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Abstract: The endocannabinoid system (ECS) employs a huge network of molecules (receptors,
ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have
still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of
control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional
fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated
in a variety of physiological and pathological states and an attractive pharmacological target yet
to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid
metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer
and other physiological and pathological states will be substantiated using freely available data from
open-access databases, experimental data and literature review. Future directions should envision
capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects
(exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid
receptor heteromers offers new possibilities for different biochemical outcomes in the cell.

Keywords: endocannabinoid system; cancer; cannabinoid receptor; homeostasis; metabolism
regulation

1. Introduction

Although the biological components of the endocannabinoid system (ECS) are well
known and have been explored in detail over many decades, its significance seems to
enlarge with every new experimental study. The ECS employs a huge network of molecules
(receptors, ligands, and enzymatic machinery molecules) whose interactions with other
cellular networks have still not been fully elucidated. It has become evident that its
historical role in pain alleviation is just the tip of an enormous iceberg of translationally
significant information that can be derived from the so-called endocannabinoidome. The
ECS is involved in the modulation of a large amount of cognitive and physiological
processes involved in the homeostatic regulation of the body. The role and mechanism
by which the ECS is involved in the regulation of metabolism is not fully known, but its
action is in large part through cyclic AMP/receptor activation-related pathways activated
by cannabinoid ligands [1,2]. Endogenous cannabinoids are molecules with the primary
function of control of multiple metabolic pathways. They are pre-synthesized and stored
in cellular vesicles and released upon endogenous and exogenous stimuli to regulate
internal homeostasis. Their targets include classical cannabinoid receptors that belong to
the G-protein coupled receptor (GPCR) family as well as their various heteromers (see
below), contributing to the complexity of the ECS [3]. Cannabinoid ligands also act through
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various non-canonical pathways [4], employing secondary messenger systems (changes
in intracellular Ca2+ levels, activation of protein kinases) thus preferentially triggering
alternative outcomes depending on the initial stimuli. This work aims to contribute
to the growing burden of evidence that the ECS might be significantly more used as a
pharmacological target for various metabolic disorders, despite carrying a historical label
of being legally and ethically compromised.

2. Expression of Cannabinoids and Cannabinoid Receptors in Human Cells
and Tissues

Endocannabinoids and endocannabinoid-like molecules (ECLs) are expressed by many
cells in the human organism and their levels reflect the metabolic changes necessary for
the homeostatic balance as well as response to pathological stimuli. There is high diversity
within these molecule groups, both structurally and in the type of receptor they can stimu-
late, as well as the non-canonical biochemical pathways they affect [5]. Conventional endo-
cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), the ECLs N-
acylethanolamines (NAEs) like N-palmitoyl-, N-oleoyl and N-linoleoyl-ethanolamine (PEA,
OEA and LEA), and 2-acyl-glycerols (2-AcGs) like 2-oleoyl and 2-linoleoyl-glycerol (2-OG
and 2-LG), prostaglandin ethanolamides, prostaglandin glycerol esters and omega-3 endo-
cannabinoids that are derived from docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA) (like docosahexaenoyl ethanolamide (DHA-EA), docosahexanoyl-glycerol (DHG),
eicosapentaenoyl ethanolamide (EPA-EA) and eicosapentanoyl-glycerol (EPG)) [6]. Along
with all the corresponding metabolic enzymes and molecular targets they constitute a
large network called the endocannabinoidome, or the expanded ECS [7]. The metabolic
complexity of such a huge network of molecules needs to be carefully evaluated in each
setting, which might be facilitated with the increasing power of “omics” methods and
modern sequencing technologies.

There is a number of human receptors currently described in the literature that respond
to cannabinoid ligands [3], but the most studied are the main cannabinoid receptors 1
(CB1R), coded by CNR1 gene and 2 (CB2R), coded by CNR2 gene [8,9] that belong to
the GPCR family. Other receptors that respond to various cannabinoid ligands are G
protein-coupled receptors 18 (N-arachidonyl glycine receptor, GPR18), GPR55, GPR119
and the transient receptor potential cation channel subfamily V members 1 and 2 (TRPV1
and TRPV2) [7], but this review will mostly focus on the analysis of classical cannabinoid
receptors CB1R and CB2R. The mRNA expression in humans, specificity and significance
of CB1R and CB2R was explored using the freely available interactive database the Human
Protein Atlas (HPA) [10,11]. A schematic pictorial model of CB1R and CB2R expression
in human organs and tissues according to the Tissue Atlas of the Human Protein Atlas
database is presented on Figure 1.

Analysing human tissue specificity by combination of expression profile data from
various sources on the mRNA and protein level using the HPA Tissue Atlas subproject, it
was detected that CB1R is tissue enhanced in the brain (mRNA level), and in adipocytes,
pituitary gland and the central nervous system (CNS) (protein level) (Figure 2a), while
CB2R is tissue enriched in blood and lymphoid tissue (mRNA level) and present in variable
protein levels in most tissues (Figure 2b).
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Figure 1. A schematic pictorial model of (a) CB1R and (b) CB2R expression in human organs and tissues according to the 
Tissue Atlas of the Human Protein Atlas database [10]. mRNA expression overview shows RNA as the consensus dataset 
based on a combination of three sources—RNA-sequencing data from internally generated Human Protein Atlas (HPA), 
RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and Cap Analysis of Gene Expression (CAGE) 
data from the Functional ANnoTation Of the Mammalian genome 5 (FANTOM5) project. When available protein data for 
which a knowledge-based annotation gave inconclusive results, no protein expression data were displayed. Nx—Normal-
ized eXpression (resulting transcript expression values calculated for each gene in every sample). 

