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A B S T R A C T

Objectives: Many studies have attempted to discriminate patients with schizophrenia from healthy controls by
machine learning using structural or functional MRI. We included both structural and diffusion MRI (dMRI) and
performed random forest (RF) and support vector machine (SVM) in this study.
Methods: We evaluated the performance of classifying schizophrenia using RF method and SVM with 504 fea-
tures (volume and/or fractional anisotropy and trace) from 184 brain regions. We enrolled 47 patients and 23
age- and sex-matched healthy controls and resampled our data into a balanced dataset using a Synthetic
Minority Oversampling Technique method. We randomly permuted the classification of all participants as a
patient or healthy control 100 times and ran the RF and SVM with leave one out cross validation for each
permutation. We then compared the sensitivity and specificity of the original dataset and the permuted dataset.
Results: Classification using RF with 504 features showed a significantly higher rate of performance compared to
classification by chance: sensitivity (87.6% vs. 47.0%) and specificity (95.9 vs. 48.4%) performed by RF, sen-
sitivity (89.5% vs. 48.0%) and specificity (94.5% vs. 47.1%) performed by SVM.
Conclusions: Machine learning using RF and SVM with both volume and diffusion measures can discriminate
patients with schizophrenia with a high degree of performance. Further replications are required.

1. Introduction

Patients diagnosed with schizophrenia demonstrate a wide variety
of clinical symptoms including hallucinations, delusions, formal
thought disorder, and cognitive dysfunctions (Sadock and Sadock,
2007; Weinberger and Harrison, 2011). Currently, diagnosing schizo-
phrenia or evaluating the severity of the illness is determined based on
clinical symptoms and an interview, without using objective bio-
markers (American Psychiatric Association, 2013). Biomarker refers to
objective indications of medical state observed from outside the patient,
which can be measured accurately and reproducibly (Strimbu and
Tavel, 2010). Also, it can be used to diagnose the disease or to predict
the severity of the illness. Establishing diagnosis without using objec-
tive information may sometimes lead to misdiagnosis, which is affected
by some factors such as the race and sex of the patients, and even the
experience of the clinician (Green et al., 2012; Neighbors et al., 1989).

In addition, psychotic symptoms cannot be easily determined based on
an interview with the patients (Fanous et al., 2012). More objective
biomarkers would be beneficial to help psychiatrists to diagnose and
evaluate the illness. Many studies have tried to identify core patholo-
gical structural or functional changes in patients diagnosed with schi-
zophrenia in order to establish biomarkers of the disease (Kubicki et al.,
2007; Shenton et al., 2001).

While thousands of imaging studies have reported various structural
as well as functional abnormalities in schizophrenia, these cannot be
used as biomarkers at this time for several reasons: 1) some abnorm-
alities are only present in some patients (Shenton et al., 2001), 2) there
is not a clear separation between patients and healthy controls because
the range of values in all measures, when compared separately, are both
wide and overlapping, and, 3) patients in each study show very het-
erogenous clinical characteristics.

According to several theories, schizophrenia should be considered a
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brain disease where subtle changes in various brain locations coexist
(van Erp et al., 2016). Traditional univariate methods, which focus on
gross differences in one structure at a group level, cannot detect widely
distributed or subtle changes in the brain (Orru et al., 2012). Because
multiple measures have been introduced and reported to be abnormal
in subsets of patients, and each explains only a small percentage of the
variance, a multivariate approach should be considered for diagnosing
schizophrenia using MRI. Furthermore, given the enormous number of
values extracted from MRI images, machine learning approaches are
needed to discriminate patients from healthy controls. Several such
methods can be used to create classification models by means of pattern
recognition of input data, i.e., linear discriminant analysis (LDA), sup-
port vector machine (SVM), and random forest (RF).

Some studies have previously been carried out to examine psy-
chiatric diseases using T1, PET (positron emission tomography), or
dMRI with SVM, LDA, or RF (Orru et al., 2012; Bansal et al., 2012). The
performance rate for predicting schizophrenia using imaging data
varies, however, depending on the statistical method and the popula-
tion of patients used. For example, studies using structural MRI report a
performance rate that ranges from 54 to 91% (Castellani et al., 2012;
Davatzikos et al., 2005; Greenstein et al., 2012; Karageorgiou et al.,
2011; Kasparek et al., 2011; Kawasaki et al., 2007; Mandl et al., 2013;
Mourao-Miranda et al., 2012; Nieuwenhuis et al., 2012; Schnack et al.,
2014; Sun et al., 2009; Takayanagi et al., 2011; Zanetti et al., 2013).
Moreover, a recent meta-analysis revealed that, when compared to
structural MRI, resting state functional MRI (fMRI) shows higher sen-
sitivity (84% vs. 76%) and lower specificity (77% vs. 79%) (Kambeitz
et al., 2015). Fewer studies using dMRI alone, or in conjunction with
structural MRI, have been performed than have studies using structural
or functional MRI (Arbabshirani et al., 2017).

