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SUMMARY

With the advent of new artificial intelligence and machine learning algorithms,
predictive modeling can, in some cases, produce structures on par with experi-
mental methods. The combination of predictivemodeling and experimental struc-
ture determination by electron cryomicroscopy (cryoEM) offers a tantalizing
approach for producing robust atomic models of macromolecular assemblies.
Here, we apply AlphaFold2 to a set of community standard data sets and
compare the results with the corresponding reference maps and models. More-
over, we present three unique case studies from previously determined cryoEM
density maps of viruses. Our results show that AlphaFold2 can not only produce
reasonably accurate models for analysis and additional hypotheses testing, but
can also potentially yield incorrect structures if not properly validatedwith exper-
imental data. Whereas we outline numerous shortcomings and potential pitfalls
of predictive modeling, the obvious synergy between predictive modeling and
cryoEM will undoubtedly result in new computational modeling tools.

INTRODUCTION

Over the past decade, single-particle electron cryomicroscopy (cryoEM) has become an increasingly

popular and powerful tool in understanding the structure and function of macromolecular assemblies (Call-

away, 2020; Cressey and Callaway, 2017; Wigge et al., 2020). Whereas density maps at near-atomic resolu-

tions were relatively uncommon a decade ago, it is now quite common (Yao et al., 2020) to achieve 3D re-

constructions at better than a 4-Å resolution, where robust and reliable models can be built directly from

the density map (Henderson et al., 2012; Lawson et al., 2021). State-of-the-art reconstructions are even

pushing toward a 1-Å resolution, resolving densities for individual atoms, ions and waters (Nakane et al.,

2020; Xie et al., 2020; Yip et al., 2020; Zhang et al., 2020). The appropriately named ‘‘resolution revolution’’

was driven in large part by technological advancements in electron microscopes, imaging hardware and

data processing tools (Egelman, 2016). Today, cryoEM plays a pivotal role in medicine and human health,

providing structure-function detail for many large macromolecular assemblies, including ribosomes

(Ki�sonait _e et al., 2022), ion channels (Liao et al., 2013), G-protein coupled receptors (Liang et al., 2017),

CRISPR (Lapinaite et al., 2020), and SARS-CoV-2 (Yao et al., 2020).

Nearly all current ‘‘de novo’’ cryoEMmodeling tools are based on a common concept; visible features in the

density map are used as anchors to establish the protein fold, followed by the optimization and refinement

of atom positions using a variety of force fields and chemical restraints (Hryc and Baker, 2021). At high

resolutions (<2.5 Å), these processes are relatively robust and can build reliable models, whereas at lower

resolutions, the ‘‘standard’’ approaches are often less accurate and require manual optimization. Regard-

less, modern cryoEM modeling tools provide an excellent platform for interpreting experimental data at

the atomic level.

Like the revolution in cryoEM, predictive modeling is undergoing a similar ‘‘revolution’’ ushered in by soft-

wares such as AlphaFold (AlphaFold2) (Jumper et al., 2021) and RoseTTAFold (Baek et al., 2021) that are

based on artificial intelligence and machine learning methods. Molecular models generated from the

amino acid sequence alone have shown tremendous accuracy in CASP14 (https://predictioncenter.org/

casp14) and have dramatically increased the value of predictive models in addressing the structure and

function of individual proteins. It has already been shown that AlphaFold2 and RoseTTAFold models

can be used for molecular replacement in X-ray crystallography (Millán et al., 2021) or combined with cry-

oEM density maps (https://doi.org/10.1101/2022.01.07.475350).

1Department of Biochemistry
and Molecular Biology,
Structural Biology Imaging
Center, McGovern Medical
School at The University of
Texas Health Science Center
at Houston, 6431 Fannin
Street, Houston, TX 77030,
USA

2Lead contact

*Correspondence:
matthew.l.baker@uth.tmc.
edu

https://doi.org/10.1016/j.isci.
2022.104496

iScience 25, 104496, July 15, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

https://predictioncenter.org/casp14
https://predictioncenter.org/casp14
https://doi.org/10.1101/2022.01.07.475350
mailto:matthew.l.baker@uth.tmc.edu
mailto:matthew.l.baker@uth.tmc.edu
https://doi.org/10.1016/j.isci.2022.104496
https://doi.org/10.1016/j.isci.2022.104496
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104496&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The use of computational and predictive modeling for building atomic models in cryoEM density maps is

not necessarily a new concept (Baker et al., 2006; Topf et al., 2005), though, before the incorporation of arti-

ficial intelligence and machine learning, predictive modeling has had relatively low accuracy and reliability

for proteins in macromolecular complexes. The success of AlphaFold2 and RoseTTAFold has undoubtedly

inspired a fresh approach for model building in cryoEM density maps; however, the utility, limits, and ex-

pectations of such a combined approach must be first evaluated. In this work, we examine the application

of predictive modeling with respect to a variety of data sets from past cryoEM modeling challenges. Spe-

cifically, we explore how accurate and effective predictive models may be in interpreting cryoEM density

maps, as well as begin to establish boundaries when combining these two methods. Furthermore, this

work provides a retrospective analysis of earlier cryoEM modeling efforts, identifying possible successes

and failures, as well as highlighting areas of future research in cryoEM modeling.

RESULTS

In order to assess the utility of current predictive modeling methods for constructing atomic models in cry-

oEM density maps, we examined a set of community established standard density maps taken from the

past three cryoEM modeling challenges: the 2021 Ligand Model Challenge, the 2019 Model Metrics Chal-

lenge, and the 2016 Model Challenge (https://challenges.emdataresource.org/). In total, these three

challenges provided 12 unique biological data sets ranging from 1.8 to 4.5 Å in resolution and represent

a variety of macromolecular complexes, making them ideal candidates to evaluate the accuracy of predic-

tive modeling in the context of cryoEM density maps. AlphaFold2 was run on the sequences for each pro-

tein subunit in the individual challenge data sets, with the exception of EMDB: EMD-2847, a 70-s ribosome

structure with over 50 individual protein subunits. For EMDB: EMD-2847, six random chains were selected

for modeling with AlphaFold2. All AlphaFold2 models were assessed on multiple criteria, including predic-

tive modeling confidence, overall model quality, fit to density and accuracy when compared with the refer-

ence structure.

The primary metric of AlphaFold2 is the pLDDT (predicted Local Distance Difference Test) score, which

gives a measure of predictive model quality (Mariani et al., 2013). Generally, models with pLDDT scores

above 70 are considered ‘‘confident’’ and scores below 50 are considered ‘‘very low confidence’’; scores

between 50 and 70 are borderline low confidence but may be correct or have parts that are correct. Of

the 23 chains, only three had pLDDT scores below 70 and only one of those was below 50, indicating

that AlphaFold2 was mostly able to predict these structures with high confidence (Figure 1 and Table 1).

The model quality for all the predictive models was assessed with Molprobity (Williams et al., 2018). As ex-

pected, AlphaFold2 produced reasonably good stereochemical models, though some models did have

relatively large clash scores and Ramachandran outliers. Regardless, these models would be considered

of sufficient quality for further refinement into the corresponding near atomic resolution density map.

Modeling challenge data

As reference models were available for all of the challenge data sets, the model accuracy was directly as-

sessed by comparing the AlphaFold2 models with the experimentally derived models. Evaluation of the

models used the TM-score (Template Modeling Score) that assessed fold similarity (values 0–1, where 1 in-

dicates a perfect match) (Zhang and Skolnick, 2004), and Ca RMSD with the reference model, further

revealing that AlphaFold2 was able to accurately predict the structure of the individual components based

purely on sequence. Moreover, fitting of the models to the density map also revealed that AlphaFold2 was

indeed able to nearly perfectly capture the structure of the individual protein components, with the notable

exception of one data set.

The exception to AlphaFold2’s success was EMDB: EMD-22898, the SARS-CoV-2 ORF3a putative ion chan-

nel in nanodisc at a 2.1-Å resolution. For chain A (284aa), the AlphaFold2 model had an RMSD of 11.507 Å

and a TM-score of 0.4580 when compared with the reference structure (5AFI), indicating major differences

at the fold level between the predicted model and reference structure. Chain A from EMDB: EMD-22898

also had a pLDDT score of 48.16, indicating an overall low confidence in the model. Upon visualization

of the model and reference structure, the major source of model variation was due to the orientation of

the helical domain relative to the b-sheet domain (Figure 1). Owing to the orientation of the two domains

for chain A in EMDB: EMD-22898 being different in the predictive model than the reference structure, the

rigid-body fitting of the model did not produce a ‘‘good’’ fit to the density.
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The published model for EMDB: EMD-22898 is homodimeric, with two identical copies of the protein in

question forming the putative ion channel. In an attempt to determine if the dimeric state of the protein

was required to achieve the proper orientation of the two domains, AlphaFold2_advanced was run using

two copies of chain A (labeled as AB in Table 1). The resulting homodimeric AlphaFold2 model was

slightly improved when compared with the reference structure, reducing RMSD to 9.469 Å and improving

the TM-score to 0.6035. Notably, the pLDDT score dropped to 39.11 even though the overall predictive

model agreed better with the reference structure. However, the homodimeric complex also did not have

correct orientations of the domains, making the overall fit to density only slightly better than the fitting of

the monomeric chain A.

