sharpness µsharp =
∑

iwi×sharpnessi
∑

iwi
, sharpness = D

d

9 Avg. band contrast in the grain µBC = Imax−Imin
Imax−Imin

10 Std. of band contrast within the grain σBC

11 Area weighted avg. grain size of neighbor grains surrounding the current grain µGS

12 Area weighted avg. GAM of neighbor grains surrounding the current grain µGAM

13 Area weighted avg. std. of GAM of neighbor grains surrounding the current grain µσGAM

14 Area weighted avg. GOS of neighbor grains surrounding µGOS

15 Area weighted avg. aspect ratio of neighbor grains surrounding µAR

16 Area weighted avg. band contrast of neighbor grains surrounding µnBC

17 Area weighted avg. std. of band contrast of neighbor grains surrounding µσnBC

18 Area weighted avg. solidity of neighbor grains surrounding µS

19 Area weighted avg. sharpness of neighbor grains surrounding µnS

Figure 5.  InfoGAN and MLP classifier structures are shown inside dashed black and red boxes, respectively. In 
Phase I, InfoGAN is trained. In Phase II, the generator creates samples and labels (x′

, c
′
) that are given as input 

to MLP for training. Then, the trained model performs the classification of raw data.
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2D graphs were plotted to monitor the data points being generated. The reconstruction error is equivalent to the 
mean squared error between the training samples and generated samples. It was computed for every 100 epochs 
and displayed while playing the minimax game, as stated in Eq. (5). Given a generator G and a set of training data 
X = {x1, x2, x3, . . . , xn} , the reconstruction error is defined by:

As mentioned in “Revision of recent generative deep learning techniques”, the structure of InfoGAN is 
similar to that of an ordinary GAN except for a few extensions due to the latent code c . Figure 5 illustrates the 
structure of InfoGAN and that of an MLP of which the training procedure is indicated as a black and a red arrow, 
respectively. They are also presented as Phase I and II, respectively because they are two separate models and are 
not trained simultaneously by sharing a loss function. Phase II comes after Phase I. To elaborate, after Phase I 
(training InfoGAN) is over, what is created by the generator with labels is given as input to the MLP for training 
(Phase II). In Phase I, a Gaussian noise matrix z concatenated with random latent code c is given as input to 
the generator, hence the representation G(z, c) for the generator output. The generator is an MLP with an input 
layer, two hidden layers and an output layer the size of the total feature counts. Similarly, the discriminator is 
an MLP with an input layer, two hidden layers, but with two output layers, one for the discrimination and the 
other for the control variable or the latent code c′ . For each output layer, binary cross-entropy and categorical 
cross-entropy were adopted respectively for computing loss. Inputs to the discriminator are both raw data x and 
generated sample G(z, c).

For training the aforementioned InfoGAN model, He initializer was used to initialize the weights in the hid-
den layers. Implementing Adam optimizer, the learning rate was set to 2e−4 while the exponential decay set to 
0.5. Hyper-parameters, including the number of epochs and batch size were set to 30,000 and 512, respectively. 
The dimension of the latent code depends on the prior knowledge of the number of classes of raw data. Training 
the generator and the discriminator was practiced one at a time, meaning that while updating the weights of 
the generator, the discriminator was not trained and vice versa. The proposed architecture of the InfoGAN for 
the case of Steel E is summarized in Table 4. Since Steel E is an example of a quadruple phase, the latent code 
with a dimension of four is appended to the latent space z , which was heuristically determined to have the same 
dimension. ReLU activation function is applied to the networks after every dense layer except for the output 
layers to account for the nonlinearity in the training data. However, different activation functions are utilized 
after the output layers depending on the purposes of each network. For example, the auxiliary network has a 
softmax activation function because it is required to output multiple labels.

When the training of InfoGAN is completed, the generator is capable of sampling points from learned data 
distributions of a specified control variable. For instance, since Steel C had been known before to be dual-phase, 
it was trained to have two distinct data distributions from which the generator later sampled points. Then, the 
generated samples (x′

, c
′
) are provided as input to an MLP classifier, as shown in Phase II. After scaling the data 

from 0 to 1, the dataset was split into a train and a test set at a ratio of 8–2. The MLP classifier consists of an 
input layer of 19 dimensions, three hidden layers, and an output layer with the size depending on the number 
of classes of the steel in concern. For all steels, the test accuracy turned out above 99%, implying the models 
have been optimized. Last but not least, the raw data which had been used to train InfoGAN is put through the 
optimized feed-forward classifier network to give out the labels. The estimated phase fraction of each steel is 
presented in “Sec10”.