Single cell-type specificity analysis using scRNA-sequencing data from human nor-
mal tissues and a large panel of cell lines and protein localization data derived from anti-
body-based profiling in the HPA Cell Type Atlas and the Cell Atlas showed that CB1R is 
cell-type enriched in Sertoli cells, mainly localized in the plasma membrane in different 
isoforms and additionally in the actin filaments. On the other hand, CB2R is found to be 
cell-type enhanced in B-cells, T-cells and alveolar cells type 2 and localized in the plasma 
membrane. The data from the HPA Blood Atlas that present transcriptomics analysis of 
human blood and cultured cell lines showed that CNR1 is group enriched in memory B-
cells and naive B-cells, while CNR2 is group enriched in basophils, eosinophils, naive B-
cells, memory B-cells and NK-cells. The significance of these receptors in cancer has been 
previously explored using the HPA Pathology Atlas [12] which employs information 
about the protein expression and correlation between mRNA expression and patient sur-
vival for 17 different types of human cancer. Although these data showed that these two 
receptors were generally not prognostically significant, CB1R has been found to be en-
riched in glioma and CB2R in testicular cancer. The existence of other receptors that re-
spond to ECS ligands and the fact that GPCR receptors also have the ability to heteromer-
ize giving rise to new receptor entities [13–15] multiplies the regulatory potential and di-
versity of the molecules involved in the transmission of ECS-related signals. Although 
specific cellular and tissue distribution of various heteromers in humans is still under in-
tense investigation [13,16,17], their distinct pharmacological properties have already been 
detected. 

Figure 1. A schematic pictorial model of (a) CB1R and (b) CB2R expression in human organs and tissues according to
the Tissue Atlas of the Human Protein Atlas database [10]. mRNA expression overview shows RNA as the consensus
dataset based on a combination of three sources—RNA-sequencing data from internally generated Human Protein Atlas
(HPA), RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and Cap Analysis of Gene Expression
(CAGE) data from the Functional ANnoTation Of the Mammalian genome 5 (FANTOM5) project. When available protein
data for which a knowledge-based annotation gave inconclusive results, no protein expression data were displayed.
Nx—Normalized eXpression (resulting transcript expression values calculated for each gene in every sample).

Single cell-type specificity analysis using scRNA-sequencing data from human normal
tissues and a large panel of cell lines and protein localization data derived from antibody-
based profiling in the HPA Cell Type Atlas and the Cell Atlas showed that CB1R is cell-type
enriched in Sertoli cells, mainly localized in the plasma membrane in different isoforms
and additionally in the actin filaments. On the other hand, CB2R is found to be cell-
type enhanced in B-cells, T-cells and alveolar cells type 2 and localized in the plasma
membrane. The data from the HPA Blood Atlas that present transcriptomics analysis of
human blood and cultured cell lines showed that CNR1 is group enriched in memory
B-cells and naive B-cells, while CNR2 is group enriched in basophils, eosinophils, naive
B-cells, memory B-cells and NK-cells. The significance of these receptors in cancer has been
previously explored using the HPA Pathology Atlas [12] which employs information about
the protein expression and correlation between mRNA expression and patient survival for
17 different types of human cancer. Although these data showed that these two receptors
were generally not prognostically significant, CB1R has been found to be enriched in glioma
and CB2R in testicular cancer. The existence of other receptors that respond to ECS ligands
and the fact that GPCR receptors also have the ability to heteromerize giving rise to new
receptor entities [13–15] multiplies the regulatory potential and diversity of the molecules
involved in the transmission of ECS-related signals. Although specific cellular and tissue
distribution of various heteromers in humans is still under intense investigation [13,16,17],
their distinct pharmacological properties have already been detected.
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Figure 2. The expression of (a) CB1R and (b) CB2R in human tissues according to the Human Protein Atlas database [10]. 
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Figure 2. The expression of (a) CB1R and (b) CB2R in human tissues according to the Human Protein
Atlas database [10]. mRNA expression overview shows RNA as the consensus dataset based on a
combination of three sources—RNA-sequencing data from internally generated Human Protein Atlas
(HPA), RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and Cap Analysis
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of Gene Expression (CAGE) data from the Functional ANnoTation Of the Mammalian genome 5
(FANTOM5) project. When available protein data for which a knowledge-based annotation gave
inconclusive results, no protein expression data were displayed. Nx—Normalized eXpression
(resulting transcript expression values calculated for each gene in every sample).

3. Involvement of the ECS in Specific Physiological and Pathological Processes

Considering the diversity of ligands, the number of receptors and heteromers, their
tissue and cellular localization, as well as the vast network of other molecules belonging
to the ECS, it is not surprising that this system is involved in the regulation of numerous
essential physiological and pathological pathways [4] (Figure 3).
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Figure 3. A schematic representation of the role of the endocannabinoid signaling in selected physiological and pathologi-
cal states.

The ECS ligands have primarily been used in pain alleviation, which is of great value
as pharmacological studies have already been performed enabling their faster repurposing
as has been previously suggested in other settings [16,17]. This approach has become
especially important in the COVID-19 pandemic era when extreme global negative real-
world effects were detected in many aspects of patient care management [18,19] and fast
responses from the scientific community are needed. Psychotropic side effects of some
ECS-related ligands should not be regarded as an obstacle, as it has been previously shown
that exogenous ligands with these properties comprise only a small part of the milieu of
potential ECS modifiers [20,21]. Currently explored directions include the investigation of
drugs that do not pass the blood–brain barrier, using lower doses to limit potential side
effects and allosteric modulators among others.

The metabolism of ECS depends in a great deal on redundant enzymatic cascades
employed by other biologically active mediators which introduces a challenge in the
interpretation of experimental data relating to the regulation of metabolism and home-
ostasis as well as their further application [1,2]. An overview of most recent literature
data on the involvement of the ECS in various physiological and pathological processes is
presented in Table 1.



Int. J. Mol. Sci. 2021, 22, 3661 6 of 23

Table 1. Involvement of the ECS in various physiological and pathological processes.

