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Rapid detection and identification of viral pathogens causing respiratory tract infec-
tions is critical for initiating antiviral therapy, avoiding unnecessary antimicrobial
therapy, preventing nosocomial spread, decreasing the duration of hospitalization,
and reducing management costs. Molecular assays, which provide high sensitivity
and specificity, short test turnaround time, and automatic, high-throughput batch pro-
cessing, have played critical roles in rapid detection, screening, and identification of
emerging respiratory viral pathogens, such as severe acute respiratory syndrome co-
ronavirus (SARS-CoV) and novel A/H1N1 influenza (Flu) virus.1–3 The superiority of
polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR), and other in
vitro nucleic acid amplification assays over conventional methods for the diagnosis
of respiratory viral infections has already been established.4,5 This article describes
several emerging molecular assays that have potential applications in the diagnosis
and monitoring of respiratory viral infections.

DIRECT NUCLEIC ACID DETECTION BYQUANTUM DOTS BIOSENSORS

Biosensors offer the possibility of real-time monitoring, and the deployment of these
devices in the field would provide a means for prompt etiologic diagnosis. All
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biosensors are essentially composed of a biologic recognition element or bioreceptor,
which interacts with the analyte and responds in some manner that can be registered
by a transducer. The bioreceptor is a crucial component, and its function is to impart
selectivity so that the sensor responds only to a particular analyte or biomolecule of
interest, hence avoiding interference from other substances. The transducer converts
the microbial biorecognition event into an electrical signal detected using electro-
chemical, optical, or piezoelectric platforms.6,7 A biosensor specifically targeting nu-
cleic acids through hybridization is called a genosensor. Genosensors have been
used to for direct, on-demand, and real-time detection and discrimination of microbial
pathogens in clinical specimens. Malamud and colleagues8 developed a group of gen-
osensor-based assays to detect microbial pathogens in oral specimens for use in the
diagnosis of multiple infectious diseases. A piezoelectric DNA biosensor to directly
detect hepatitis B virus was developed based on the mass-transducing function of
a quartz crystal microbalance and nucleic acid hybridization9; another hybridization-
based amperometric biosensor, using osmium as an electrochemical indicator, was
used for the detection and confirmation of virus-specific PCR products.10 A generic
semidisposable fluorescence biosensor was developed to directly detect dengue
virus RNA.11 A hybridization-based genosensor on gold film coupled with enzymatic
electrochemical detection was designed to detect SARS-CoV RNA.12

Fluorescent semiconductor nanocrystals, known as quantum dots (Qdots), are
colloidal particles consisting of a semiconductor core, a high band gap material shell,
and typically an outer coating layer. The core-size–dependent photoluminescence with
narrow emission bandwidths that span the visible spectrum and the broad adsorption
spectra allow simultaneous excitation of mixed Qdot populations at a single wave-
length. Qdots also exhibit several unique features: high quantum yield, high resistance
to photodegradation, and better near-infrared emission.13,14 The new generation of
Qdots has far-reaching potential for the study of intracellular processes in broad fields,
including diagnostics.14 High-sensitivity bacterial detection using biotin-tagged phage
and quantum-dot nanocomplexes has been described, which provides specific limits
of detection at 10 bacterial cells/mL in 1 hour.15 A bead-based microfluidic device was
developed to achieve an ELISA with Qdots as the labeling fluorophore for virus detec-
tion.16 Three groups have reported the use of Qdots conjugated to specific monoclonal
antibodies to detect and identify the presence of respiratory syncytial virus (RSV) in
a real-time manner, implying that Qdots may provide a method for early, rapid detec-
tion of RSV infections.17–19 In addition to microbial pathogen antigen detection, posi-
tively charged compact Qdot-DNA complexes were described that can detect H5N1
Flu-A virus nucleic acids presented at concentrations as low as 200 nmol.20 Simulta-
neous excitation of several emission-tunable Qdot populations can be combined
with a pool of differentially labeled probes for multiplex target analysis.21,22 Qdot-
based techniques are under development to detect a panel of respiratory viruses,
producing more efficient assays that require smaller quantities of target nucleic acids.
AMPLIFICATIONMETHODS AND PLATFORMS
Loop-Mediated Isothermal Amplification