Results and discussion
Estimation of phase volume fraction. The result summarized in Table 5 implies the high feasibility of 
using the proposed method for a fast phase fraction estimation for steels or even any other materials without 
labeling all the training data. Though none of the estimated values is the same, all of them are on the right track 
as the models can distinguish the big and small chunks. The mean relative error for the estimations implies the 
high feasibility of using the proposed method. It shows that the mean relative error can reach at most 4.53% 

(6)Lrec(G,X) =
1

n

n
∑

i=1

||G(z, c)− xi||
2

Table 4.  The proposed InfoGAN structure. Each network holds two hidden layers but with a varying number 
of nodes. Input to the auxiliary network is the output of the second hidden layer in the discriminator.

Generator network ( G) Discriminator network ( D) Auxiliary network ( Q)

Layer Type Dimension Layer Type Dimension Layer Type Dimension

Input Latent ( z) + Code 
( c) 4 + 4 Input Feature 19 Input Hidden layer 50

Hidden 1
Dense layer 50

Hidden 1
Dense layer 100

Hidden 1
Dense layer 50

ReLU activation – ReLU activation – ReLU activation –

Hidden 2
Dense layer 50

Hidden 2
Dense layer 50

Hidden 2
Dense layer 20

ReLU activation – ReLU activation – ReLU activation –

Output
Dense layer 19

Output
Dense layer 1

Output
Dense layer 4

Linear activation – Sigmoid activa-
tion

Softmax activa-
tion –
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while it can be as low as 0.73%, which is very close to the exact estimation. Furthermore, the result implies the 
proposed method is suitable for steels with different kinds of chemical compositions (Steel A, B, C, D, and Steel 
E, F). It is also inspirational in the sense that no domain knowledge of steel processing is necessary to estimate 
the phase fractions.

Figure 6 shows an intuitive form of visualizing the data distributions, which demonstrates the gradual change 
in the form of distributions as optimization proceeds. The optimized InfoGAN models were stored during train-
ing by screening both the L2 reconstruction error and the data distributions. Here, the red dots are the ground 
truths for Steel E, while the green dots are the sampled points at the specified epochs. It can be seen from (a) and 
(b) that as the model gets optimized, sampled points get closer to the ground truth meaning that they eventually 
come from more similar underlying data distributions. Not all results are shown for clarity.

Table 6 compares the relative errors of the proposed approach with a number of baseline clustering models, 
showing that it outperforms them for the estimation of phase volume fraction in all steels. These models are 
composed of pure clustering models such as k-means, Gaussian mixture model (GMM), and density-based spatial 
clustering of applications with noise (DBSCAN) and combinations of various dimension reduction techniques 
and DBSCAN. For the combinations, the dimension reduction techniques are principal component analysis 
(PCA), autoencoder, and GAN that are denoted as P-, A-, and G- respectively. DBSCAN was selected as the sole 
clustering model after dimension reduction because of its superior result compared to the other two models. 

Table 5.  True and estimated phase fraction of each type of steel (all units are in percentage).

Ferrite Bainite Pearlite Martensite Relative ERROR

Steel A

True PF 0.0 0.0 0.0 100.0
1.87

Estimated PF 2.1 0.0 0.7 97.2

Steel B

True PF 9.5 0.0 0.0 90.5
3.18

Estimated PF 2.7 0.0 0.7 96.6

Steel C

True PF 9.5 90.5 0.0 0.0
2.2

Estimated PF 11.7 88.3 0.0 0.0

Steel D

True PF 9.5 35.5 0.0 55.0
4.53

Estimated PF 10.4 28.7 0.0 60.9

Steel E

True PF 2.0 4.3 0.1 93.4
0.73

Estimated PF 2.0 3.4 0.0 94.6

Steel F

True PF 5.7 22.8 0.5 70.9
3.1

Estimated PF 5.5 17.2 0.2 77.2

Figure 6.  (a) Sampled points at epoch 100 for Steel E. (b) Sampled points at epoch 11,000 for the same steel. 
The ground truth is shown in red dots while the sampled points are in green dots.
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This implies that the proposed method is so far the most preferable choice for the phase classification of steels 
in an unsupervised manner.

Evaluation of the fraction estimation. For evaluation, the probability density function was plotted at 
four different epoch points to monitor if the learned data distribution was getting close to the ground truth as 
the training progressed. The probability density function (PDF) was approximated by kernel density estimation 
(KDE) or Parzen-Rosenblatt window method, which is a non-parametric way to estimate the PDF of a random 
 variable21. In statistics, it makes an inference about the population based on a finite data sample by applying 
Gaussian kernels with a pre-defined bandwidth. Suppose (x1, x2, . . . , xn) are i.i.d. samples drawn from a distribu-
tion with an unknown density f  . The kernel density estimator is defined as follows:

In Eq. (7), K represents a kernel, and h is a smoothing parameter or the bandwidth. Its intuitive meaning is 
that normal kernels on each of the data points are summed to make the final kernel density estimate. For the 
computation, a built-in Pandas module was used, and we set the smoothing parameter h to 0.6.