Process ECS Component Metabolic Pathway and/or Effect Reference

Glucose and lipid
metabolism

CB1R stimulation in
adipose tissue

increases the activity of the LPL, promotes
hydrolysis of triglycerides, favoring lipogenesis

through activation of lipogenic enzymes, and
inhibition of the activity of the 5′-AMPK and

promoting glucose uptake by translocation of the
GLUT4

[22–25]

AEA in adipose tissue acts as a PPARγ agonist, amplifying the
adipogenesis caused by the ECS [26,27]

CBD blocks CB1R
produces anti-obesity effects and relieves the

symptoms of insulin resistance, type 2 diabetes
and metabolic syndrome

[28]

∆9-THC
decreases TAGs and improves glucose uptake by
an enhanced GLUT4 and IRS-2 gene expressions [28,29]

Endocannabinoids in the
pancreas

important role in the regulation of cell
proliferation and classification of α/β cell

during pancreatic islets formation
[30,31]

Activation of hepatic
CB1R by

endocannabinoids

induces the expression of ACC1, FAS and
SREBPF1, resulting in fatty acid synthesis and

leading to hepatic steatosis
[32]

JD5037 and AM6545 in
genetically and

diet-induced obese mice

reduction of obesity, reverse leptin resistance and
improve dyslipidemia, hepatic steatosis and

insulin resistance and preserve beta cell function
[30,33–35]

Food intake regulation Gastric CB1R activation
by fat intake

increases fat-taste perception and promotes fat
intake by ghrelin secretion [30,36]

AEA and 2-AG in
plasma in humans

acts to initiate the intake and maintains the
intake, respectively [30,37–39]

JD5037 in obese mice
diminishes leptinemia and reverses leptin

resistance, resulting in a decrease in body weight
and food intake

[33]

AM6545 in obese mice
reduces obesity by reversing leptin resistance

and improving dyslipidemia, insulin resistance
and hepatic steatosis

[30,33–35]

Low doses of ∆9-THC
suppression of glutamatergic transmission of

CB1R and a rise of appetite [30,40]

High doses of ∆9-THC
GABAergic transmission of CB1R is disturbed,

resulting in hypophagia [30,40]

Diminished anandamide
levels by food enriched

in n-3 PUFA

improves the lipid profile in obese subjects,
preventing and treating metabolic disorders [41,42]

Immunity and
inflammation

CP55940 acting through
CB2R in bone marrow

retention of immature B cells producing a
significant decrease in CXCR4 [43–45]

2-AG via activation of
CB2R

recruits dendritic cells and their precursors
during the innate immune response [43,46]

Cannabinoids acting
through CB2R inhibition of T-cell activation [47–49]

AEA and 2-AG in
leukocytes

anti-inflammatory effects by decreasing T and B
cell proliferation and proinflammatory and
anti-inflammatory functions, respectively

[50,51]

Rimonabant acting
through CB1R Rimonabant acting through CB1R [52–55]

CB2R activation enhances fat tissue inflammation [52,56,57]
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Table 1. Cont.

Process ECS Component Metabolic Pathway and/or Effect Reference

Increased levels of AEA
and 2-AG in the brain

with FAAH and MAGL

effective control of the immune response in
different models of MS, HD and AD [52,58]

∆9-THC in acute,
visceral, inflammatory,

and chronic pain
reduction of nociception [59,60]

CBD acting through CBR

inhibition of AEA enzymatic hydrolysis,
activation/desensitization of TRPV1 and TRPA1
channels and inhibition ENTs, causing analgesia,

and inhibition of inflammation

[60,61]

Respiratory health and
diseases

AEA through
non-canonical bioactive
arachidonic metabolite

formation

increases the permeability of airway epithelial
cells [62]

2-AG
source of lung prostaglandins which metabolize
into leukotriene B4 and C4 by neutrophils and

eosinophils
[63,64]

CB2R activation

inhibition of leukocyte recruitment and secretion
of pro-inflammatory cytokines as TNF-α, IL-1β,

IL-6, reduction of the formation of reactive
oxygen species

[65]

Inhibition of MAGL and
FAAH downregulation of TNF-α, PGE2, COX-2, iNOS [66,67]

Cancer

AEA through CB1R and
CB2R-CXCR4

heteromers in breast
cancer

cell cycle progression blocking, inhibition of
chemotaxis [68–70]

AEA, 2-AG, CBD,
∆9-THC in glioma

induction of apoptosis via de novo synthesis of
ceramide, inhibition of cell migration and

invasiveness through CB1R and CB2R activation
[71–75]

AEA, 2-AG, ∆9-THC,
CBD, HU-331, CP 55,940

acting through CB1R,
CB2R and PPARγ in

gastrointestinal tumors

cell invasiveness through the AKT/GSK3β
signaling axis, induction of apoptosis through
the inhibition of RAS–MAPK, PI3K–AKT and

increased ceramide synthesis

[76–79]

phyto-, endo- and
synthetic cannabinoids,
and MAGL inhibitors
acting through CB1R,

CB2R and CB2R-CXCR4
in prostate cancer

inhibition of cancer cell survival, migration and
invasiveness through adenylyl cyclase, protein

kinase A, EGFR
[69,80–82]

CBD and CBR
over-expression in lung

cancer

activation of apoptosis, inhibition of ERK, PI3K,
p38 MAPK, Akt, EGFR and ceramide-related

pathways, tumor suppression by regulation of
angiogenesis through up-regulation of PPAR-γ

and cyclooxygenase-2

[83–85]

3.1. Glucose and Lipid Metabolism

Several studies have shown a positive association of plasma endocannabinoids with
markers of metabolic disorder and obesity [30,86–90]. These new findings show that
the ECS acts as a regulator of metabolic homeostasis. The ECS, located at a central and
peripheral level, regulates the commands issued by different brain regions, it regulates the
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communication between the brain and the periphery and adjusts the activity of every organ
involved in lipid and glucose metabolism. Its overall function promotes energy intake
and storage, however, when highly-caloric and palatable food is available, the anabolic
consequences of ECS overactivation may promote obesity and metabolic disorders, such as
hypertension, hypertriglyceridemia and insulin resistance leading to the development of
metabolic syndrome and type 2 diabetes [30,91]. The ECS participates in different tissues
in the regulation of lipid and carbohydrate metabolism to regulate metabolic homeostasis
and their respective metabolic disorders.