First described by Notomi and colleagues23 in 2000, loop-mediated isothermal ampli-
fication (LAMP) is a simple, rapid, and specific nucleic acid amplification method,
which is characterized by the use of multiple primers specifically designed to recog-
nize several distinct regions on the target gene. Amplification and detection of target
genes can be completed in a single step, by incubating the mixture of samples,
primers, DNA polymerase with strand displacement activity and substrates at
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a constant temperature. Because amplification is isothermal, LAMP does not require
special reagents or sophisticated temperature control devices. Because the increase
in turbidity of the reaction mixture according to the production of precipitate correlates
with the amount of DNA synthesized, real-time monitoring of the LAMP reaction can
be achieved by turbidity measurement.24 With a detection limit of about one to two
copies, LAMP is capable of detecting the presence of pathogenic agents earlier
than PCR if the gene copy number is low.25

LAMP has successfully been applied to the rapid and real-time detection of several
emerging and reemerging human pathogens, including West Nile virus, dengue virus,
Japanese encephalitis virus, monkey pox virus, Rift Valley virus, SARS-CoV, Chikun-
gunya virus, and noroviruses.25–28 Poon and colleagues29 described the use of an RT-
LAMP to detect Flu-A viruses covering H1 to H3. Another similar RT-LAMP assay was
described more recently that detects Flu-A virus H1 and H3 subtype strains and Flu-B
virus strains.30 At a limit of detection of 10 focus-forming units per mL, both assays
can be completed within 3 hours, providing rapid and sensitive detection.29,30 Two
one-step RT-LAMP assays with analytical sensitivities of 0.01 to 0.1 plaque-forming
units (pfu) per reaction were developed specifically for detection of highly pathogenic
avian Flu-A (H5N1) viruses and validated using H5N1 viral strains isolated over the
past 10 years and clinical specimens.31–33 An RT-LAMP assay was reported to specif-
ically detect the H9 subtype of avian Flu virus with a detection limit of 10 copies per
reaction, 10-fold lower than that of RT-PCR.34 In Japan, the LAMP assay was used
to rapidly subtype Flu-A virus and confirm two cases of influenza in patients who
had returned from Thailand.30

In addition to the detection and typing of Flu viruses, a subgroup-A/B–specific RT-
LAMP assay was developed to amplify RSV to improve current diagnostic methods for
RSV infections. The assay was validated using nasopharyngeal aspirates from chil-
dren who had respiratory tract infections, and the results indicated that the RT-
LAMP is more sensitive than viral isolation and antigen testing for RSV detection.35,36

Several LAMP-based assays were reported for rapid detection of SARS-CoV with the
advantages of rapid amplification, simple operation, and ease of detection.28,37

LAMP-based assays have also been used to detect other respiratory viral pathogens,
such as mumps,38,39 measles,40 and adenoviruses.41 In comparison to conventional
RT-PCR, RT-LAMP assays demonstrated 10- to 100-fold enhanced sensitivity, with
a detection limit of 0.01 to 10 pfu of virus in most cases.

Multiplex Ligation-Dependent Probe Amplification

Recently established in The Netherlands, multiplex ligation-dependent probe amplifi-
cation (MLPA) makes use of both ligation and PCR.42 Inventively modified from previ-
ously described ligation-dependent PCR assays,43,44 the MLPA platform features
greatly reduced probe concentrations and longer hybridization periods to generate
conditions compatible with multiplex analysis. Each MLPA probe consists of a pair
of oligonucleotides subject to ligation when hybridized to a target sequence, analo-
gous to a padlock probe (see later discussion). One oligonucleotide consists of a 50

fluorescent label, a universal forward primer binding site, and a target-specific recog-
nition sequence at the 30 end, whereas the other oligonucleotide consists of a target-
specific recognition sequence at the 50 end, a nonspecific stretch of DNA of defined
length (‘‘stuffer’’ sequence), and a universal reverse primer binding site at the 30

end. Each MLPA assay is divided into three basic steps: (1) annealing of probes to their
target sequences, (2) ligation of the probes, and (3) PCR amplification of ligated
probes using universal primers. Multiplexing is achieved by varying the length of
stuffer sequence for each unique set of probes used in the assay. Amplification
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products are detected using high-resolution electrophoretic techniques, such as
capillary electrophoresis, and it is claimed that this approach allows relative
quantification.42