Figure 7 shows the plotted PDFs at four different epoch points for Steel E and F. Looking at the plots, the red 
line represents the ground truth PDF, whereas the black line represents the estimated PDF. As the epoch number 
increases, the estimated PDF becomes similar to the ground truth. At the final epochs, the PDFs almost overlap, 
indicating that much similar data distributions have been learned by the models.

Besides, Wasserstein Distance (WD)22 was measured to quantify how similar two probability distributions are. 
Figure 7 demonstrates how similar the learned distributions are to the ground truths for only a few features. It is 
necessary to evaluate the overall similarity for all features combined. Averaging out WDs for all features solves 
this problem. Figure 8 presents the gradual decrease in average WDs for Steel E and F as training progressed. 
It can be concluded that the data distributions were learned similarly for all features, not just for the few ones. 

(7)f̂h(x) =
1

n

n
∑

i=1

Kh(x − xi) =
1

nh

n
∑

i=1

K

(

x − xi

h

)

Table 6.  Comparison of the proposed approach with baseline clustering models. Best results presented in bold 
font.

Steel A Steel B Steel C Steel D Steel E Steel F Mean (%)

Relative error (%)

K-means 4.8 35.8 6.8 14.8 28.5 20.4 18.5

GMM 5.2 21.4 6.8 6.5 24.1 22.0 14.3

DBSCAN 2.8 8.5 8.3 6.8 19.6 3.1 8.2

P-DBSCAN 2.8 6.2 6.8 6.4 10.6 5.5 6.3

A-DBSCAN 1.9 8.7 4.3 8.7 1.3 3.0 4.7

G-DBSCAN 1.9 8.8 5.7 8.0 1.9 3.1 4.9

InfoGAN 1.9 3.2 2.2 4.5 0.7 3.1 2.6

Figure 7.  (a) PDFs for Steel E. (b) PDFs for Steel F. The ground truth is shown in a red curve while the 
estimated PDF is in a black curve.
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Table 7 summarizes it for the rest of the steels. In the table, ‘Best’ indicates the epoch point for which each model 
had the best performance (the least reconstruction error).

Figure 9 shows the feature visualizations using t-SNE23–26 on the InfoGAN generated features for Steel E and 
Steel F. t-SNE is a widely used technique for visualizing high-dimensional data into 2D or 3D by projecting data 
into a low dimensional space so that the clustering in the high-dimensional space is preserved. It measures the 
similarity on a t-distribution of each point in data based on the distance of points and clusters them based on the 
similarity scores. For its iterative optimization, the Kullback Leibler divergence of the distributions in both high-
dimension and low-dimension is minimized. In Fig. 9, the top row represents the embedded feature distributions 
for Steel E while the bottom row does it for Steel F. The noteworthy part of it is that as the optimization gradually 
reaches the minimum, the features representing each phase become distinctively separable from one another. 
This implies the fact that at the optimal point, the model is capable of distinguishing the unique characteristics 
of each feature and thus create similar points from the learned distributions.

Feature importance of input features. In many engineering fields, it is often extremely helpful to know 
which features turned out to be critical for making the phase classification. Highlighting the input features a deep 
learning model uses to support its prediction has been an essential part of explainable artificial  intelligence27–30. 
Though several  techniques31–33 have been introduced to unveil the underlying mechanism of a deep neural 
network, one of the most promising ones nowadays is the Layer-wise Relevance Propagation (LRP)34 which we 
adopted in this study. When computing the amount of contribution that each input makes to the output of a 
neural network, it can be denoted as the partial derivative of the output with respect to the input.

As shown above, the second term of the Taylor  series35 in its first-order with the higher-order terms repre-
sented as ǫ can be understood as describing the change in the output f (x) as xp varies. For the LRP technique, an 
appropriate ‘ a ’ is searched so that the first and the higher-order terms erases out, leaving f (x) =

∑d
i=1 Ri where 

Ri is the relevance score interpreted as the contribution score. The formula can be reformulated as follows for 
any given two consecutive layers in a deep neural network: 

∑

i Ri =
∑

j Rj . This is equivalent to a conservation 
property, where what has been received by a neuron must be redistributed to the lower layer in an equal  amount34. 
Figure 10 illustrates the general process of the LRP.

(8)f (x) = f (a)+

d
∑

p=1

∂f

∂xp
|x=a(x − a)+ ǫ

Figure 8.  Average Wasserstein Distances at different epochs. (a) Steel E. (b) Steel F.