Of note, Ardekani et al., (2011) reported a high rate of performance
(96% sensitivity and 92% specificity for Fractional Anisotropy (FA)
images, 96% sensitivity and 100% specificity for Mean Diffusivity (MD)
images) when LDA was used. Using FA (Caan et al., 2006), reported a
classification error of 25% in a cohort of 34 patients with schizophrenia
and 24 controls, estimated using five-fold cross validation. On the other
hand (Caprihan et al., 2008), achieved a classification error of 20%
using a leave-one-out cross validation approach in a sample of 45 pa-
tients and 45 healthy volunteers. Other studies have reported a 70–91%
performance rate including sensitivity and/or specificity (Ingalhalikar
et al., 2010; Pettersson-Yeo et al., 2013; Rathi et al., 2010). While some
studies with a small sample size have shown very high performance
rates (≥95% sensitivity) (Ardekani et al., 2011; Fekete et al., 2013;
Tang et al., 2012), a recent meta-analysis and review article reported
the overall rate of accuracy for the classification of schizophrenia using
imaging data ranges between 80.3% and 82% (Kambeitz et al., 2015;
Arbabshirani et al., 2017).

Until now, most studies that have tried to predict schizophrenia
have been performed with LDA or SVM using structural or functional
MRI. In addition, studies with dMRI have mainly used diffusion mea-
sures in WM as features for classification. However, RF has shown a
remarkable classifying ability regarding Alzheimer's disease with MRI
data(Lebedev et al., 2014), possibly due to the following merits; 1) RF
can estimate feature importance during training with little additional
processes, providing better insight into the biological sense in the
classification model; 2) RF is an ensemble of several decision trees and
each tree is grown using a random subset of training sets and a random
subset of features, which provides potential higher performance for the
generalizations compared to decision tree; and, finally, 3) since RF
produces non-linear decision boundaries due to the usage of decision
tree, RF can outperform linear methods in capturing diverse patterns of
structural or functional features that are distributed across the whole
brain (Breiman, 2001; Venkataraman et al., 2010; Venkataraman et al.,
2012). Despite of these merits of RF, its classification performance is
not always better than other machine learning methods. It depends on
the sample size, machine learning method, and features used in

classification (Khondoker et al., 2016; Salvador et al., 2017; Katuwal
et al., 2015).

DMRI is a method that is very sensitive to microstructural ab-
normalities (Beaulieu, 2002; Kanaan et al., 2005) including demyeli-
nation, axonal loss, edema, and inflammation (Assaf and Pasternak,
2008). Therefore, dMRI can detect subtle structural GM changes in
intrinsic connections (Barbas and Pandya, 1989; Tardif and Clarke,
2001). In addition, some studies have reported that decreases in
membranes, axon terminals, dendrites, and dendritic spines are among
the causes of the reduced GM volume seen in schizophrenia (Bennett,
2011; Costa et al., 2001; Glantz and Lewis, 2000). In fact, some studies
have reported abnormalities in the GM using dMRI (Lee et al., 2016; Lee
et al., 2009; Moriya et al., 2010),

There are few studies using diffusion measures on GM as a feature
for classification method. In this study, we evaluated the rate of per-
formance for the classification of schizophrenia using the RF method
and SVM method, with volume and dMRI measures in GM and WM as
features, and we identified which structures were important for dis-
criminating patients with schizophrenia from healthy controls.

2. Materials and methods

2.1. Participants and clinical variables

Subjects were enrolled from the Asan Medical Center, a uni-
versity–affiliated hospital. Patients who were right-handed and were
between the ages of 20 and 40 years old were eligible to participate in
this study. Any patients with diseases that affect brain function were
excluded. In addition, patients were excluded if they were unable to
complete neuropsychological testing or MRI scanning sessions. Subjects
within the patient group had a diagnosis of schizophrenia, which was
determined by a psychiatrist according to the Diagnostic and Statistical
Manual of Mental Disorders-IV-Text Revision (DSM-IV-TR) criteria.
Moreover, they also displayed psychotic symptoms such as delusions or
hallucinations for< 5 years. In addition, subjects in the control group
did not have any Axis I psychiatric diagnosis themselves or any first-
degree relatives with an Axis I psychiatric diagnosis.

We enrolled 91 subjects in the study, but 11 cases were excluded
due to poor image quality or incidental brain lesions. Ten patients were
additionally excluded because their diagnoses changed to other psy-
chotic disorders, such as bipolar disorder, when they were re-evaluated
1–6months after the initial enrollment. The final dataset, consisting of
70 subjects (patients: N=47; controls: N=23), was used for the
analysis.