MLPA-based techniques have proved sufficiently sensitive, reproducible, and
sequence specific for use in screening human DNA. Recent studies have use of the
MLPA assay for the detection and identification of several pathogenic microorgan-
isms, including rapid characterization of Mycobacterium tuberculosis,45 and relative
quantification of targeted bacterial species in oral microbiota.46 Reijans and
colleagues47 described an MLPA technology–based RespiFinder assay to detect 15
respiratory viruses simultaneously in one reaction. In this case, the MLPA reaction
was preceded by a preamplification step that ensured detection of both RNA and
DNA viruses with the same specificity and sensitivity as individual monoplex real-
time RT-PCR assays. The RespiFinder assay showed satisfactory specificity and
perfect sensitivity for adenovirus, human metapneumovirus (hMPV), Flu-A, parain-
fluenza virus (PIV) types 1 and 3, rhinovirus (RhV), and RSV. Use of the RespiFinder
assay resulted in a 24.5% increase in the diagnostic yield compared with cell culture.
This assay is being extended to cover four additional bacterial pathogens that cause
respiratory tract infections: Mycoplasma pneumoniae, Chlamydophila pneumoniae,
Legionella pneumophila, and Bordetella pertussis.

Polymerase Chain Reaction Amplification Using Arbitrary Primers

PCR amplification techniques using arbitrary primers, including arbitrarily primed (AP)
PCR,48 sequence-independent single-primer amplification (SISPA),49 and randomly
amplified polymorphic DNA (RAPD),50 are generally based on the PCR amplification
of random DNA segments with short primers (usually a single 1 of 10 nucleotides) con-
taining arbitrary nucleotide sequences. RAPD-based assays have increasingly been
used to type microorganisms, especially during clinical outbreaks.51 The RAPD-
PCR technique seems to be practical and efficient for routine use in high-resolution
viral diversity studies by providing assemblage comparisons through fingerprinting,
probing, or sequence information.52 Similar techniques have been used to charac-
terize the polymerase gene and genomic termini of Nipah virus53 and avian Flu virus
genome sequences.54

On the other hand, AP-PCR and SISPA-based assays have mainly been used for the
discovery and characterization of novel and noncultivatable viruses.55 Because viral
pathogens do not possess conserved, universal genes, such as 16S rRNA genes, SIS-
PA was used in the early 1990s as a random PCR amplification strategy to amplify
known and unknown viral genes, including those of hepatitis C virus, rotavirus, and
norovirus.56–58 The AP-PCR technique was used successfully to obtain sequence
information on a novel hMPV after the virus was cultured.59 Wang and colleagues60,61

used a similar random amplification technique in conjunction with a long oligonucleo-
tide pan-viral microarray to simultaneously screen and detect hundreds of viral path-
ogens. This system has successfully been used for the detection of a human PIV-4
strain associated with respiratory failure,62 for identification of a novel gammaretrovi-
rus in a patient who had prostate tumors,63 for the diagnosis of a critical respiratory
illness caused by hMPV,64 and for the identification of cardioviruses related to Theiler
murine encephalomyelitis virus in human infections.65 Quan and colleagues66 recently
reported the use of a similar random amplification process followed by comprehensive
microarray analysis (GreeneChipResp) to detect diverse respiratory viral pathogens
and subtype Flu-A viruses.