A complete ECS has been found in both murine and human adipocytes [32,88,92].
The CB1R is highly expressed throughout the CNS in neurons regulating feeding, energy
expenditure, and reward, as well as in peripheral organs that are critical for metabolic
homeostasis [92–94]. There is evidence that the CB2R is also expressed neuronally, and
some authors have found CB2R to be expressed in differentiated adipocytes, while others
failed to find significant expression [26,27,95,96]. In 2003, two unrelated studies unravelled
the presence of functional CB1Rs in white adipocytes [24,32,97]. This discovery led the way
to explore the presence and function of this receptor in peripheral non-neuronal tissues
(adipose tissue, pancreas, liver, gastrointestinal tract, and skeletal muscles).

In the adipose tissue, the CB1R stimulation increases the activity of the lipoprotein
lipase (LPL), promoting the hydrolysis of triglycerides and their subsequent uptake [22].
Additionally, CB1R stimulation enhances fat storage within adipocytes through activation
of lipogenic enzymes and inhibition of the activity of the 5′-AMP-activated protein kinase
(AMPK) [23]. Aside from favouring lipogenesis, CB1R regulates also adipogenesis by
increasing the expression of the nuclear receptor peroxisome proliferator-activated receptor-
gamma (PPARγ), promoting adipocyte differentiation [98]. Arachidonoylethanolamide
(anandamide, AEA) can also act as a PPARγ agonist, amplifying the adipogenesis caused
by the ECS [26,27]. Conversely, the pharmacological inhibition of CB1R induces fatty
acid oxidation, mitochondrial biogenesis via increased expression of the endothelial nitric
oxide synthase [99] and the differentiation of white adipocytes into beige adipocytes [100].
CB1R regulates white adipose tissue (WAT) expansion, maintenance of white adipocyte
phenotype and the development of insulin resistance and obesity. Thus, the results seen
in vitro might be due to a direct peripheral action of endocannabinoids, although the
sympathetic nervous system (SNS) is also involved in these responses [30]. In addition to
cannabinoid receptors (CBRs), fat cells and adipose tissue express the enzymatic system to
produce and degrade locally the endogenous cannabinoids [26,27,89,101]. Currently, the
non-psychotropic component of Cannabis Sativa, cannabidiol (CBD), affects both glucose
and lipid metabolism through the action on various receptors as well as several metabolites
in adipose tissue, pancreas, liver, and cardiac muscle [28]. CBD is able to block CB1R,
producing anti-obesity effects and might be effective in relieving the symptoms of insulin
resistance, type 2 diabetes and metabolic syndrome [28].

Activation of CB1R also stimulates glucose entry into fat cells. In human adipose cells,
CB1R stimulation promotes glucose uptake, and this effect is mediated by translocation
of the insulin-regulated glucose transporter type 4 (GLUT4) to the plasma membrane
from the intracellular compartment. In addition, cannabinoid-stimulated glucose uptake
in fat cells is mediated by the same molecular machinery that is responsible for insulin-
induced glucose uptake, i.e., activation of PI3-kinase. In fact, inhibition of this enzyme
completely disrupts the effect of CB1R activation on glucose uptake [24,25]. Other studies
have proved that natural extract containing ∆9-Tetrahydrocannabinol (∆9-THC) decreased
the triacylglycerols (TAGs) content and improved the glucose uptake in the insulin-resistant
in a concentration-dependent manner [29], by an enhanced GLUT4 and insulin receptor
substrate 1 and 2 (IRS-2) gene expressions [28].

In the pancreas, endocannabinoids play an important role in the regulation of cell
proliferation and classification of α/β cell during pancreatic islets formation, with an
impact on programming of pancreatic glucagon and insulin secretion [30,31]. In the
liver, activation of hepatic CB1R by endocannabinoids induces the expression of acetyl
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coenzyme-A carboxylase-1 (ACC1), fatty acid synthase (FAS) and sterol regulatory element-
binding transcription factor 1 (SREBPF1), resulting in fatty acid synthesis and leading
to hepatic steatosis [32], however, mice with hepatic CB1R deleted are protected from
metabolic disorders such as dyslipidemia, hyperglycemia, insulin resistance and hepatic
steatosis [32,34,102]. So, hepatic CB1R exerts an important role in the regulation of glucose
and lipid metabolism. In the skeletal muscle, some studies suggest that the ECS can affect
glucose homeostasis where CB1R activation decreases the glucose uptake, an effect that
can be blocked by pharmacological inhibition of CB1R [30,95].

Chronic administration of selective CB1R antagonist Rimonabant in humans was
successful at reducing body weight, fat mass and metabolic impairments related to obe-
sity, such as diabetes and dyslipidemia [96]. In 2006, the compound was approved by
the European Medicines Agency (EMA) as an anti-obesity therapy, but in 2008, its use was
suspended, based on the fact that its benefits no longer outweighed its risks, taking into
account that patients with an elevated risk of developing psychiatric disorders could not
be identified. The fall of rimonabant obstructed future drug development aiming at the
ECS and occasioned a profound controversy about the relevance of modulating the ECS in
obesity and metabolic disorders. Since the major side effects of drugs like rimonabant were
CNS related, one opportunity to move forward could be provided by CB1R antagonists
that are unable to cross the blood–brain barrier [97]. Some of these drugs, such as the
peripherally restricted CB1R inverse agonist JD5037 and the CB1R antagonist AM6545 have
been shown to reduce obesity, reverse leptin resistance and improve dyslipidemia, hepatic
steatosis and insulin resistance in genetically and diet-induced obese mice [30,33–35]. Sub-
sequent studies have shown that JD5037, is even more effective in improving metabolic
parameters in rodent models of obesity/diabetes and has hypophagic effects by reversing
leptin resistance [33], abolishes obesity-induced hepatic insulin resistance [101] and pre-
serves beta-cell function [103]. These results increase the prospects that CB1R blockade
may still be a viable option to combat dysmetabolism and may move to clinical testing in
the future [104]. The clinical studies with CB1 agonists, partial agonists, inverse agonists
and neutral antagonists clearly point out the CB1R as a potential effective target for the
treatment of obesity [2,102,105–107]. Another way of modulating CB1R activity is repre-
sented by compounds that could be developed by studying recently identified endogenous
allosteric inhibitors of CB1R. Hemopressin, pepcans and the neurosteroid pregnenolone
have been identified presenting that function [108–110]. Hemopressin reduces food intake
without causing any obvious adverse side effects [2,111,112]. Nevertheless, further studies
are needed in order to confirm that these effects are due to the direct action of hemopressin
on CB1R [113], whereas pregnenolone binding to CB1R does not modify the binding of
agonists, but reduces body weight gain in diet-induced obese mice and it does not induce
anxiety [30,109].