Table 7.  Summary of average Wasserstein distances at different epochs.

Epochs

100 500 1000 Best

Average Wasserstein distance

Steel A 14.15 ± 4.27 6.25 ± 2.86 3.57 ± 1.54 1.48 ± 0.47

Steel B 16.82 ± 6.31 3.21 ± 1.26 2.38 ± 1.19 1.16 ± 0.41

Steel C 7.79 ± 1.87 1.52 ± 0.47 0.89 ± 0.29 0.76 ± 0.19

Steel D 8.88 ± 2.20 2.20 ± 0.97 1.62 ± 0.82 0.77 ± 0.22

Steel E 11.28 ± 3.65 6.74 ± 3.00 3.81 ± 1.85 1.91 ± 1.01

Steel F 20.14 ± 8.08 6.65 ± 2.81 2.84 ± 1.37 1.27 ± 0.53
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In LRP, the prediction output of a neural network propagates backward based on the trained weights and 
biases, and the relevance score is calculated by Eq. (9):

R
(l−1)
i  is the relevance score of the ith node in (l − 1th ) layer. a(l−1)

i  is the activation value while w(l)
ij  denotes 

the trained weights from the MLP. The weighted sum in the denominator is to ensure that the conservation 
property holds.

In this study, the significance of input features is investigated for Steel D that constitutes the most evenly 
distributed phase ratios. Of the three phases that constitute the steel, we focus on the classification of martensite 
that has the largest ratio. Since we present the feature importance using only the LRP technique, we hereby 
acknowledge the lack of evidence for the following result given solely by the data-driven method, and would 
like to suggest the important design parameters for further study. Figure 11 (a) is a bar chart that shows the 
relevance scores assigned to each input feature. The top three high scoring features are µmis , AR , and µnBC in the 
sequential order, which is the average of misorientations at the boundary, aspect ratio, and the area-weighted 
average band contrast of neighbor surrounding grains, respectively. It can be inferred from the result that they 
should be considered as a priority when designing the composition of the micro-constituents in steel. We verify 
the result by comparing various scenarios where a different number of high-scoring features are utilized to make 
phase classification. Figure 11b shows how the elimination of a different set of input features affects the general 
classification performance of MLP. Keeping the entire features provided the best classification accuracy of 99.5% 
on average. Whereas using the six top features for training resulted in only a 14.8% reduction in accuracy, using 
the single top feature had a much larger drop of 50.4%. This implies what has been labeled as more contributive 
by the LRP technique is in fact, more important in the decision-making.

Conclusion
In this study, the estimation of phase volume fraction of multi-phase steel via unsupervised deep learning is 
presented. To the best of our knowledge, it is the first time to solve the problem via unsupervised deep learning, 
no longer requiring the tedious job of labeling data. The proposed method suggests a generalized approach to 

(9)R
(l−1)
i =

∑

j

a
(l−1)
i w

(l)
ij

∑

ia
(l−1)
i w

(l)
ij

R
(l)
j

Figure 9.  t-SNE visualization of generated features at different epochs. The top row represents the embedded 
feature distributions for Steel E while the bottom row does it for Steel F.
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Figure 10.  Schematic diagram showing the general process of LRP. Starting from the output from a trained 
MLP, the relevance score is distributed backward. The input feature from the leftmost layer that is assigned the 
highest relevance score is colored in dark red.

Figure 11.  (a) Relevance score bar chart of input features of Steel D. (b) Comparison of scenarios where ‘Total’ 
keeps the entire features while the numbers (1–6) in the x-axis represent the number of high-scoring features 
utilized for phase classification.
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identify and quantify the classes of multi-phase steel, revealing the possibility for even non-experts without any 
prior knowledge to do the task. In total, six different types of steel with varying microstructure compositions were 
tested. The result shows the estimated phase fractions to be a good match with the true phase fractions for all tests. 
Furthermore, it implies the proposed method is suitable for steels with different kinds of chemical compositions 
(Steel A, B, C, D, and Steel E, F). This is made possible by implicitly learning the data distribution similar to that of 
the training data by using a type of a generative model, InfoGAN. An optimized generator is then able to output 
a paired dataset controlled by the latent code specified by the user. Next, an MLP classifier is trained using the 
generated dataset and performs a prediction on the raw data to provide them with labels. Several visualization 
techniques including t-SNE were implemented to validate the aptness of the utilized InfoGAN model. Lastly, the 
significance of input features is assessed by using LRP. We hope that this work can contribute to making a leap 
forward in the automation of phase quantification that has previously been a laborious task. We also believe the 
proposed method can be widely incorporated in the industries as well as the laboratories for research purposes.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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