Unlike chain A, chain C of EMDB: EMD-22898 had a relatively high pLDDT score, a good Molprobity score

and a low RMSD when compared with the reference structure; however, the TM-score and fit to density

would indicate a poor model. This aberration in the scores was based on the density of chain C only accom-

modating 30–35 residues of the predictive model, though the full 210 amino acid sequence was modeled

with AlphaFold2.

In addition to EMDB: EMD-22898, EMDB: EMD-30210, the SARS-CoV-2 RNA-dependent RNA polymerase,

had relatively low fit to density scores (below 0.5), though the pLDDT, TM-score, and RMSD scores indi-

cated that AlphaFold2 was successfully at modeling the three chains in the map. Upon further examination,

whereas there are some differences between the model and the reference structures, the majority of the

poor fit comes from AlphaFold2 modeling regions that were not resolved in the density map. A similar

drop in fit to density was observed in EMDB: EMD-5778, the structure of TrpV1, where over 200 amino acids

were modeled by AlphaFold2, but were not visible in the density map.

Figure 1. AlphaFold2 and the cryoEM challenge data sets

A selected set of AlphaFold2 models (blue) are shown superimposed on the experimentally derived reference structures (red). The structural alignments are

derived from the TM-score alignments.
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Outside of EMDB: EMD-22898 and EMDB: EMD-30210, which were published in 2020, all of the challenge

data sets would likely have been well represented in the AlphaFold2 training set. In an effort to gain an un-

derstanding of how AlphaFold2 might perform on other cryoEM data sets, three previously reported virus

Table 1. AlphaFold2 predictive modeling on the cryoEM challenge data sets

EMDB/PDB ID

(resolution)

Length

(aa)

Molprobity

score

Clash

score

Ramachandran

outliers (%)

Rotamer

outliers (%)

Map/model

CC pLDDT TM-score RMSD (Å)

EMD 0406/6NBB

(2.9 Å)

375 1.88 15.03 0.54 0.97 0.7825 96.77 0.7754 3.790 (374)

EMD 2677/5A63

(4.5 Å)

A 709 2.22 19.81 2.40 0.65 0.8013 90.96 0.9795 1.581 (665)

B 467 3.56 52.33 16.99 5.88 0.5760 66.51 0.9472 1.420 (215)

C 265 1.87 17.59 1.14 0.93 0.7714 93.06 0.9753 0.985 (243)

D 101 1.94 25.78 0.00 1.12 0.8004 93.12 0.9417 1.059 (100)

EMD 2842/4UDV

(3.3 Å)

159 2.47 15.83 3.82 2.16 0.6328 88.55 0.5901 3.935 (153)

EMD 2847/5AFI

(2.9 Å)

201 1.77 18.94 0.50 0.0 0.5792 93.41 0.9420 1.364 (201)

E 177 1.80 20.28 0.0 0.72 0.7169 91.34 0.6339 3.801 (176)

G 142 1.91 24.46 0.0 0.86 0.7076 93.62 0.9687 0.945 (142)

J d< 206 1.71 16.03 0.0 0.0 0.6944 92.32 0.6757 3.752 (205)

g 179 2.68 16.06 6.78 3.40 0.6235 92.16 0.6108 3.852 (151)

o 89 1.48 8.87 0.0 0.0 0.687 92.80 0.4674 3.818 (88)

EMD 5623/3J9I

(3.3 Å)

233 1.62 12.83 0.43 0.0 0.8474 94.32 0.9694 1.076 (224)

EMD 5778/3J5P

(3.275 Å)

838 3.20 30.04 14.71 3.91 0.6057 69.99 0.9545 2.963 (592)

EMD 6000/3J7N

(3.8 Å)

189 3.39 60.10 11.76 3.42 0.6241 66.90 0.7805 3.649 (149)

EMD 6422/3CAU

(4.1 Å)

548 2.06 15.28 2.01 1.20 0.6460 92.21 0.7346 5.354 (526)

EMD 7770/6CVM

(1.9 Å)

1,021 1.97 22.77 0.29 0.34 0.7100 94.45 0.8837 3.850 (1020)

EMD 20027/3AJO

(2.32 Å)

183 1.86 13.73 2.21 0.61 0.7675 95.10 0.6305 3.785 (172)

EMD 22898/3KJR

(2.08 Å)

A 284 3.62 30.09 18.79 12.84 0.2329 48.16 0.4580 11.507 (193)

AB* 568 3.58 27.67 15.96 13.04 0.2756 39.11 0.6035 9.469 (193)

C 210 2.57 5.53 4.81 15.68 0.2674 72.43 0.1247 2.756 (31)

EMD 30210/7KVB

(2.5 Å)

A 951 2.65 35.57 3.48 1.55 0.5375 88.85 0.8402 4.675 (834)

B 207 2.26 17.64 0.49 1.70 0.4233 85.04 0.4654 5.535 (114)

C 92 2.90 33.45 3.33 3.49 0.5366 80.14 0.3089 3.899 (63)

AlphaFold2was run on each protein subunit from the individual cryoEM challenge data sets, with the exception of EMDB: EMD-2847. For EMDB: EMD-2847, a 70s

ribosome structure with over 50 individual protein subunits, six random chains were selected for modeling with AlphaFold2. The resulting models were assessed

for model quality including the Molprobity score, clash score, Ramachandran outliers, rotamer outliers), fit to density (map/model cross correlation), predicted

level of confidence (pLDDT), and similarity to the referencemodel (TM-score, RMSD). In the final column, the number listed in parenthesis after RMSD refers to the

total number of matched residues between the model and reference structures. The resolution for each map is listed in the first column after the EMDB and PDB

IDs. For EMDB: EMD-22898, the asterisk indicates AlphaFold2 was run on a homodimer of chain A, denoted as AB in the table and text.
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data sets, reconstructed between 3- and 5-Å resolution were selected for testing. Key to selection of these

data sets were the following: 1) none of the data sets had been previously modeled with AlphaFold2; 2)

models for these proteins were not included in the AlphaFold2 training/template library; 3) the data sets

contained at least components with a related, but non-identical structure in the PDB; 4) the data sets con-

tained multiple proteins; and 5) the complete data sets were available.

Bacteriophage ε15

Tailed double-stranded DNA (dsDNA) bacteriophages were present billions of years before cellular life

diverged, and are one of the most abundant life forms on the planet today. NMR, X-ray crystallography,

and single-particle cryoEM have been used extensively to determine the structures of bacteriophages.

In 2008, the first near-atomic resolution cryoEM structure of ε15, an infectious bacteriophage, was reported

(Jiang et al., 2008). Using an ad hoc implementation of feature registration and sequence matching, a trace

of the Ca backbone of gp7, the 335 amino acid (aa) major capsid protein, and gp10 (111 aa), a second

capsid protein decorating the outer surface of the capsid shell, were determined. Despite low sequence

similarity, gp7 shared considerable structural homology to the capsid protein from bacteriophage HK97

and other major capsid proteins from tailed dsDNA bacteriophages (Morais et al., 2005). Whereas capsid

decoration proteins had previously been reported in other bacteriophages, no related sequences or struc-

tures could be identified for gp10. Several years after the initial Ca backbone models, a higher resolution

cryoEMmap was obtained that allowed for the construction of a refined, full-atommodel for the entire viral

capsid (PDB: 3J40, EMDB: EMD-5678) (Baker et al., 2013).

ε15 major capsid protein

ε15 gp7, the 335aamajor capsid protein, was first modeled with AlphaFold2 and refined against the density

map. The initial AlphaFold2 model for gp7 was very similar to the published structure (PDB: 3J40, chain B),

as well as the aforementioned HK97 capsid protein structure (Figures 2A and 2B, Table 2). Statistics for the

AlphaFold2 gp7 model were as good or better than the published structure and the mean pLDDT score

was 77.80, indicating a relatively well-predicted model. Only the N-terminal �40 residues and residues

298–312 had pLDDT scores below 70. As discussed below, these residues had a large RMSD when

A B

C D

Figure 2. Modeling of Epsilon15 gp7

(A) The structure of a single gp7 subunit (PDB: 3J40_B) is shown. The model is colored from the N-terminus (blue) to the

C-terminus (red). The N-terminus is enclosed by a dashed box, the long b-sheet is enclosed by a dashed triangle, the

internal b-sheet is shown enclosed by a dashed circle, and the large hexonal loop is marked with an arrow.