3.2. Food Intake Regulation

The past few years have seen a significant increase in the number of human studies try-
ing to understand the role of the ECS in the regulation of eating behaviour and metabolism.
Endocannabinoids can be detected in the bloodstream and their assessment from blood
samples is a simple strategy used for the study of the ECS. The ECS participates in the
development of preference for the consumption of certain foods, even in humans [114],
it modulates olfactory responses and taste [115,116] and controls metabolic changes asso-
ciated with food intake. Therefore, the type of diet consumed affects endocannabinoid
levels and ECS action [117]. The presence of fat in the oral cavity induces the production of
jejunal endocannabinoids, which will increase fat intake, and gastric CB1R activation leads
to ghrelin secretion, which increases fat-taste perception and promotes fat intake [30,36].

Various studies have therefore attempted to establish a functional connection between
circulating endocannabinoids and feeding behaviour. Both normal-weight and obese
subjects have a peak in plasma AEA before a meal, but not 2-arachidonoylglycerol (2-AG),
implying that AEA may act as a meal initiator signal in humans [37]. Nevertheless, when
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the impulse for food is related to its palatability as opposed to hunger, others authors
have observed an increase in plasma 2-AG in both healthy and obese subjects [38,39]. This
implies that AEA and 2-AG may have different roles in regulating the eating behaviour, the
former acting to initiate the intake of calories, and the latter to maintain the intake beyond
satiety [30]. Close relationships were also found between the ECS and hormones affecting
energy balance regulation, like glucocorticoids, ghrelin and leptin [118]. Endocannabinoid
levels in the WAT are negatively regulated by insulin [23] and leptin [119]. This effect
might be lost under insulin or leptin resistance, thus promoting ECS overactivity and
fat accumulation. Treatment of diet-induced obese mice with JD5037 diminishes leptin
production and secretion by adipocytes. The consequently diminished leptinemia reverses
leptin resistance, resulting in a decrease in body weight and food intake [33]. Additionally,
AM6545 is shown to reduce obesity, reverse leptin resistance and improve dyslipidemia,
insulin resistance and hepatic steatosis in obese mice [30,33–35].

There are studies that show a relationship between circadian regulation and ECS
signaling in the CNS. It appears that the circadian clock of the CNS regulates ECS via
modulating synthesis, degradation and transport mechanisms so that ECS has a possible
modulatory role [120]. Levels of endocannabinoids in plasma and cerebrospinal fluid
may vary depending on the race [121] and endocannabinoids also change across the
24 h sleep-wake cycle and sleep deprivation altering their levels, which is accompanied
by increased hunger [122]. Sleep disturbances are known to be a risk of obesity [123],
consequently, plasma AEA is increased in patients suffering from sleep apnea [30,124].
Recent studies have also increased our knowledge of the function of the ECS in the CNS.
Endocannabinoids regulate appetite and food intake via activation of CB1R. It has been
established in recent years that depending on the brain region and the location of CB1Rs,
the consequences of their activation can be altogether different. The control of food
intake by the ECS depends on whether CB1Rs are located on GABAergic or glutamatergic
terminals [30,40]. With low doses of ∆9-THC, the suppression of glutamatergic transmission
induces a rise of appetite. However, when the doses are higher, GABAergic transmission is
disturbed, resulting in hypophagia [30,40]. This could explain earlier reports in humans
where biphasic effects of cannabis and/or ∆9-THC were observed on food consumption
depending on the dose used. Additionally, the lack of CB1R in dorsal telencephalic
glutamatergic neurons prevents the development of food addiction-like behaviour [125].

Recent investigations have also shown a powerful emerging link between the ECS and
another major player in metabolism and the gut microbiome (ensemble of genes, proteins,
and metabolites provided by intestinal microorganisms). There are several instances of how
lifestyle modifications (westernized diets, lack or presence of certain nutritional factors,
physical exercise, and the use of cannabis) can regulate the inclination to develop metabolic
syndrome by modifying the crosstalk between the ECS and the gut microbiome [126].
In fact, the consumption of food enriched in n-3 Poly-Unsaturated Fatty Acid (PUFA)
diminishes anandamide levels and improves the lipid profile in obese subjects. Thus,
higher consumption of n-3 PUFA in the diet might represent an effective approach to help
prevent and treat metabolic disorders [41,42].