Written informed consent was obtained from all subjects. Ethical
approval for the study was obtained from the local Institutional Review
Board, Asan Medical Center, University of Ulsan College of Medicine,
Seoul, Korea.

2.2. Assessment of symptoms and neurocognition

Assessment of symptoms, neurocognition, and social cognition was
completed within one week of the date of the MRI examination. All
subjects were evaluated using an age- and sex-adjusted short form of
the Wechsler Adult Intelligence Scale-Third edition (WAIS-III), which
consisted of 6 subtests including digit span, vocabulary, arithmetic,
picture arrangement, block design, and digit symbol. The psychiatric
symptoms of patients were evaluated by a psychiatrist using the
Positive and Negative Syndrome Scale (PANSS).

2.3. MRI protocol and image processing

MRI scans were performed using an 8 channel SENSE head coil on a
3 Tesla scanner (Philips Achieva). DMRI images were acquired with an
echo planar imaging (EPI) dMRI sequence. One baseline (b= 0) image
and 32 diffusion gradient directions with b=1000 s/mm2 were also
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acquired. The scan parameters were as follows: field of view (FOV):
224 ∗ 224 ∗ 135mm, voxel size: 2 ∗ 2 ∗ 3mm3, echo time (TE): 70ms,
flip angle: 90°, repetition time (TR): 5422ms. Structural T1 MRI images
with turbo field echo were acquired and the scan parameters were as
follows: FOV: 240 ∗ 240 ∗ 170, voxel size 1 ∗ 1 ∗ 1mm3, TE: 4.6 ms, TR:
9ms, flip angle: 8°.

DMRI images were upsampled to 1 ∗ 1 ∗ 1mm3 voxel size using
Slicer V. 4.4 (Fedorov et al., 2012). Subsequently, diffusion tensor
imaging (DTI) images were calculated with weighted least squares with
an added procedure to correct tensors with negative eigenvalues from
dMRI. To exclude the meninges or cerebral spinal fluid (CSF), we
eroded the boundary voxels of each DTI image. Using Slicer V. 4.4 and
an in-house program, we estimated FA and Trace (TR, equal to 3*MD)
images from DTI images.

T1 images were parcellated into discrete anatomical regions using
the Desikan-Killiany atlas of FreeSurfer V. 5.3 (Fischl et al., 2002). This
was followed by non-linear registration of T1 images with a b= 0
baseline images of dMRI by Advanced Neuroimaging Tools (Avants
et al., 2010; Avants et al., 2011). The same registration transformation
was then applied to FreeSurfer parcellated labels. We then extracted the
volume and/or mean diffusion measures (FA and TR) of 184 ROIs and
used these values as features for classification. The volume of each ROI
was corrected using individual total cranial volume. We have described
all 504 features in Supplementary Table 1.

2.4. Resampling, classification with random forest and support vector
machine

Since our dataset was unbalanced, with the patient group about
twice as large as that of the healthy control group, and classification
with RF and SVM results may be biased by an unbalanced distribution
of the sample, we resampled our data into a balanced dataset (46 pa-
tients and 46 controls) using the Synthetic Minority Oversampling
Technique (SMOTE) (Chawla et al., 2002). The SMOTE is one of the
most popular methods for addressing the issue of unbalance and the
general idea is to artificially generate cases of the minority class using
K-nearest neighbors algorithm of these cases. In addition, to make a
more balanced dataset, the majority class cases are also under-sampled
(Chawla et al., 2002).

Because there might be a chance of correlation among the features,
we performed maximum relevance minimum redundancy (mRMR,
feature selection method proposed by Peng et al., (2005)) method to
select the number of important features for classification from all fea-
tures (N=504). Then we gradually increased the number of features
(N=1, 2, 3, …, 9, 10, 11, 31, 51, …, 491, 504) from the total number
of features. After that, we performed learning and classification using
these selected features and investigated the performance of later clas-
sification. (Fig. 1a).

In addition, to test the statistical significance of the classification
using RF and SVM, we randomly permuted the classification of all
participants as a patient or healthy control 100 times and ran the RF
and SVM with leave-one-out cross-validation (LOOCV, special case of k-
cross validation when k is 92) for each permutation. (Fig. 1b) We then
compared the sensitivity, and specificity of the original data set and the
permuted data set.