(B) The AlphaFold2 model for gp7 is shown as a ribbon colored by the pLDDT value.

(C) The AlphaFold2 model for gp7 after real-space refinement in Phenix is shown superimposed on the density map for a

single gp7 subunit and colored based on B-factor.

(D) The final model for gp7 based on the AlphaFold2 prediction and refined against the density with Phenix and Coot is

shown. The model is colored by RMSD, comparing it with the published structure, 3J40_B.
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compared with the published structure and had a relatively poor fit to the density. However, the overall re-

sults for gp7 were very much on par with the results obtained from the challenge data sets.

The initial comparison of the AlphaFold2 model with 3J40_B yielded an RMSD of 5.984 Å. A single round of

real-space refinement with morphing and simulated annealing improved the model agreement slightly,

reducing the RMSD to 5.628 Å (Figure 2C). In an attempt to further refine the model, manual optimization

in Coot and a subsequent round of real-space refinement reduced the overall RMSD to 4.872 Å while also

improving the fit to density (Figure 2D). A complete summary of model statistics and map/model agree-

ment can be found in Table 2.

Despite the relatively high RMSDs, the AlphaFold2model closely resembled the published structure of gp7

except in four regions. In the published structure, the N-terminal �40 residues consist of a short helix fol-

lowed by an elongated loop that runs parallel to the central, long helix (box in Figure 2A). In the AlphaFold2

model, a second short helix is introduced at the N-terminus, preceding the observed helix in 3J40_B, re-

sulting in a 1-3 amino acid shift in residue assignment in the elongated loop. After real-space refinement,

RMSD in the N-terminal helical region decreases, though the register shift is still present in the elongated

loop. Despite an average RMSD of over 5 Å, the overall fit to density of the elongated loop is improved over

the published model and the initial AlphaFold2 model.

The second major difference occurs in the outer portions of the primarily b-sheet region immediately

following the long, central helix (circle in Figure 2A). This region consists of residues 134–171, 244–258,

and 324–335. Two of these strands, residues 134–171 and 324–335, are nearly identical to the overall

fold of the published structure though the sequence is again shifted. In residues 134–171, there is a 1-4

amino acid registration difference; residues 165–168 in the AlphaFold2 model are particularly distorted,

but bring the sequence back into register by residue 170. Whereas the AlphaFold2 model for residues

165–168 does not appear to fit the density as well as the published model, they consist of Ala, Gly, Gly,

Ser on the outermost surface, and, in fact, may be flexible and have poorly resolved density in the map.

Table 2. ε15 gp7 model statistics

3J40_B

AlphaFold2

model

AlphaFold2 model

with RSR

AlphaFold2 model

with RSR + Coot

Composition

Atoms 2,588 2,587 2,587 2,587

Residues 335 335 335 335

Molprobity score 3.96 2.69 1.70 1.77

Clash score 27.68 27.71 8.58 9.55

Ramachandran plot

Outliers 12.31 3.00 0.60 0.30

Allowed 25.23 5.41 3.00 3.60

Favored 62.46 91.59 96.40 96.10

Rotamer outliers 30.66 2.19 0.00 0.00

Cbeta deviations 1.30 0.00 0.00 0.00

Bonds

Length 0.006 0.017 0.004 0.004

Angles 1.504 1.884 0.733 0.663

B-factor (mean) 67.45 – 156.05 145.70

pLDDT (mean) – 77.80 – –

Map–model CC 0.64 0.54 0.77 0.79

FSC (0.143) 3.8 4.0 3.2 3.2

TM-score – 0.7491 0.7710 0.7944

RMSD (paired residues) 0 5.984 (335) 5.628 (335) 4.872 (335)

In this and rest of the tables, root-mean-square deviation (RSMD) is computed between pairwise matching residues. Unless

otherwise indicated, RMSD is computed across all residues.
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Similarly, residues 324–326 are responsible for a register shift in the C-terminal loop, though it improves

considerably after real-space refinement. Residues 244–258 of 3J40_B contains a short helix (residues

244–250) followed by a loop, whereas the AlphaFold2 model essentially contains one single loop. The den-

sity map appears to indicate the presence of a helix-like feature corresponding to residues 244–248; the

density immediately after this is less clear. After real-space refinement, the AlphaFold2 model maintains

the overall loop structure but moves closer to the published structure. Like the other regions, the agree-

ment with the density is improved over the initial AlphaFold2 model, as well as the previously published

structure.

Running parallel to the central helix, three anti-parallel strands form a long, prominent b-sheet (triangle in Fig-

ure 2A). The ‘‘bottom’’ strand, formed by two smaller strands separated by a short loop, ends in a loop near

the N-terminus. This bottom strand (residues 182–215) also has a register shift of up to four residues when

compared with the publishedmodel. The initial shift in registration occurs at residues 182–185 that form a short

loopbefore thefirst strand.Registrationwith thepublishedmodel is againestablishedbetween residues208and

214 that form an extended loop between the bottom and middle strand of the b-sheet. The AlphaFold2 model

for this region significantly improves the hydrogen bonding in the b-sheet; however, the density is not well

resolved and, after real-space refinement, some of the hydrogen bonding in the bottom strand is lost.

Perhaps the largest area of difference occurs from residues 298 to 312 (arrow in Figure 2A). The AlphaFold2

model depicts these residues with two small anti-parallel strands forming a b-sheet. The published model

contains an extended loop for this region and corresponding residues in the two structures are up to�17 Å

apart. When compared with the density, the AlphaFold2 model for this region does not fit, nor does the

density appear to be consistent with b-strand features. Simple real-space refinement improves the fit to

density for the original AlphaFold2 model slightly, but still largely maintains the overall architecture of

the AlphaFold2 prediction. Unlike the aforementioned issues, manual refinement of this region was

needed to bring the model into agreement with the density map. After refinement in Coot, the average

RMSD between the AlphaFold2model and the published structure in this region drops below 1 Å. It is inter-

esting to note that this region is located proximal to the local six-fold axes, where the same loop from the

six hexonal subunits may interact and this interaction is not captured by AlphaFold2.

ε15 accessory protein

In the original ε15 paper (Jiang et al., 2008), an ‘‘accessory’’ capsid protein was discovered after modeling

gp7; the gp7 structure left a sizable unmodeled density, presumed to be a yet-to-be-identified structural

protein, on the surface of the capsid. A proteomic analysis of infectious ε15 viral particles putatively iden-

tified gp10, a 111 amino acid (�12 KDa) structural protein, a previously unknown structural protein. At the

time of the publication, no additional �12kDa structural proteins were known, leaving gp10 as the only

candidate for the unmodeled density. Secondary structure prediction of the gp10 sequence largely sup-

ported the observed b-strands based in this region of the density map, though it was not until a subsequent

higher resolution ε15 density map was obtained that a model for this density could be constructed based

on the gp10 sequence (Figure 3A) (Baker et al., 2013).

In continued evaluation of AlphaFold2 with ε15, a model for the 111 amino acid gp10 sequence was gener-

ated and appeared, once again, to have predictive and model quality metrics on par with what was

observed in the challenge data. However, the AlphaFold2 model bore little resemblance to the published

structure or the density map, outside of two long strands (Figure 3B, top left panel). Despite good model

quality and high levels of confidence, the failure of AlphaFold2 to produce a model consistent with the

experimental density map and gp10 model meant either 1) AlphaFold2 generated a ‘‘good’’ but inaccurate

model or 2) the original assignment of the accessory protein to the 111aa gp10 sequence was wrong.

Since the original ε15 models, it was discovered that gp10 was not the only �12KDa protein in the ε15

genome. In fact, three additional unique proteins were identified with similar molecular weights to

gp10: a 112, 121, and 130 amino acids protein (Figure S1). These sequences represented unique proteins

and no structure for any of these new sequences was known. To determine if one of these sequences could

account for the gp10 density (and suggest that the original assignment of gp10 to the second capsid pro-

tein was wrong), these three proteins were submitted to AlphaFold2 for modeling (Figure 3B). Like the 111

amino acid protein, the 112 and 121 amino acid proteins had no similarity to the published structure or the

density map. Both the 112 and 121 amino acid proteins were predicted to contain large prominent helices
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that would have been clearly observed in the density map. Despite being 19 residues longer and having

almost no sequence similarity to the 111 amino acid sequence, the AlphaFold2 model for the 130 amino

acid sequence was consistent with the density map, clearly matching the six prominent b-strands in the

map and appeared to have the correct overall fold (Figures 3C and 3D).