3.3. Immunity and Inflammation

Numerous components of the ECS function as key regulators of the immune system
and the immune response. The ECS plays an important role in the migration of hematopoi-
etic stem and progenitor cells. Endocannabinoids can stimulate the migration of human
hematopoietic stem cells in a CBR-dependent manner [43,127]. CB2R is mainly found in
cells of the immune system and has an important role as a modulator of immune func-
tion [92–94]. CB2R participates in the retention of immature B cells in the bone marrow [44]
producing a significant decrease in chemokine receptor type 4 (CXCR4) in bone marrow
cells treated with the agonist CP55940 [43,45]. CB2R is involved in the inhibition of lympho-
cyte recovery following bone marrow transplantation (BMT) [47]. The ECS also participates
in the regulation of mature immune cell trafficking and effector cell functions, and endo-
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cannabinoids play a fundamental regulatory role in the function of intestinal neutrophils.
The transporter P-glycoprotein (P-gp) secretes endocannabinoids into the intestinal lumen
counteracting the pro-inflammatory actions of the neutrophil chemoattractant eicosanoid
hepoxilin A3. Furthermore, the anti-inflammatory actions of P-gp are mediated by CB2R
on neutrophils [43,128], and CB2R deficiency intensifies acute neutrophils mobilization to
sites of inflammation [129]. Both murine and human macrophages and microglial cells,
express the CB1 and CB2 receptors [43,130–135], CB2R is involved in the inhibitory role of
tumor-associated macrophages [136]. 2-AG, via activation of CB2R, may act as a chemotac-
tic substance capable of recruiting dendritic cells and their precursors during the innate
immune response [43,46]. The ECS also participates in the regulation of adaptive immunity.
Although T-cells express fewer CB2R than other immune cells, it has been demonstrated
that stimulation of T-cells can upregulate the expression of CB2R [45,50,137], and stimulate
CB1R expression [49]. In vitro studies showed that cannabinoids inhibit T-cell activation
acting through CB2R and other receptors [47–49]. Both CB1R and CB2R reduce interleukin
2 (IL-2) synthesis in T-cells [138]. ECS has a role in a mature B-cell function, indicating that
anandamide, via CB2R, generates dose-related immunosuppression in plaque-forming
cell assays of antibody formation [43,139]. All these instances reveal that the ECS is a key
regulator of the immune system.

Indeed, it is widely documented that perturbations in endocannabinoids levels, along
with modifications in all members of the ECS, take place in many chronic inflammatory-
associated conditions, including cancer, diabetes mellitus, atherosclerosis, cardiovas-
cular, chronic airway, inflammatory bowel, autoimmune and neurodegenerative dis-
eases [52,54,66]. Prior studies highlighted the role of endocannabinoids as major sup-
pressors of chronic inflammation [51]. In these studies, the immunosuppressive effects
exerted by activation of the endocannabinoid signalling in leukocytes have been associ-
ated to the modulation of: production of inflammatory cytokines and other endogenous
anti-inflammatory or pro-inflammatory mediators; chemotaxis and inflammatory cell re-
cruitment; and immune cell proliferation, differentiation and apoptosis [50]. However,
various studies have shown that depending on the context, these molecules can also per-
form pro-inflammatory actions. Especially, AEA appears to elicit mainly anti-inflammatory
effects by decreasing T and B cell proliferation, while 2-AG exhibits proinflammatory and
anti-inflammatory functions [50–52,64].

Clinical trials with the selective CB1R antagonist Rimonabant documented an aug-
mented glucose uptake and adiponectin production causes a reduction of systemic levels of
pro-inflammatory cytokines and enhanced glucose tolerance [52–55]. Instead, CB2R activa-
tion has been reported to enhance fat tissue inflammation and insulin resistance [54,58,59].
These recent studies show that the pharmacological blockade of CB1R prevents metabolic
dysfunction and β-cell loss, while reducing body mass and mortality rate [52,140]. Thus
far, abnormal endocannabinoid signalling, either due to their excessive production or to up-
regulation of CB1R, which exerts damaging effects in diabetes, is considered a pathogenic
factor in this inflammatory disease.

Given the critical role of the ECS as a main immunomodulatory player in the brain,
it is thought that the neuroprotective effects of drugs based on endocannabinoids for
neurodegenerative diseases are primarily mediated by decreasing the neuroinflammation,
and thus normalization of key processes known to compromise neuronal homeostasis
and survival, like excitotoxicity, oxidative stress and apoptosis. The majority of these
immunoregulatory effects are attributable to the activation of CB2R, expressed both on
microglia and brain-infiltrating immune cells, although there is also evidence for the
involvement of CB1R in mitigating the immune response, as in the case of traumatic brain
injury, Multiple Sclerosis (MS) and Alzheimer’s disease (AD) models [52,141–143]. Rising
the levels of AEA and 2-AG in the brain with the use of inhibitors of the main degrading
enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has
been documented as an effective strategy to control the immune response in different
models of MS, Huntington’s disease (HD) and AD [52,58].
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Endocannabinoids modulate nociception by reducing sensory neuron excitability
and controlling the transmission of nociceptive signals to the CNS. CBD is effective in
neuropathic and inflammatory pain in rodents [60,61], by modulating targets involved in
the control of nociception, including inhibition of AEA enzymatic hydrolysis and indirect
activation of CBRs; activation/desensitization of TRPV1 and TRPA1 channels [60,61]; activa-
tion of the 5-HT1AR; and inhibition of equilibrative nucleoside transporters (ENTs), which
causes increases of adenosine signaling, analgesia, and inhibition of inflammation. ∆9-THC
strongly reduces nociception in animal models of acute, visceral, inflammatory, and chronic
pain [59,60]. It must be considered the interplay between the metabolism of endocannabi-
noids and prostanoid systems (both bioactive lipid systems). At the molecular level, the
consequences of increased endocannabinoid levels in pain are not clear because this can
result in analgesic or pro-analgesic effects. In fact, endocannabinoids can act beneficially
through CBRs activation or otherwise have detrimental effects through arachidonic acid
production and pro-analgesic prostaglandins (PGs), such as prostaglandin E2 (PGE2). For-
mation of prostaglandin glycerol esters (PG-G) and prostaglandin ethanolamides (PG-EA)
by cyclooxygenase (COX)-2 metabolism of endocannabinoids could also lead to analgesic
or pro-analgesic effects depending on the bioactive metabolite produced [144].

3.4. Respiratory Health and Diseases

Respiratory health depends a great deal on the airway epithelial cells that represent
a physical and biochemical barrier to exogenous and endogenous pathogens. The in-
tegrity of ECS components in human airway epithelial cells has been reported as one of
the key metabolic necessities for healthy lungs and physiological response to damaging
stimuli [145]. The endocannabinoid AEA has the ability to increase the permeability of
these cells by bioactive arachidonic metabolite formation inside the cells, rather than using
canonical pathways [62]. 2-AG has also been characterized as an important source of
lung prostaglandins which metabolizes into leukotriene B4 and C4 by neutrophils and
eosinophils, providing a connection between the ECS and the prostaglandin system [63].