A modified SISPA incorporating DNAse treatment has recently been used to
discover, identify, and characterize several novel bovine and human viral pathogens
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directly from clinical samples.67–70 The same technology has been used for the char-
acterization of common epitopes in enterovirus (EnV),71 identification of a novel human
coronavirus,72 detection of TT virus in stool samples collected during a gastroenteritis
outbreak,73 and discovery of novel unculturable viruses in specimens collected from
patients presenting with fever of unknown origin.74,75 Although PCR amplification
using arbitrary primers has been an extremely powerful approach for screening and
discovery of new or noncultivable viral pathogens directly from clinical specimens,
subsequent identification and confirmation steps are hindered by a background of
nonspecific random amplification products. Further development is thus required to
optimize this technology for routine diagnostic use in molecular microbiology
laboratories.
Target-Enriched Multiplexing Amplification

Multiplex PCR was developed to use numerous primers within a single reaction tube to
amplify nucleic acid fragments from different targets. Multiple sets of high-concentra-
tion primers in the conventional multiplex reaction often favor primer-dimer formation,
however, resulting in nonspecific amplification. To meet the challenges of conventional
multiplex PCR, Han and colleagues76 developed target-enriched multiplexing (TEM)-
PCR technology, which uses nested gene-specific primers at extremely low concentra-
tions to enrich specific targets during early PCR cycles and relies on universal forward
and reverse ‘‘superprimers’’ at high, but unequal, concentrations to achieve exponen-
tial asymmetric target amplification. TEM-PCR amplification has been reported for the
detection, typing, and semiquantification of 25 human papillomaviruses,76 detection
and differentiation of a panel of respiratory bacterial pathogens,77–79 detection and
differentiation of 24 antituberculosis drug resistance-related mutations,80 determina-
tion of antibiotic resistance and detection of toxin-encoding genes in Staphylococcus
aureus,81 screening and differentiation of methicillin-resistant S aureus and vancomy-
cin-resistant enterococci,82 and characterization and typing of Flu-A, including H5N1.83

Using TEM technology, the ResPlex II assay was developed to detect Flu-A, Flu-B,
PIV-1, PIV-2, PIV-3, PIV-4, RSV, hMPV, RhV, EnV, and SARS-CoV in a single reac-
tion.78,84,85 When monoplex RT PCR is used for pathogen detection, the clinician often
does not consider the possible presence of other pathogens when given a positive
result. The multiplex approach offered by the ResPlex II system enhances diagnosis
through detection of respiratory viral etiologic agents in cases in which their presence
was unsuspected and an appropriate test consequently was not ordered by the clini-
cian.85 A recent study by Brunstein and colleagues84 revealed that, using the ResPlex
II kit covering 12 viral pathogens, 2.5% of specimens were coinfected with two or
three different viruses. (A low level of cross-reactivity between PIV-1 and PIV-3 was
noticed using this assay.85) These coinfections are medically relevant, and effective
treatment of severe respiratory tract infections will increasingly require diagnosis of
all involved pathogens, as opposed to single-pathogen reporting.84 The original Re-
sPlex II system detects only RNA viruses, but adenoviruses, bocavirus, and four coro-
naviruses have been added to a recently released new version of ResPlex II.
Preliminary data indicate that the overall sensitivity and specificity of ResPlex II v2.0
is comparable to that of the ResPlex II panel. A notable number of previously negative
samples were found to be positive for one of the newly added bocavirus or coronavi-
rus targets (John Brunstein, 2009; personal communication). A factor that could
diminish the analytical and clinical performance of ResPlex II and ResPlex II v2.0 is
the potential for false-positive results caused by carryover of PCR products using
the Luminex platform.
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AMPLIFICATION PRODUCT DETECTION AND IDENTIFICATION
Pyrosequencing

Direct amplicon sequencing provides simple, rapid, and accurate means of detection
and identification of amplification products. The need for robust, high-throughput
methods to replace the elegant Sanger method, which was described more than 30
years ago,86 has led to the development of several new principles. Ronaghi and
colleagues87,88 described in 1998 a pyrosequencing technique, a non–gel-based
real-time approach to sequencing DNA by monitoring DNA polymerase activity. Pyro-
sequencing is based on enzymatic inorganic pyrophosphate release by DNA poly-
merase. This reaction is stoichiometric; the amount of light produced is proportional
to the number of pyrophosphate molecules generated and, hence, the number of
incorporated nucleotides. Unincorporated nucleotides are degraded with apyrase
before the next nucleotide is added. In this way, sequence information on an interro-
gated region is generated quantitatively in real time. Although basic approaches to
performing pyrosequencing remain the same, numerous commercial systems have
been used widely to rapidly identify infectious agents and screen for antimicrobial
drug resistance.89–91 Multiplexed pyrosequencing involving the simultaneous exten-
sion of several primers hybridized to one or more target DNA templates92 has gained
broad acceptance in the fields of cytogenetics, pharmacogenetics, and medical
genetics.71,93,94