The AlphaFold2 model for the 130 amino acid sequence was not as ‘‘good’’ as the other three models in

terms of measurable model quality and predicted accuracy, though all four models had average pLDDT

scores above 80 (Table 3, Figure 3C). Visual inspection and fit to density (map–model cross correlation)

were easily the biggest discriminators of the ‘‘correct’’ model from four candidate structures. For the

130 amino acid model, the overall quality and fit to density were improved with real-space refinement, sur-

passing the published model in almost all categories (Figure 3D). The results here would seem to indicate

that the 111 amino acid sequence was indeed incorrectly assigned to the second capsid protein and that

the 130 amino acid sequence likely corresponds to the second capsid protein density.

Bacteriophage Syn5

The most abundant cyanobacteria in the oceans, Synechococcus and Prochlorococcus fix �30% of CO2 in

the atmosphere through photosynthesis. Similarly, cyanophages, bacteriophages infecting cyanobacteria,

A B

C D

Figure 3. Modeling of Epsilon15 gp10

(A) The structure of a single gp10 subunit (PDB: 3J40_H) is shown superimposed on corresponding density. The model is colored from the N-terminus (blue)

to the C-terminus (red).

(B) AlphaFold2 models for four potential candidate accessory proteins gp10 sequences, all with varying sequences, are shown as ribbons and colored from

the N-terminus (blue) to the C-terminus (red).

(C) The AlphaFold2 model for the 130aa protein superimposed on the gp10 density is shown colored by pLDDT.

(D) The real-space refined 130aa gp10 model is shown superimposed on the corresponding density and is colored based on B-factor.
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are extraordinarily abundant and crucial components of the marine ecosystem. Cyanophage Syn5, which

infects Synechococcus, is a dsDNA bacteriophage belonging to the Podoviridae family and has a T7 bacte-

riophage-like genome organization. In 2014, the �4.7-Å resolution structure of Syn5 from single-particle

cryoEM was reported (PDB: 4BMI, EMDB: EMDB-5954) (Gipson et al., 2014). A model for the major capsid

protein, gp39, revealed structure similarity to the major capsid proteins of other tailed dsDNA bacterio-

phages (like HK97, ε15, etc.), despite only minimal sequence similarity. As with ε15, additional capsid pro-

teins were detected and tentatively assigned as gp55 and gp58 to the density map based on size and sec-

ondary structure content. However, models for gp55 and gp58 were not generated owing to the limited

resolution and the lack of suitable structural homologues.

Syn5 gp39

At the reported resolution, only a Ca backbone model could be constructed for gp39. For the purpose of

this work, the Ca backbonemodel was converted into a full-atommodel and refined with one round of real-

space refinement (usingmorphing and simulated annealing options) in Phenix (Figure 4A). Prediction of the

gp39 (332aa) structure with AlphaFold2 produced models similar to the experimentally derived model and

consistent with the aforementioned HK-97-like fold (Figure 4B and Table 4). Three of the five models had

average pLDDT scores above 60, with most of the core structure elements having pLDDT scores between

70 and 75.

Despite the somewhat lower pLDDT and model quality scores in comparison with the challenge data

sets, all five of the models visually appeared to fit the density map. The overall RMSD between the exper-

imental structure and the five AlphaFold2 models was �10 Å, with the best-fitting model having an RMSD

of 10.326 Å. Real-space refinement model greatly improved the FSC and cross-correlation, going from 7

to 4.2 Å and 0.23 to 0.55, respectively (Figure 4C). The overall RSMD also improved by �0.5 Å, correcting

some small fit to density issues (Figure 4D). However, as was the case for gp7 of ε15, the majority of the

differences between the AlphaFold2 and experimental models occurred in the N-terminal domain, hexo-

nal loop, and the large three-stranded b-sheet (Figure 4A, shown by the dashed rectangle, dashed tri-

angle, and arrow, respectively). In the AlphaFold2 model, the N-terminal domain is modeled as a long

helix just below the central long helix. This arrangement is similar to the bacteriophage P22 procapsid

Table 3. ε15 gp10 model statistics

3J40_H 111aa 112aa 121aa 130aa 130aa refined

Composition

Atoms 850 850 870 929 952 952

Residues 111 111 112 121 130 130

Molprobity score 4.22 2.00 1.73 1.75 2.61 2.27

Clash score 47.31 14.97 12.01 10.29 22.16 18.56

Ramachandran plot

Outliers 13.76 3.67 0.00 1.68 4.69 0.0

Allowed 34.86 0.92 2.73 1.68 6.25 8.59

Favored 51.38 95.41 97.27 96.64 89.06 91.41

Rotamer outliers 28.42 0.00 0.00 0.00 1.82 0.00

Cbeta deviations 1.96 0.00 0.00 0.00 0.00 0.00

Bonds

Length 0.006 0.019 0.015 0.019 0.016 0.004

Angles 1.760 2.202 1.420 1.941 1.933 0.772

B-factor (mean) 106.00 – – – – 135.79

pLDDT (mean) – 80.29 93.68 95.18 83.22 –

Map–model CC 0.71 0.10 0.16 0.19 0.61 0.81

FSC (0.143) 4.0 2.7 2.6 7.1 4.1 3.3

TM-score – 0.1509 0.1337 0.1352 0.1914 0.1912

RMSD (residues) 0 21.425 (111) 9.404 (30) 0.254 (3) 14.819 (48) 19.290 (98)
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structure major capsid protein, which also has an HK97-like fold (Chen et al., 2011; Kaelber et al., 2017). In

examining the experimental and refined AlphaFold2 models for gp39, there was unmodeled density cor-

responding to the location of the N-terminal helix of the AlphaFold2 model and the experimentally

derived model does have considerable clashes with neighboring subunits at the N-terminus. This sug-

gests that the AlphaFold2 model for gp39, at least in this region, may better reflect the actual fold of

gp39 in the density map. As for the hexonal loop, AlphaFold2 produces a loop that is tucked up against

the rest of the structure, whereas the experimental model and density suggest that this loop is extended.

In the large three stranded b-sheet, a sequence registration error is largely responsible for the majority of

the differences, though the small helix that occurs between the two bottom strands of the b-sheet is

shifted.

Syn5 gp55 and gp58

As mentioned, Syn5 has two regions of unmodeled density on the capsid surface just above gp39; at the

periphery of gp39 and close to the two-fold axes, the unassigned density was referred to as the ‘‘C1/C2’’

density, and the unmodeled density at the center of the gp39 hexon (local six-fold axis) was referred to as

‘‘D’’ density (Figure 5A). In the original paper, the D density was assigned to gp55, while the C1/C2 density

was assigned gp58. Both densities appear to have similar volumes; likewise, gp55 (156aa) and gp58 (168aa)

have similar sequence lengths. As such, the original assignment of protein identity was based on the cor-

relation of predicted versus observed secondary structure elements.

A B

C D

Figure 4. Modeling of Syn5 gp39

(A) The structure of a single gp39 subunit (PDB: 4BMI_A) is shown colored from theN-terminus (blue) to the C-terminus (red). TheN-terminus is enclosed by a

dashed box, the long b-sheet is enclosed by a dashed triangle, and the large hexonal loop is marked with an arrow.

(B) The AlphaFold2 model for gp39 is shown colored by pLDDT.

(C) The AlphaFold2 model for gp39 after real-space refinement in Phenix is shown superimposed on the density map for a single subunit and colored based

on B-factor.

(D) The final model for gp39 based on the AlphaFold2 prediction and refined against the density with Phenix and Coot. The model is colored by RMSD,

comparing it with the published structure 4BML_A.
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As already demonstrated with gp10 in ε15, predictive modeling has the ability to potentially identify and

assign protein structure in a near-atomic resolution density map. Models for both gp55 (156aa) and

gp58 (169aa) were constructed with AlphaFold2 and compared with the density (Figures 5B and 5C,

Table 4). The overall quality of models varied considerably; the average pLDDT score of the five

AlphaFold2 gp55 models was �75, whereas the gp58 models’ average pLDDT scores were closer to 45.

Both the gp55 and gp58 models appeared to have two distinct domains. In gp55, the N-terminal domain

consisted of a three-stranded b-sheets and a helix with a small C-terminal domain containing a short loop

and a helix. gp58 on the other hand contained two 4 + turn helices and a long loop in the N-terminal

domain that was connected to a C-terminal domain via a long loop that consisted of a five-stranded

b-sheet. Interestingly, the different AlphaFold2 models for gp55 and gp58 varied primarily in the orienta-

tion of the two domains relative to each other, possibly suggesting a flexible conformation (Figure S2).