As CB1R and CB2R are in many cells of the immune system (eosinophiles, mono-
cytes), their involvement in inflammatory and other immune-related events in the lungs
is not surprising. CB2R agonists have been known to contribute to anti-inflammatory
responses upon various stimuli leading to the inhibition of leukocyte recruitment and
secretion of pro-inflammatory cytokines as TNF-α, interleukin 1β (IL-1β), IL-6, etc., and
the reduction of the formation of reactive oxygen species [65]. The prolonged presence
of lipopolysaccharides on the membranes bacteria elicits an increase in 2-AG production
in mast cells due to activation of toll-like receptor 4, so CB2R activation can produce
so-called endotoxin tolerance. [137] These processes are metabolically mediated by the
activation of 5′ AMP-activated protein kinase, downregulation of anabolic processes and
upregulation of oxidative phosphorylation [66]. An interplay between viral infections
and CB2R has also been described in the lungs which enhances the ECS’s contribution
to the physiological response to various respiratory infections [146]. On the other side,
upregulation and activation of CB1R usually enhance oxidative stress and inflammation,
although opposite effects have also been described [147]. In neutrophils, activation of
CB1R might presynaptically inhibit the cholinergic transmission providing protection from
airway inflammation and possible lung damage [67]. Inhibitors of MAGL and FAAH
have also been described to induce a downregulation of TNF-α, PGE2, COX-2, inducible
nitric oxide synthase (iNOS), and lead to a general anti-inflammatory metabolic state,
due to a change in levels of fatty amino acids and endocannabinoids [66,67]. The roles
of TRPV1 and GPR55 still remain to be elucidated in detail, although their activation has
been linked to the release of proinflammatory cytokines, individually and in heteromer
combinations [148].

The use of exogenous cannabinoid sources via inhalatory pathways has been linked
with the onset of pathological respiratory metabolic symptoms such as those character-
istic of asthma, pulmonary fibrosis and allergies [149]. The involvement of the ECS in
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these diseases is extremely complex, as there is a constant interchange of metabolites that
target a variety of receptors present on many cells in the airways, balancing between a
physiologically necessary response and pathological inflammation. In asthma and pul-
monary fibrosis, as well as in nicotine-induced fibrosis, CBD has shown the potential to
countermand inflammation via canonical pathways [150,151]. CB1R interacts with iNOS
as well, and their simultaneous targeting using hybrid CB1R/iNOS inhibitors has shown
potential for combating fibrosis [147]. The potential of ECS metabolic pathways has also
been explored in the current SARS-CoV-2 pandemic, as an anti-inflammatory strategy
during the cytokine storm phase, and in combination with anti-viral therapeutics [152].
CBD was found to effectively inhibit the JAK-STAT axis and block the production of type
I interferons contributing to potentially lowering the severity of the respiratory disease,
while being well-tolerated and safe [153]. Both exogenous and endogenous cannabinoids
continue to be explored as plausible options for the SARS-CoV-2 crisis [154].

3.5. Cancer

The involvement of ECS components in the pathogenesis of tumors and anti-cancer
treatment has been explored extensively using in vitro and in vivo models, as well as in
clinical studies, many of which are still ongoing [12,155,156].

Reprogramming of vital metabolic pathways represents one of the key moments in
the development and later progression of cancer [157]. New studies suggest that cell
metabolism may be altered very early during tumorigenesis contributing as a driver event
rather than appearing as a consequence [158]. Some of the paramount metabolic path-
ways implicated in carcinogenesis include glycolysis, glutaminolysis, metabolism of lipids
and nucleotides, formation of reactive oxygen and nitrogen species by mitochondrial
metabolism, inflammation, etc. [158–160]. As there is a complicated, multilateral exchange
of metabolites between various pathways in the pre-cancerous cell, the role of the ECS
in cancer development is ambiguous. Considering the environment that enables cellular
transformation, many cells of the innate and adaptive immune system that express cannabi-
noid receptors CB2R and GPR55 and respond to endogenous cannabinoids invade the
neoplastic cell with the aim to control its growth [76,161]. In this setting, MAGL has been
detected as an important player, which is not surprising as it regulates the metabolism
of long-chain fatty acids and contributes to the cancer-related reprogramming of lipid
metabolism [136,162]. On the other hand, consumption of exogenous cannabinoid sources
has been considered to have a pro-cancerous effect, mostly via inhalation of other car-
cinogens that interfere with the metabolism of nucleotides and lead to the production of
reactive oxygen species [163].