Most applications of pyrosequencing in the identification and characterization of
respiratory viruses have focused on Flu-A. Based on pyrosequencing technology,
a rapid and highly informative diagnostic assay was reported for the detection of
H5N1 Flu viruses95; sequencing of critical regions within the H5 virus was developed
as a screening method during high volumes of H5N1 activity.95 A real-time RT-PCR
pyrosequencing assay was developed that combines restriction enzyme digestion
and direct sequencing to screen and verify H5 Flu infections in humans.96 Another
RT-PCR assay with subsequent pyrosequencing analysis allows for a rapid, high-
throughput, and cost-effective screening of subtype A/H1N1, A/H3N2, and A/H5N1
viruses and can clearly discriminate wild-type from a mutant viruses.97 A study re-
ported by Bright and colleagues98 showed an alarming increase in the incidence of
amantadine- and rimantadine-resistant H3N2 Flu-A viruses worldwide when the pyro-
sequencing technique was configured to cover a 44–base pair region of the M2
protein-encoding gene. Pyrosequencing assay capabilities were expanded to screen
for 52 amino acid changes defined as avian or human specific,99 and pyrosequencing-
based assays recently were designed for detection and surveillance of the most
commonly reported mutations associated with resistance to neuraminidase inhibitors
and the adamantanes.100–106 The latter detects mutations associated with resistance
directly in clinical specimens, thus reducing the time required for testing and avoiding
selection of novel sequence variants by cell culture. In addition, pyrosequencing-
based assays have been reported for the characterization, quantification, typing, sub-
typing, and drug-resistance profiling of other viruses.107–112

One unique feature of pyrosequencing is its theoretical adaptability to the analysis of
any genetic marker, which allows for the detection of multiple known and unknown
mutations in a single pyrosequencing reaction. Integration of high-throughput pyrose-
quencing with the Roche/454 instrument has become a powerful tool for whole genome
sequencing without the need for additional equipment or molecular techniques other
than standard PCR, Genome Sequencer FLX sample preparation, and the sequencing
pipeline.113 Pyrosequencing generates sequence content quantitatively, which has
made pyrosequencing a primary choice for quantifying specific mutations (eg,
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detection of drug resistance–associated signatures) in mixed genomic populations.
Because pyrosequencing byproducts inhibit the sequencing reaction, pyrosequencing
read lengths are limited to less than 100 base pairs. Another drawback of pyrosequenc-
ing-based techniques includes secondary structure formation, which affects quality of
the results, particularly with GC-rich targets. Additionally, it may be difficult to determine
the precise number of nucleotides in a homopolymeric region based on peak heights.87

It is expected that pyrosequencing-based diagnostic devices will soon become avail-
able for rapid characterization and typing of viral pathogens.

Padlock Probes

Padlock probes, originated by Nilsson and colleagues114 in 1994, are linear oligonu-
cleotides designed so that the two end segments, connected by a linker region, are
both complementary to a target sequence. On hybridization to a target sequence,
the two probe ends become juxtaposed and can be joined by a DNA ligase. Reacted
probes can be detected by way of reporter molecules attached to the linker.115 Alter-
natively, an amplified signal can be obtained from the circularized probes by rolling
circle amplification. Padlock probes provide a means for detection and quantification
of large numbers of DNA or RNA sequences and for highly multiplexed genetic
studies.116 The application of padlock probes for the detection of microbial pathogens
is a recent trend in molecular diagnoses.117

The unique padlock probe design provides the benefit of speed and sensitivity
derived from using a nucleic acid–based method, and the amount of information is
greatly increased by extensive multiplexing. Indeed, this method was used to simulta-
neously detect and type 16 HA and 9 NA subtypes of avian Flu virus. The analysis is
completed within approximately 4 hours and performed in a single reaction tube,
which helps to decrease the risk for contamination, with just a few sequential additions
of reagents before the readout is performed using an oligonucleotide array.118 Padlock
probes combined with back-end microarray technology have been developed to
detect foot-and-mouth disease, vesicular stomatitis, and swine vesicular disease
viruses.119 Besides viral pathogens, padlock probe–based techniques have been
rapidly extended in recent years to the identification and characterization of bacterial
and fungal pathogens.120–124 In addition to the applicability of padlock probes for
direct target detection, a universal primer binding site can be introduced into the probe
and used for MLPA (see previous discussion).