None of the models fit their respective density, though the C-terminal domain of the gp58 AlphaFold2

models fit best to the unmodeled density near the two-fold axes (C1/C2 density), which was originally as-

signed to gp55 (Figures 5D and 5E). Moreover, fitting of the N-terminal domain of gp58, independently of

the C-terminal domain, did show a good fit to the unmodeled density at the six-fold axes. No single

AlphaFold2 model for gp58 reflected a conformation that allowed the occupancy of both the C1/C2 and

D density sites, but fitting of the two domains and rebuilding of the connecting loop demonstrated a po-

tential configuration consistent with the density map (Figure 5F). Not surprisingly, themodified AlphaFold2

gp58 model dramatically improved the average AlphaFold2 model fit to density.

Mud Crab Reovirus

Members of Reoviridae, which infect a wide range of mammalian hosts, are characterized by a segmented

double-stranded RNA (dsRNA) genome that is encapsulated by a proteinaceous shell. Single particle cry-

oEM and X-ray crystallography have been used to determine the structures of several Reoviridae family

members with 9–11 segmented dsRNA genomes (Cheng et al., 2011; Lu et al., 1998; Nakagawa et al.,

2003; Pan et al., 2021; Reinisch et al., 2000; Zhang et al., 2005, 2010). The structure of Mud Crab Reovirus

(MCRV); Deng et al., 2012; Huang et al., 2012), with a 12-segment dsRNA genome, was determined to

an �3.1-Å resolution using single particle cryoEM (PDB: 7XR2, EMDB: EMD-33403). The structure revealed

MCRV to be organized as double layer capsid, composed of an RNA-dependent RNA polymerase (RdRP),

Table 4. Syn 5 model statistics

4BML_A gp39 gp39 refined gp55 gp58 gp58 refined

Composition

Atoms 2,298 2,469 2,469 1,170 1,162 1,162

Residues 309 332 332 156 169 169

Molprobity score 2.47 3.18 2.30 3.05 3.66 3.50

Clash score 17.57 33.01 19.05 29.22 51.95 37.10

Ramachandran plot

Outliers 1.63 10.00 0.30 9.74 22.75 4.79

Allowed 17.59 9.39 8.79 9.09 12.57 28.14

Favored 80.78 80.61 90.91 81.17 64.97 67.07

Rotamer outliers 0.00 3.89 0.00 3.17 5.83 5.83

Cbeta deviations 0.00 0.00 0.00 0.00 0.00 3.95

Bonds 0.009

Length 0.003 0.019 0.003 0.017 0.024

Angles 0.850 3.071 0.738 3.304 5.688

B-factor (mean) 88.87 – 175.17 – – 22.26

pLDDT (mean) – 60.99 – 76.59 46.36 –

Map–model CC 0.45 0.23 0.55 0.04 0.08 0.45

FSC (0.143) 4.4 7.0 4.2 9.4 6.0 4.1

TM-score – 0.5575 0.5529 – – –

RMSD (paired residues) 0 10.326 9.827 N/A N/A N/A

ll
OPEN ACCESS

iScience 25, 104496, July 15, 2022 11

iScience
Article



surrounded by an inner capsid layer comprised of a pseudo-VP3 dimer, which, in turn, is surrounded by an

outer capsid layer consisting of trimeric VP12 and a clamp-like protein, VP11 (Figure S3). Whereas there are

structural homologues for VP3 and VP12, the structures of VP11 and, to a lesser extent, the RdRP are rela-

tively unique. Each of the individual MCRV proteins were modeled with AlphaFold2 individually except

VP12 that was modeled both as a monomer and a trimer (Table 5, Figures 6 and 7).

MCRV VP12

The structure of VP12 is typical of Reoviridae outer capsid proteins in which the N- and C-terminal domains

form a large helical domain close to the inner capsid surface; the middle portion of the VP12 sequence

forms a b-sandwich and sits atop the a-helical domain (Figure 6A). Three subunits of VP12 are tightly

bundled, forming a trimer in the viral capsid. Modeling of a single VP12 with AlphaFold2 (274aa) returned

structures with a similar architecture – a b-sandwich domain on top of a mostly helical lower domain

composed of the N and C termini. However, the overall organization and orientations of the domains

A B C

D E

F

Figure 5. Modeling of Syn5 extra density

(A) A model of the gp39 hexon is shown in blue. Subtracting the density belonging to gp39 revealed the unmodeled denisites C1/C2 and D.

(B) The AlphaFold2 model for gp55 is shown colored based on pLDDT.

(C) The AlphaFold2 model for gp58 is shown colored based on pLDDT. Extra density with C1/C2 and D labels.

(D) The AlphaFold2model for gp55, colored from theN-terminus (blue) to the C-terminus (red), is shown fit to the unmodeled density. In the three panels, the

top panel shows the N-terminal domain fit to the C1/C2 density, the middle panel shows the C-terminal domain fit to the D density, and the lower panel

shows the N-terminal domain fit to the D density.

(E) The AlphaFold2model for gp58, colored from the N-terminus (blue) to the C-terminus (red), is shown fit to the unmodeled density. In the three panels, the

top panel shows the C-terminal domain fit to the C1/C2 density, the middle panel shows the N-terminal domain fit to the D density, and the lower panel

shows the C-terminal domain fit to the D density.

(F) The model shows gp39 and gp58 based on the AlphaFold2 model and density fitting.

See also Figure S2.

ll
OPEN ACCESS

12 iScience 25, 104496, July 15, 2022

iScience
Article



are substantially different, resulting in RMSDs greater than 20 Å (Figure 7A). None of these AlphaFold2

models fit the VP12 cryoEM density map completely, with the best model having a map–model correlation

value of 0.17 and an RMSD of 24.038 Å. Breaking the AlphaFold2 models into pieces, residues 1–104 (N-ter-

minal helical domain), 105–192 (b-sandwich), and 193–274 (C-terminal helical domain), and comparing

these domains with the experimentally determined model revealed where AlphaFold2 failed. The b-sand-

wich domain had an RMSD of 5.911 Å, whereas the C-terminal helical domain had an RMSD of 6.761 Å. In

these domains, the overall fold was generally maintained with small deviations primarily localized to the

loops. The major source of difference was sequence register shifts. Unlike these two domains, the N-ter-

minal helical domain was substantially worse, with an RMSD of 19.141 Å. The overall architecture of the

N-terminal helical domain was completely different from the experimentally determined model, resulting

in models with substantial differences in the arrangement of the three domains with respect to each other.

The mean pLDDT scores for the AlphaFold2 VP12 models ranged from 39.78 to 43.82, putting the overall

model quality into the low, unreliable category. However, further inspection of the b-sandwich domain and

C-terminal helical domain revealed that the pLDDT scores for these domains were primarily in the range of

60– to 70, indicating increased reliability over the other portions of the structure. Taken together with the

resulting models, it may be possible to identify, extract, and independently fit these domains to the density

map. As noted, there are significant differences in these two domains among the various AlphaFold2

models and the experimentally derived structures and caution should be used if attempting to fit by parts.

MCRV VP11

The second of the two outer capsid proteins in the MCRV capsid is VP11 (203aa). In contrast to VP12 (Fig-

ure 6B), VP11 is monomeric and does not have apparent sequence or structural analogue within Reoviridae.