The involvement of ECS once a cancerous state is already present needs to be carefully
evaluated as the effects depend greatly on the type of cancer cell [12]. In hormone-sensitive
BC, it has been shown that the endocannabinoid anandamide has the ability to block
the cell cycle progression acting through CB1R [71,72,164], while the activation of CB2R
inhibited chemotaxis due to the presence of CB2R-CXCR4 heteromers [165]. In aggres-
sive high-grade tumors as HER2-positive metastatic BC, it has been shown that CB2R is
overexpressed, and treatment with ∆9-THC, THC 14 and selective agonists for CB2R has
shown great potential [155,156,166,167]. Various heteromers have also been explored in
HER2+ BC (HER2-CB2R, CXCR4-CB2R, GPR55-CB2R) as anti-cancer targets and as prog-
nostic biomarkers [13,14,84,168], and the endocannabinoid cannabidiol has been shown
to affect BC cell proliferation and invasiveness [169]. In glioma, it has been shown that
signaling through CB1R and CB2R, which are over-expressed in these tumor cells, with the
involvement of de novo synthesis of ceramide induces apoptosis [73,74,155,170]. The endo-
cannabinoids AEA and 2-AG, as well as cannabidiol and ∆9-THC, have been connected
with the inhibition of in vitro proliferation, migration and invasiveness of glioma cells
using canonical pathways [73–75,171]. In vivo and ex vivo studies have confirmed that
cannabinoids as ∆9-THC, WIN-55,212-2 and JWH-133 have the ability to slow down tumour
growth and prolong the survival in rats and tumor cells obtained from biopsies [171,172].
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It is evident that the activation of canonical pathways by various cannabinoids leads to a
functional fine-tuning of pathways essential for cellular proliferation, apoptosis, and angio-
genesis. In gastrointestinal malignancies, high expression levels of CB2R have been linked
with poor prognosis and aggressiveness through the AKT/GSK3β signaling axis, while low
levels of CB1R are more present in high-grade and more invasive GI tumors [77,79]. MAGL
which is essential for the metabolism of endogenous cannabinoids has also been linked
with aggressiveness in colorectal cancer (CRC) [173]. Beneficial activation of apoptotic
pathways in CRC via canonical (CB1R, CB2R, PPARγ) and non-canonical ECS-related path-
ways has been described for both endogenous, plant-derived (∆9-THC, CBD) and synthetic
cannabinoids (HU-331, CP 55,940) through the inhibition of RAS–MAPK and PI3K–AKT
and increased ceramide synthesis among other [78]. In prostate cancer, over-expression
of anandamide as well as CB1R, CB2R and GPR55 receptors has been linked with poor
prognosis [81]. On the other hand, a variety of phyto-, endo- and synthetic cannabinoids,
as well as MAGL inhibitors have shown potential in the modulation of pathways im-
portant for prostate cancer cell survival, migration and invasiveness [69]. Interference
with the regulation of pathways employing adenylyl cyclase, protein kinase A, EGFR, as
well as the presence of CB2R-CXCR4 in prostate cancer cells leads to the reduction of the
cells’ invasive potential and offers strategies for combating metastatic disease [174,175].
CBRs are generally over-expressed in lung cancer inducing favourable effects on patient
survival upon stimulation acting in part through ERK, PI3K, p38 MAPK, Akt, EGFR
and ceramide-related pathways connected with apoptosis and epithelial-to-mesenchymal
transition [84]. As lung cancer is an example of the success of modern molecular tar-
geted approaches and immunotherapy, the interaction between ECS components with the
metabolic processes induced by these therapies (DNA repair, epithelial-to-mesenchymal
transition, immunomodulation) has also been suggested [83,164,176,177].

In many situations, tumours become or remain resistant to conventional therapies,
or serious adverse events hamper such treatment, so many plant-derived alternatives
have been explored as supplements or alternative medicines [178–180]. ECS components
have shown great potential in this setting, as a boost or in combination with standard
therapeutics and also in battling side effects as they interfere with the underlying driver
metabolic mechanisms [168]. Besides the direct effects of the ECS on cancer cells and
microenvironment, it has also been implicated in the proliferation and differentiation of
embryonic and adult stem cells [181]. Most of these effects are mediated by the PI-3K/AKT
and IL-1 signaling related to the TNF pathway, and have shown promising early results
for the repression of cancer cell formation, invasiveness and metastasis [170]. As many
anti-cancer drugs do not have the ability to eradicate cancer stem cells, using ECS co-
targeting approaches might be useful for the prevention of resistance to therapy and cancer
recurrence [182].

Although the ECS is explored in various anti-cancer scenarios, its clinical utility
needs to be carefully evaluated in each specific tumor subtype as they differ in metabolic
pathways that interact with ECS signals.

4. Conclusions

Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential
metabolic pathways is one of the key characteristics of the ECS. It is implicated in a
variety of physiological and pathological states and an attractive pharmacological target
yet to reach its full potential. Future directions should envision capturing its diversity
and exploiting pharmacological options beyond the classical ECS suspects (exogenous
cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid
receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
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Abbreviations

ACC1 Acetyl coenzyme-A carboxylase-1
AD Alzheimer’s disease
AMP Adenosine monophosphate
5′-AMPK 5′-AMP-activated protein kinase
2-AcGs 2-acyl-glycerols
AEA Arachidonoylethanolamide (anandamide)
BMT Bone marrow transplantation
2-AG 2-arachidonoylglycerol (2-AG)
CAGE Cap Analysis of Gene Expression
CBR Cannabinoid receptor
CBD Cannabidiol
CB1R Cannabinoid receptor 1
CB2R Cannabinoid receptor 2
CNS Central nervous system
COX-2 Cyclooxygenase
CXCR4 Chemokine receptor type 4
DHA Docosahexaenoic acid
DHA-EA Docosahexaenoyl ethanolamide
DHG Docosahexanoyl-glycerol
ECS Endocannabinoid system
ECLs Endocannabinoid-like molecules
ENTs Equilibrative nucleoside transporters
EMA European Medicines Agency
EPA Eicosapentaenoic acid
EPA-EA Eicosapentaenoyl ethanolamide
EPG Eicosapentanoyl-glycerol
FAAH Fatty acid amide hydrolase
FANTOM Functional ANnoTation Of the Mammalian genome
FAS Fatty acid synthase
GLUT 4 Glucose transporter type 4
GPCR G Protein-coupled receptor
GTEx Genotype-Tissue Expression
HD Huntington’s disease
HPA Human Protein Atlas
IL-2 Interleukin 2
IRS-2 Insulin receptor substrate 1 and 2
LEA N-linoleoyl-ethanolamine
2-LG 2-linoleoyl-glycerol
LPL Lipoprotein lipase
MAGL Monoacylglycerol lipase
MS Multiple Sclerosis
NAEs N-acylethanolamines
OEA N-oleoyl-ethanolamine
PEA N-palmitoyl-ethanolamine
2-OG 2-oleoyl-glycerol
P-gp P-glycoprotein
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PPARγ Peroxisome proliferator-activated receptor gamma
PGs Prostaglandins
PGE2 Prostaglandin E2
PG-G Prostaglandin-glycerol esters
PG-EA Prostaglandin-ethanolamides
n-3 PUFA n-3 Poly- Unsaturated Fatty Acid
SNS Sympathetic nervous system
SREBPF1 Sterol regulatory element binding transcription factor 1
TAGs Triacylglycerols
∆9-THC ∆9-Tetrahydrocannabinol
WAT White adipose tissue
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