Microarrays

Applications of microarrays to detect and characterize respiratory viruses began with
solid arrays. The first respiratory pan-viral microarray system was described in 2002,
which incorporated 1600 unique 70-mer oligonucleotide probes covering approxi-
mately 140 viral genome sequences.60–65 Resequencing microarrays were developed
to use short oligonucleotides for the simultaneous identification of respiratory patho-
gens at both the species and strain level.125–127 Another comprehensive and panmi-
crobial microarray, the GreeneChipResp system, was developed for the detection
of respiratory viruses and subtype identification of Flu-A viruses.66 Other recently
developed solid microarray systems for detection and identification of a panel of respi-
ratory viruses include the Infiniti analyzer, an integrated molecular diagnostic device
incorporating microarray hybridization128; the electronic microarray-based Nano-
chip85,129; the TaqMan Low Density Array cards, which use real-time PCR assays
for 13 viruses and 8 bacteria known to cause pneumonia (Dean Erdman, 2009;
personal communication); and the FilmArray, which detects and differentiates 17 viral
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and 4 bacterial etiologies of respiratory tract infections (Mark Poritz, 2009; personal
communication).

Suspension bead-based liquid xMAP microarrays have been developed by Luminex
Corp, which are essentially three-dimensional arrays based on the use of microscopic
polystyrene beads as the solid support and flow cytometry for bead and target detec-
tion.130 Robust multiplexing detection is accomplished using different bead sets based
on fluorescence. The system enables multiplexing of up to 100 analytes in a single reac-
tion using small sample volumes.131,132 Numerous studies have described the use of
xMAP technology for the detection and differentiation of nucleic acid sequences of
microbial pathogens, including enteric bacteria, viruses, mycobacteria, fungi, and
protozoa.76–82,133–136 A molecular typing method incorporating the suspension array
was reported to characterize and type Flu-A viruses, including H5N1.83 The Luminex
suspension array has been incorporated into several commercial devices as the detec-
tion platform to support the laboratory differential diagnosis of common respiratory viral
pathogens. These include the xTAG Respiratory Viral Panel from Luminex Molecular
Diagnostics,137–139 the ResPlex II assay from Qiagen,78,84,85 and the MultiCode-PLx
RVP assay from EraGen Biosciences.140,141 The suspension array system exhibits rapid
hybridization kinetics, flexibility in assay design and format, and relatively low costs,
which have made it the most practical microarray platform for clinical diagnostic appli-
cations. Users should carefully determine the positive fluorescence threshold for each
viral target in multiplexed, user-defined assays during validation.

Mass Spectrometry

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spec-
trometry (MS) is widely used as a powerful proteomic tool. Its rapidity and high reso-
lution provide another powerful platform for the detection and characterization of
nucleic acid amplification products. The technology is premised on the capacity of
MALDI-TOF MS to discriminate individual PCR products contained in complex ampli-
con mixtures according to nucleotide base composition.142 The deconvolution algo-
rithm allows base composition of PCR products to be deduced from mass
spectrometrically measured molecular weights and the complementary nature of
DNA, leading to organism identification. Early studies successfully used this technique
to directly detect amplification products from PCR143 and ligase chain reaction
(LCR).144 Soon after, the MALDI-TOF MS platform was linked to PCR amplification
for genotypic analysis of hepatitis C virus145 and human papillomavirus.146,147 Detec-
tion of human herpesviruses from clinical specimens was performed using MALDI-
TOF MS following multiplex PCR amplification.148 A MALDI-TOF MS-based genotyp-
ing assay has been described that monitors development of hepatitis B virus poly-
merase YMDD mutant genotypes during lamivudine treatment.149,150