The structure of VP11 is predominantly a-helical with two small b-sheets. Prediction with AlphaFold2 re-

turns models with relatively similar secondary structure though no predicted models resemble the exper-

imentally determinedmodel or fit the VP11 density. RMSDs for the top five AlphaFold2models were 22.148,

17.583, 26.77, 18.097, and 21.937 Å. However, like VP12, portions of the predictedmodel did show similarity

to the experimentally determined VP11 structure (Figure 7B). In particular, two AlphaFold2 models for res-

idues 148–185 of VP11 (Figure 6B, dashed circle) had RMSDs of 2.970 and 2.754 Å; the other three

AlphaFold2 models had RMSDs over 4 Å. For the two AlphaFold2 models that shared structural similarity

to the experimental VP11 model, the three-helix motif was almost perfectly maintained with the largest

Table 5. MCRV model statistics

VP3 VP11 VP12 VP12 trimer RdRP

Composition

Atoms 6,818 1,668 2,085 6,225 11,079

Residues 854 203 274 822 1,395

Molprobity score 3.67 3.77 2.97 3.50 3.72

Clash score 28.55 42.78 25.26 41.60 29.43

Ramachandran plot

Outliers 20.77 14.43 12.13 10.17 21.18

Allowed 12.79 10.95 9.19 9.80 11.92

Favored 66.43 74.63 78.68 80.02 66.91

Rotamer outliers 13.58 13.68 2.68 7.59 15.05

Cbeta deviations 0.00 0.00 0.00 0.00 0.00

Bonds

Length 0.026 0.025 0.024 0.023 0.026

Angles 4.838 3.989 3.421 3.508 4.673

pLDDT (mean) 30.31 36.86 43.99 40.09 29.12

Map–model CC 0.05 0.04 0.17 0.05 0.05

FSC (0.143) 6.9 3.2 3.9 7.5 12.7

TM-score 0.1283 0.2429 0.3076 0.2576 0.1455

RMSD (paired residues) 43.015 18.353 24.038 20.656 54.477
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differences owing to a small shift of the first helix relative to the other two helices. Interestingly, these two

models also shared considerable structural homology to the experimentally derived structure of VP11 from

residues 82–115 (Figure 6B, dashed rectangle). This domain contains a long, central alpha helix followed by

a loop with a short b-strand running parallel to the long helical axis. Over these residues, the aforemen-

tioned two AlphaFold2 models had RMSDs of 4.189 and 5.053 Å, but captured the overall VP11 fold

over this super-structure. Despite these similarities, these two models had overall RMSDs of �18 Å, largely

owing to the fact that these structurally ‘‘conserved’’ regions were not orientated to each other in the same

way as in the experimentally determined structure. As such, fitting and refining these two AlphaFold2

models to the density map based on either one of these conserved sub-domains resulted in a poor fit to

density for the remaining portions of the models.

As with the previous examples, the overall model quality for the AlphaFold2 predictions were reasonable

for VP11, but the pLDDT for all five AlphaFold2 models were well below 60, suggesting an overall

low confidence in the models. Interestingly, one of the two AlphaFold2 models with sub-structure sim-

ilarity did have an average pLDDT score near 70 for amino acids 55–120. However, the other model

with structural similarity had similar pLDDT scores to models without the structural similarity over the

same region.

A B C D

Figure 6. Modeling of MCRV

(A–D) The experimentally determined and AlphaFold models for the structural proteins in the MCRV asymmetric unit are shown. Column (A) shows VP12,

column (B) shows VP11, column (C) shows VP3, and column (D) shows the RdRP. In Row 1, the experimentally derived structures are shown colored from the

N-terminus (blue) to the C-terminus (red) and superimposed on their corresponding cryoEM density. In Row 2, the corresponding AlphaFold2 models are

shown colored from the N-terminus (blue) to the C-terminus (red). In Row 3, the corresponding AlphaFold2 models are shown colored based on pLDDT.
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MCRV VP3A and VP3B

The inner capsid layer of MCRV is composed of a pseudo-VP3 dimer (VP3A and VP3B, 854 amino acids each)

arranged on a T = 1 lattice (Figure 6C). The experimental models and density map clearly show that themajority

of the VP3A and VP3B are the same except for the �80 N-terminal residues that adopt several unique confor-

mations. The remaining structure of VP3 shares a common architecture seen other Reoviridae inner capsid pro-

teins; a thin flat structure, roughly divided into an a-helical apical domain, a middle helical domain (carapace

domain), and a dimerization domain composed of mainly b-strands. As with the other MCRV proteins,

AlphaFold2 produced five predicted models for the VP3 sequence but none shared any significant structural

homology to the experimentally derived structures for VP3A or VP3B; RMSDs ranged from 43.015 to

62.450 Å, with the best fit to density model having an RMSD of 43.015 Å (Figure 7C). Moreover, little structural

conservation was seen for any domain or sub-structure in the AlphaFold2 models. The only similarity between

the experimental and predicted VP3 models was the predominance of alpha helices. The pLDDT scores for all

five AlphaFold2 models ranged from �25 to 40, except for the first �50 residues that have an average pLDDT

score approaching 60. Interestingly, this region of VP3 in the experimental maps and models is highly variable

and changes with the local environment.

MCRV VP1

The last of the MCRV capsid proteins is VP1 or the RdRP (1,332 aa). The RdRP is located beneath, but slightly

offset, of the five-fold axis and contacts three of the five VP3 pseudo-dimers. The N-terminal portions of at least

four different VP3s interact with the RdRP in various manners. The RdRP is a common component in Reoviridae

withmembers sharingmoderate structural homology among the three different RdRP domains (N-terminal, po-

lymerase, and C-terminal domains) (Ding et al., 2018; Pan et al., 2021; Tao et al., 2002; Zhang et al., 2003). How-

ever, the overall arrangement and structure of thesedomains inReoviridaedoes vary. Again, the fiveAlphaFold2

models of the RdRP share almost no overall structural similarity with the experimentally derivedmap andmodel

(Figures 6Dand 7D). In fact, only oneof the fivemodels appears tobeapproximately the samedimensions as the

RdRP density map. RMSDs for the five AlphaFold2 models ranged from 45.045 to 52.526 Å. None of the three

RdRPdomains sharedany structural homologywith theN-terminal, polymerase, andC-terminaldomains, having

RMSDs between 34.308 and 47.755, 33.020–50.376, and 31.848–51.817 Å, respectively. The pLDDT scores also

support this observation, with the overall average pLDDT scores ranging from 20 to 40.

The relative failure of AlphaFold2 on all of the MCRV structural proteins can be clearly seen in the summary of

model statistics in Table 5. All of themodels have high clash scores and relatively highMolprobity scores, in addi-

tion to lowconfidencepLDDTscores andpoor fit todensity scores, suggesting that thesemodels donot faithfully

represent the actual experimentally derived models. Unlike the Syn5 examples where a low confidence model

could be further refined and improved using the densitymap, theMCRVmodels are simply not accurate enough

for further refinement.

DISCUSSION

Without a doubt, cryoEM and predictive modeling represent two rapidly emerging tools that will become

mainstays in the toolkit for deriving the structure and function of macromolecules and complexes. The use

A B C D

Figure 7. Structural Alignments of MCRV proteins

(A–D) The AlphaFold2 models for the four MCRV structural proteins, (A) VP12 monomer, (B) VP11, (C) VP3, and (D) RdRP, are shown in blue superimposed on

the corresponding reference structure in red. The structural alignment is derived from the TM-score alignment.
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of computational and predictive modeling in cryoEM may not necessarily be new ideas, but, until recently,

the tools for generating robust and accurate models of proteins in complexes have been relatively limited

and unreliable. As described here, the current generation of predictive modeling tools, like AlphaFold2,

present an enormous leap in unlocking and rapidly advancing our understanding of macromolecular com-

plexes, particularly when paired with experimental data. However tantalizing, the limitations of such an in-

tegrated approach have not been explored. The work described here helps to build that foundation and

establish expectations of an integrated cryoEM-predictive modeling pipeline for model macromolecular

structures at near atomic resolutions.

Assessing AlphaFold2 with CryoEM community standards

From the analysis of the initial cryoEM challenge data sets, it would appear that, in large part, AlphaFold2 is

very capable of producing reliable and robust models that can be used directly with cryoEM density maps

in the construction of models for macromolecular assemblies. Of the 13 unique data sets, only one EMDB:

EMD-22898 produced a result that did not immediately agree well with the density map, and, even then,

only rigid-body, domain-level adjustments would have been necessary to properly fit the model into the

map. In examining the entire set of maps and models as a whole, there were several trends that were

noticeable (Table 1). As expected, there was a clear trend with RMSD and pLDDT; as pLDDT decreased,

the model accuracy as assessed by RMSD with the reference structure decreased. As such, that decreased

model accuracy resulted in poorer fits to density; likewise, higher pLDDTs generally were associated with

better model fits to the density map. Another somewhat expected trend was that higher pLDDT scores

were generally associated with better Molprobity scores. Interestingly, the Molprobity score obtained

directly from the predictive models also had a correlation with a fit to density; better Molprobity scores

generally meant a better fit to density. In the absence of reference structures, the Molprobity score and,

to a lesser extent, clash score and Ramachandran outliers provide another metric for predicting how

well the map and predictive model may agree.

The trends seen in the challenge data sets somewhat carry over to the three additional virus data sets:

ε15, Syn5, and MCRV. In particular, the low pLDDT scores combined with the low Molprobity scores

would likely have provided an indicator that the predicted MCRV models were of low confidence and

likely not to agree well with the density. When compared with the experimentally derived structures,

the high RMSD and low TM-scores for the predicted models further substantiates the failings on

AlphaFold2 on this data set. However, a bit more interesting is ε15 gp10. All four of the models pre-

dicted for gp10 had reasonably good Molprobity and pLDDT scores, indicating that all of the sequences

produced highly confident models. Despite having some of the lowest Molprobity and pLDDT scores of

the four candidate sequences, the 130 amino acid sequence had the best fit to density. In Syn5, the gp39

model had a somewhat high Molprobity score as well as a borderline pLDDT score, yet the overall fold of

the predicted model agreed well with the reference structure and the density map. As such, it is difficult

to pinpoint a single metric for assessing the accuracy and reliability of predictive modeling in relation to

cryoEM density modeling. Rather, the observed trends may simply be another tool in assessing predic-

tive modeling.

Whereas the challenge data sets have played an important role in establishing the potential utility of a com-

bined AlphaFold2 and cryoEMdensity modeling approach, as shown in the three additional virus cases, the

expectations and potential limitations must still be addressed to fully realize the potential of integrating

these complementary approaches.

The good

In ε15, AlphaFold2 produced models of similar or better quality for the major capsid protein, gp7, than the

then-state-of-the-art methods used to model the density map. It should be noted that, from a modeling

standpoint, now and in the foreseeable future, cryoEM modeling tools will be able to produce better

models directly from the density map than what was previously reported. However, the fact that a

completely automated method for generating a structure directly from the sequence in the absence of

any experimental data can produce a model so close to the experimentally derived map and model, in a

matter of minutes, is a fantastic step forward.

Whereas the results for gp7 are encouraging, showing that AlphaFold2 could correctly predict the struc-

ture, perhaps more exciting are the results for gp10. As discussed, the original assignment of gp10 in
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the capsid was based on the limited biochemical evidence and secondary structure prediction of the

possible candidate proteins. When predicting the structure of all possible 10–13KDa structural proteins

in ε15, the original assignment of the gp10 density as the 111 amino acid protein is likely to have been incor-

rect. Of the four unique proteins ranging from 111 to 130 amino acids, only the 130 amino acid protein had a

predicted structure consistent with the gp10 density. Furthermore, none of the other three structures

appear to have any significant structural similarity to the experimentally derived fold for gp10. It is impor-

tant to note that despite not having the correct sequence assignment the cryoEM derivedmodel does have

the same fold as the predicted structure for the 130 amino acid protein. As such, AlphaFold2 and other pre-

dictive methods could prove to be powerful for identifying and modeling unassigned density, as well as a

new tool to probe and validate structure assignment in a cryoEM density map.

The (not so) bad

Like ε15, Syn5 is a dsDNA bacteriophage and shares considerable structural similarity. As with the gp7,

AlphaFold2 predictions of the major capsid protein of Syn5, gp39, are consistent with the experimentally

derived structure. What is especially interesting in this example is the model quality and AlphaFold2’s own

assessment of the prediction. With ε15 gp7, the average pLDDT score was 77.80 with some regions going

into the low 90s. Using AlphaFold2’s own guidelines, models with pLDDT scores above 70 are considered

‘‘good.’’ Syn5 gp39 had an average pLDDT score of 60.99, making the model a borderline low confidence

prediction. In fact, large portions of the structure have pLDDT scores below 60, yet the overall fold of the

model agrees well with the density and requires only the same ‘‘tweaking’’ as the ε15 gp7 model to maxi-

mize fit to density.

Continuing with the similarities to ε15, the capsid of Syn5 contains at least one additional structural protein.

Unlike ε15 though, the extra capsid protein density was never modeled and only assigned as gp55 for the

density near the two-fold axis (C1/C2) and gp58 for the density at the six-fold axis (D) based on secondary

structure prediction. Neither of the densities is sufficient to account for the 151 or 169 amino acids in gp55

and gp58, respectively. However, the C-terminal portion of the AlphaFold2 model for gp58 is consistent

with the density at the two-fold, whereas the N-terminus contains two helices that are approximately the

same size as the density at the six-fold axes. It is interesting to note that all five AlphaFold2 models for

gp58 are similar, varying primarily on the relative orientation of the N-terminal domain in relation to the

C-terminal domain. When fit separately, the two domains of the AlphaFold2 gp58 model fit the density

well, while still maintaining a similar overall distance between the domains, suggesting that the extra den-

sity in the Syn5 capsid may in fact be gp58. However, despite the improved fit to density, the resolution of

the density map and the lack of any corroborating biochemistry makes it impossible to determine the val-

idity of this assignment. Further conflating the analysis, the average pLDDT score for gp58 is below 50, sug-

gesting the AlphaFold2 model is of very low quality. On the other hand, the average pLDDT score for gp55

is considerably better at almost 77, though none of the AlphaFold2models for gp55 fit the unmodeled den-

sity. In this regard, modeling with AlphaFold2 cannot provide any robust annotation or modeling of the

density, though it can help to provide a testable hypothesis for determining the composition of the unmod-

eled density.

Whereas the model and predictive metrics for the ε15 examples closely resembled what we saw in the chal-

lenge data sets, the Syn5 examples represented an example similar to EMDB: EMD-22898. Here, the

pLDDT scores were relatively low, but the models were mostly correct and could be refined to fit the den-

sity, even if it meant the model had to be broken and refined as domains.

The ugly

For both Syn5 and ε15, AlphaFold2 was able to provide some meaningful modeling of the capsid proteins.

However, in the case of MCRV, none of the four capsid proteins modeled with AlphaFold2 resulted in a

structure that was consistent with the density map or experimentally determined model. At best, only small

stretches of residues shared any structural similarity to the experimentally determined models. Further-

more, all MCRV models had average pLDDT scores below 50, again indicating that these models were

generated with very low confidence. In terms of modeling, this example represents one of the worst

possible cases – predictive modeling provides no reasonable structure or starting point for further model

building/refinement. Moreover, the map–model correlation is so bad that one would expect that even

naive model building would steer away from using these structures as model building templates.
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What is particularly interesting about the MCRV case is that the structure of several Reoviridae capsids and

capsid proteins have been determined and deposited in the Protein DataBank. And, whereas sequence

similarity among the corresponding capsid proteins of Reoviridae is relatively low, structural similarities

persist throughout Reoviridae. At the time of these experiments, the MCRV structures were not published

and the models were not in any structural database, and therefore would not have been included in any of

the training/template data for AlphaFold2. However, the existence of numerous related structures should

have been sufficient to model the MCRV proteins with AlphaFold2.

What’s next?

Obvious from these and other results, AlphaFold2 has shown enormous potential in contributing to our un-

derstanding of macromolecular structure and function. The examples shown here are of single proteins,

but as we all know, proteins rarely work independently and are often parts of large dynamic complexes.

The ability to solve large macromolecular complexes makes cryoEM an invaluable tool for structure

determination. So where does AlphaFold2 and predictive modeling stand in terms of modeling macro-

molecular complexes? Whereas not originally designed for complexes, newer versions of AlphaFold2

have now begun to emerge targeting complexes (Evans et al., 2021). Here, we tested a version of

AlphaFold2_Advanced that expands upon the DeepMind AlphaFold2 notebook. AlphaFold2_Advance

does allow for modeling of small complexes, a feature we used in modeling EMDB: EMD-22898, as well

as ε15 and MCRV (see below). Our ultimate goal is to not just model individual proteins, but understand

their relationship to each other and potential interactions that drive function in a complex.

To assess AlphaFold2_Advanced’s current ability to derive accurate models of complexes, we attempted to

model a gp7–gp10 complex in ε15. In the ε15 capsid, there is essentially a 1:1 correspondence of gp10 to

gp7, and the position of the gp7–gp10 interaction is conserved throughout the hexon on the outermost surface

of the capsid, just above the large three stranded b-sheet. Here, two gp10s from two adjacent asymmetric units

appear to form a head-to-tail dimer; this configuration led to gp10 being referred to as a ‘‘staple.’’ For the pur-

poses of this work, we attempted tomodel a single gp7 and a single gp10 as a complex. AlphaFold2_Advanced

returned five potential configurations of the gp7–gp10 complex, and for the most part, the models for the in-

dividual subunits were nearly identical to those obtained whenmodeling gp7 and gp10 alone with AlphaFold2

(Figure S4). Of the five models, only the third rankedmodel showed a similar orientation to the published struc-

ture and density map. In this complex, gp7 was within 1-Å RMSD of the true gp7 location in the map, whereas

gp10 was shifted �8 Å away from gp7 in addition to a slight lateral rotation (�15 degrees). The individual

AlphaFold2 models for gp7 and gp10 were fit to the density map and had an average map value of 0.314

and a map–model correlation of 0.478. Illustrating the shift in fit, the AlphaFold2_Advanced predicted gp7–

gp10 complex had an average map value of just 0.2067 and a map model correlation of 0.3465.