An integrated system, the Ibis T5000 Biosensor, has been developed to couple
broad-range nucleic acid amplification to high-performance electrospray ionization
MS and base-composition analysis. The system enables the identification and quan-
tification of a broad set of pathogens, including all known bacteria, all major groups of
pathogenic fungi, and the major families of viruses that cause disease in humans and
animals, along with the detection of virulence factors and antibiotic resistance
markers.151 The system has been used for rapid identification and strain typing of
respiratory bacterial pathogens for epidemic surveillance,152 identification and geno-
typing of Acinetobacter baumannii strains in an outbreak associated with war
trauma,153,154 determination of quinolone resistance in Acinetobacter species,155,156

genotyping of Campylobacter species,155,156 and rapid genotyping and clonal
complex assignment of Staphylococcus aureus isolates.157 We have used this system



Table1
Comparison of commercially available multiplexed amplification and high-throughput systems for detection and identification of respiratory viruses

System Company
Viruses/Genotypes
Detected

Amplification
Platform Detection Platform Characteristics

FimArray respiratory
pathogen panel

Idaho Technology Inc
(Salt Lake City, UT)

AdV, bocavirus, 4 CoV,
Flu-A, Flu-B, hMPV,
PIV-1, PIV-2, PIV-3,
PIV-4, RSV, and RhV

Nested multiplex
RT-PCR

Solid array analyzer Integrated and closed
system. Also covers 4
bacterial pathogens

Infiniti respiratory viral
panel128

AutoGenomics, Inc
(Carlsbad, CA)

Flu-A, Flu-B, PIV-1,
PIV-2, PIV-3, PIV-4,
RSV-A, RSV-B,
hMPV-A, hMPV-B,
RhV-A, RhV-B, EnV,
CoV, and AdV

Multiplex PCR and
RT-PCR

Infiniti solid array
analyzer

Detection step by the
Infiniti analyzer is
completely automatic

Jaguar system HandyLab, Inc
(Detroit, MI)

Flu-A, Flu-B, and RSV
A/B

Multiplex real-time
RT-PCR

Melting temperature
analysis

Completely closed and
automatic. Universal
system compatible
with detection of
other pathogens.
Throughput of 1–24
specimens/run

MultiCode-PLx
respiratory virus
panel140,141

EraGen Biosciences
(Madison, WI)

Flu-A, Flu-B, PIV-1,
PIV-2, PIV-3, PIV-4,
RSV, hMPV, RhV, AdV,
and CoV

Multiplex PCR and
RT-PCR

Luminex suspension
array

Universal beads used for
detection use
EraCode sequences

NGEN Respiratory Virus
(RVA) Analyte-specific
reagent85,129

Nanogen (San Diego,
CA)

Flu-A, Flu-B, PIV-1,
PIV-2, PIV-3, and RSV

Multiplex RT-PCR NanoChip (solid chip) Discontinued in 2008.
Probe labeling, target
capture, and detection
accomplished using
electronic microarray
technology
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ProFLU1,
ProPARAFLU1161,162

Prodesse, Inc
(Waukesha, WI)

Flu-A, Flu-B, and RSV
(ProFLU1); PIV-1,
PIV-2, PIV-3, and
PIV-4 (ProPARAFLU1)

Multiplex real-time
RT-PCR

Melting temperature
analysis

ProFLU1 FDA cleared.
Limited multiplex
formats (triplex)

ResPlex II78,84,85 Qiagen (Valencia, CA) Flu-A, Flu-B, PIV-1,
PIV-2, PIV-3, PIV-4,
RSV-A, RSV-B, hMPV,
RhV, EnV, and
SARS-CoV

TEM-RT-PCR Luminex suspension
array

Unique Tem-PCR
permits multiple
target screening in
single reaction
without significant
loss in sensitivity

Seeplex respiratory virus
detection assay163

Seegene, Inc (Seoul,
Korea)

AdV, hMPV, 2 CoV,
PIV-1, PIV-2, PIV-3,
Flu-A, Flu-B, RSV-A,
RSV-B, and RhV

Two sets of multiple
RT-PCR

Gel electrophoresis Dual priming
oligonucleotide
system

xTAG respiratory viral
panel (RVP)137–139

Luminex Molecular
Diagnostics (Toronto,
Canada)