In MCRV, VP12 forms a trimer, making up the majority of the outer capsid surface. We attempted to run

AlphaFold2_Advanced to predict the structure of a homotrimeric VP12 trimer. As noted in the modeling of

the individual VP12 subunits, AlphaFold2 was not able to produce models consistent with the density map

and experimentally derived models. This was in large part owing to poor modeling of the N-terminal domain

and the repercussions it had on the b-sandwich and C-terminal domains. In an attempt to constrain the orien-

tation of these domains relative to each other, we attempted tomodel three VP12 subunits, the naturally occur-

ring oligomeric state in the intact capsid, with AlphaFold2 (Figure S5). As with the case of the monomer, the

AlphaFold2_Advanced models for a trimeric VP12 did not resemble the experimentally derived model or the

density map. Moreover, the trimer models did not improve the orientation of the three VP12 domains.

Whereas the modeling of individual proteins was a success, AlphaFold2_Advanced still largely failed to

model assemblies of proteins. The largest limiting factors in the prediction are likely size/scale of the

prediction and what constitutes the basic structural unit that accommodates all possible interactions.

Predictive models for the gp10 and gp7 in ε15 produced structures with dramatically different subunit ori-

entations with respect to each other. Only one of the models recapitulated the approximate location of the

two subunits, though the overall model statistics for the five different orientations were not indicative of

which was the ‘‘best’’ model. Expanding the predictive models to include multiple copies of gp7 and

gp10 were beyond the size of the current AlphaFold2_Advanced limit. Likewise, proper modeling of

VP12 may require the addition of multiple VP12, VP11, and VP3 subunits to produce models consistent

with the structures generated directly from the experimental density map. However, such complexes are

far too large for current implementations of AlphaFold2_Advanced.
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Regardless of AlphaFold2_Advanced’s ability to correctly predict the structure of complexes at this time,

the results are encouraging and hint at the potential of future predictive modeling tools. Ultimately,

whereas certain trends were noticed in regards to predictive modeling accuracy, experimental data are

paramount in obtaining and validating the ‘‘correct’’ structure. Certainly, future predictive modeling tools

could greatly benefit from the incorporation of biochemical and structural information to help constrain

‘‘model space’’ and validate alternate conformations when modeling protein complexes.

CONCLUSION

Based on the examples shown, predictive modeling with AlphaFold2 has reached a level whereby it can pro-

duce individual protein structures of sufficient quality that they can be directly used in the interpretation and

modeling of large complexes from near-atomic resolution density maps. In general, the pLDDT score is a

good guide to the overall model quality and accuracy; clash scores and Ramachandran outliers also provide

a limited estimation of model accuracy. However, there are a number of examples discussed here where model

confidence scores are not sufficient indicators of potential model accuracy. In Syn5, model confidence scores

were relatively poor, yet the gp39 and gp58 models fit the observed density relatively well after limited refine-

ment. Conversely, in ε15, the four candidate protein sequences for the unmodeled capsid density were all highly

confidentmodels basedon the pLDDT scores. The only way to determine the ‘‘correct’’ structurewas to fit these

models, each corresponding to a unique sequence, to the density map and assess the fit.

So, to the question, ‘‘Is there any reliable metric for predicting model accuracy?’’ the answer is rather

straightforward. pLDDT and model quality metrics are reasonable metrics for judging the quality of the

model, but the accuracy of predictive models must still be evaluated based on the agreement with exper-

imental data. With an ever-growing library of known structures, predictive modeling may eventually

achieve the needed level of accuracy to model dynamic protein structures and complexes. Until then,

AlphaFold2 and other predictive modeling, despite all their successes, cannot replace experimental

methods nor are there any transparent mechanisms to determine when/why/how a predictive model might

have failed. Nevertheless, predictive modeling can still be an incredibly powerful tool to generate testable

hypotheses and guide future experimental structure determination studies.

Limitations of the study

The work described here utilizes a publicly available version of AlphaFold2_advanced and all models

described in this work were generated using the current version of the software with default options unless

otherwise noted. Updates to or new versions of AlphaFold2_advanced, local installations of AlphaFold2 or

non-default options may result in similar but slightly different models and statistics compared with the ones

in this study. However, unless a significant alteration of the algorithm or major change to the training set is

implemented, the overall results should be qualitatively similar.
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Data and code availability

d All density maps shown in this work are available through the EMDataResource. Selected maps and

models in the cryoEM modeling challenges are also made available directly from the EM Validation

website.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

In assessing predictive modeling methods for constructing atomic models in cryoEM density maps, we

selected a set of community established standard density maps from the past three cryoEMmodeling chal-

lenges: the 2021 Ligand Model Challenge, the 2019 Model Metrics Challenge and the 2016 Model Chal-

lenge (https://challenges.emdataresource.org/). These three challenges yielded 12 unique biological da-

tasets, representing a variety of macromolecular organizations, with resolutions from 1.8 to 4.5Å. For each

of the datasets, the sequences corresponding to all chains were extracted and used for predictive

modeling except for EMD: EMD-2847, a 70s ribosome structure with over 50 individual protein subunits.

For EMD: EMD-2847, six random chains were selected, bringing the total to 24 unique protein chains.

For the purpose of this work, we generated all predictive models using the AlphaFold2_advanced Google

Colab notebook, available at https://colab.research.google.com/github/sokrypton/ColabFold/blob/

main/beta/AlphaFold2_advanced.ipynb). Unless otherwise stated, each run of AlphaFold2 used only a sin-

gle sequence (less than 1400 amino acids) and only included modeling of a single individual subunit. Mul-

tiple sequence alignments were generated with mmseqs2(Mirdita et al., 2019). All other parameters were

set to the default settings, except for in the case of VP11 of MCRV. For VP11, the number of recycles was

REAGENTS OR RESOURCE SOURCE IDENTIFIER

Deposited data

EMDataResource https://www.emdataresource.org/ EMD-2847, EMD-5623, EMD-5776, EMD-7770,

EMD-22898, EMD-2842,EMD-6422, EMD-0406,

EMD-20027, EMD-6000, EMD-30210, EMD-2677,

EMD-5954,EMD-33403, EMD-5678

EM Validation Challenges https://challenges.emdataresource.org/

Software and algorithms

AlphaFold2_Advanced Version 2022/2/4 (Jumper et al., 2021) https://colab.research.google.com/github/sokrypton/

ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb

ChimeraX Version 1.3.8 (Pettersen et al., 2021) https://www.cgl.ucsf.edu/chimerax/

Phenix Version 1.19.2 (Liebschner et al., 2019) https://phenix-online.org/

Coot Version 0.9.6 (Emsley et al., 2010) https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
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increased to 48 (the max number) from 3. Increased numbers of recycles in the other MCRV data sets re-

sulted in errors related to running out of RAM. Five models were generated for each target sequence

with the pLDDT (predicted Local Distance Difference Test) score (Mariani et al., 2013), a per-residue con-

fidence score between 0 and 100, maped to the B-factor column of the resulting PDB files. Generally,

pLDDT scores above 90 are considered ‘‘very confident,’’ pLDDT scores between 70 and 90 are considered

‘‘confident,’’ pLDDT scores between 50 and 70 are ‘‘low confidence’’ and scores below 50 are considered

‘‘very low confidence’’ and may be unstructured in isolation.

All models were initially rigid body fit to the corresponding density map using UCSF’s Chimera (Pettersen

et al., 2004). While the five resulting AlphaFold2 models were examined, the best fitting model to the

corresponding density was selected for further refinement. Refinement of the model to the map was

performed using Phenix’s real-space refinement tool (Afonine et al., 2018; Liebschner et al., 2019); resolu-

tion was set to the stated resolution of the map and the ‘‘run’’ parameter included local_grid_search, min-

imization_global, morphing, adp and simmulated_annealing. After refinement, the maps and models were

visualized in Coot (Emsley et al., 2010); regions with obvious clashes, bad fit to density or modeling errors

were corrected and subjected to another round of Phenix real-space refinement without morphing or simu-

lated annealing. While run times varied based on the size/sequence of the model, the entire modeling pro-

cess typically took �1–1.5 h on an Apple M1 Mac Mini to generate a model directly from the sequence and

refine it against the density map.

QUANTIFICATION AND STATISTICAL ANALYSIS

Maps and models were visualized in UCSF’s Chimera and ChimeraX (Pettersen et al., 2021). Assessment

and model comparison was performed using Chimera (model vs. model RMSD), Phenix (map/model sta-

tistics) and MolProbity (model evaluation) (Chen et al., 2010; Williams et al., 2018).
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