Flu-A, Flu-B, PIV-1,
PIV-2, PIV-3, PIV-4,
RSV-A, RSV-B, hMPV,
AdV, EnV, CoV,
and RhV

Multiplex PCR and
RT-PCR

Luminex suspension
array

FDA cleared.
Target-specific primer
extension used in
combination with
universal detection
beads

Abbreviations: AdV, adenoviruses; CoV, coronaviruses; EnV, enteroviruses; Flu, influenza virus; hMPV uman metapneumovirus; PIV, parainfluenza virus; RhV,
rhinoviruses; RSV, respiratory syncytial virus; TEM, target enriched multiplex.
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to detect Ehrlichia, Anaplasma, and Rickettsia pathogens directly from blood speci-
mens for diagnosis of tick-borne sepsis (manuscript in preparation). In the field of diag-
nostic virology, this strategy successfully led to the inclusion of SARS-CoV in the
coronavirus family.158 Furthermore, the Ibis T5000 Biosensor system has been used
as a rapid and inexpensive tool for global surveillance of emerging Flu virus geno-
types159 and rapid detection and molecular serotyping of adenoviruses.160 The
system was able to detect and type all available Flu A genotypes, including recently
emerged novel A/H1N1 (David Ecker, 2009; personal communication). The main
advantages are high resolution, speed, and substantial degree of automation. The
main disadvantages include the engineering difficulty of MS device miniaturization
and need for continuous enrichment of databases with new genomic sequences.

MULTIPLEXING AMPLIFICATION AND HIGH-THROUGHPUT DETECTION SYSTEMS

Respiratory infections caused by a many bacterial, viral, and fungal pathogens often
present with overlapping signs and symptoms nearly indistinguishable by clinical diag-
nosis. Molecular screening of at-risk populations for a group of possible viral patho-
gens is an exciting area of development in molecular microbiology. Several
multiplexing amplification and high-throughput detection systems are commercially
available for the detection and differentiation of a panel of respiratory viral pathogens.
Examples include the FilmArray platform from Idaho Technology Inc; the Infiniti Respi-
ratory Viral Panel from AutoGenomics, Inc.128; the Jaguar system from HandyLab,
Inc.; the Multi-Code-PLx respiratory virus panel from EraGen Biosciences140,141; the
NGEN Respiratory Virus ASR from Nanogen85,129; the proFLU1 and the proPARA-
FLU1 from Prodesse, Inc.161,162; the ResPlex II assay from Qiagen78,84,85; the Seeplex
respiratory virus detection assay from Seegene, Inc.163; and the xTAG Respiratory
Viral Panel from Luminex Molecular Diagnostics.137–139 Some of these systems cover
all varieties of Flu A genotypes including recently emerged novel A/H1N1.164

A comparative summary of these devices is presented in Table 1. Relative
simplicity, powerful multiplexing capabilities, and affordability for high-throughput
detection make these platforms most attractive for screening and detection of a panel
of respiratory viruses in clinical infectious disease diagnostics. Although not essential,
the availability of Food and Drug Administration–cleared products is a critical step in
getting these systems into less-experienced diagnostic microbiology laboratories.4,5

Opening of postamplification tubes and subsequent pipetting steps in the workflow
of suspension arrays increases the risk for intra- and inter-run contamination for
some assays. Careful attention should be paid to contamination control measures
and the re-establishment of dedicated postamplification laboratory space in the
real-time PCR era. Simultaneous testing for all possible pathogens is an efficient
means to obtain a conclusive result and improves etiologic diagnosis.81,137,165 In addi-
tion, assaying for all potential pathogens may yield crucial information regarding coin-
fections or secondary infections.84,166,167 One study from the Netherlands indicated
that implementation of multiple molecular assays for the etiologic diagnosis of lower
respiratory tract infections increased the diagnostic yield considerably, yet did not
reduce antibiotic use or costs.168 Clinical relevance and cost effectiveness of simulta-
neous multipathogen detection and identification strategies merit further investigation.
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