The parameters of RF used during the learning phase were as fol-
lows: number of trees (5000), number of features randomly selected at
each node (square root of the number of features, 22 in our study), and
size of the node (Sadock and Sadock, 2007). Size of the node in random
forest is the minimal number of observations allowed in the terminal
nodes of each tree, which indirectly limits the tree size in the RF
method. The test sets were predicted to be a patient or a control using
the model from the learning phase of the RF. By comparing the real
classification of participants (patient or healthy control) with the clas-
sification predicted by the RF and SVM, we calculated measures of
performance such as sensitivity and specificity using the following

formulas: sensitivity= (number of true positives)/(number of true po-
sitives+ false negatives), specificity= (number of true negatives)/
(number of true negatives+ false positives). Since the RF generates the
Out of Bag (OOB) error, we calculated the OOB error estimate.

2.5. Comparisons of volume, FA, and TR in important predictors between
groups

As described above, we sorted the importance of features using
mRMR method. We summarized the list of 20 important features and
compared their values between schizophrenia patients and healthy
controls to verify that these features make biological sense.

2.6. Statistical analysis

All statistical analyses were performed using R (ver. 3.4.1) (R Core
Team, 2017), DMwR (ver. 0.4.1) for the SMOTE method (Torgo, 2010),
random forest packages (ver. 4.6–12) (Liaw and Wiener, 2002), and
e1071 for SVM (ver. 1.6–8) (e1071: Misc Functions of the Department of
Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R
package version 1.6–8, 2017).

3. Results

3.1. Summary of demographic and clinical characteristics

We enrolled 70 participants (23 healthy controls and 47 patients) in
this study. There was no significant difference between groups for
males (controls: 34.8%, patients: 38.3%, X2= 0.082, p=0.775) and
for age (controls: 29.70 ± 5.15, patients: 28.68 ± 6.23, t=0.676,
p=0.501). Patients had a decreased adjusted IQ score compared to
healthy controls (controls: 120.39 ± 9.32; patients: 97.91 ± 15.84;
t=7.44, p < 0.0001, Welch's t-test). The total PANSS score in patients
was 61.11 ± 14.92 (positive syndrome score: 15.91 ± 6.51; negative
syndrome score: 16.77 ± 7.08; general score: 28.43 ± 6.82). The
olanzapine equivalent dose of atypical antipsychotics at the time of the
MRI scan was 15.52 ± 8.60mg/day (N=45), and the olanzapine
equivalent dose of typical antipsychotics at the time of the MRI scan
was 19.33 ± 26.58mg/day (N=3). The duration of illness in the
patients was 1.02 ± 1.58 years (Table 1).

3.2. Classification results of RF and SVM by the number of used features

Generally, RF and SVM showed the highest sensitivity and specifi-
city when used approximately 71 selected features (Fig. 2).

3.3. Permutation results

When the performance rate of the classification of the original group
and the randomly permuted group were compared, the performance
rate for the original group was significantly higher than the randomly
permuted group (Table 2 and Fig. 3).

3.4. Comparison values for significant predictors between the two groups

mRMR method showed the level of importance of all predictors in
order to discriminate patients with schizophrenia from healthy con-
trols. The values of the top 20 most important ROIs were compared
using the Wilcoxon rank sum test between the two groups (Table 3).

4. Discussion

This study shows that patients with schizophrenia can be classified
with high sensitivity and specificity by two different machine learning
methods (RF and SVM) when 504 features from volume, FA, and TR of
the brain structure are used, including GM, WM, and subcortical
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structures. Our study showed a high rate of performance (sensitivity:
87.6%, 89.5%; specificity: 95.9%, 94.5%; RF, SVM respectively), which
is higher than the results found by meta-analysis (Kambeitz et al.,
2015). Most studies of recent onset schizophrenia or first-episode psy-
chosis (FEP) reported 66–91.5% performance (sensitivity or specificity)

(Karageorgiou et al., 2011; Kasparek et al., 2011; Mourao-Miranda
et al., 2012; Sun et al., 2009; Takayanagi et al., 2011; Zanetti et al.,
2013; Pettersson-Yeo et al., 2013; Rathi et al., 2010), which is lower
than that with chronic schizophrenia (Kambeitz et al., 2015). Taking
these previous studies into account, our results have more important

Fig. 1. a. Flow chart of classifications of RF and SVM using selected features by mRMR method
Abbreviations: RF (Random forest), SVM (Support vector machine), mRMR (maximum relevance minimum redundancy)
b. Flow chart of comparisons of classification performances of RF and SVM between original class and randomly permuted class
Abbreviations: RF (Random forest), SVM (Support vector machine).
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implications. However, we should state that the application of our re-
sults to a general population of patients with schizophrenia should be
carried out with caution since our small sample could not include all
heterogeneous cases. Nonetheless studies that previously reported high
performance (above 95% sensitivity) had even smaller sample sizes
(Ardekani et al., 2011; Fekete et al., 2013; Tang et al., 2012) although a
recent review paper has raised a concern about the issue of general-
izability of studies with small sample size reported high performance
(Arbabshirani et al., 2017). Larger study samples may include hetero-
geneous MRI information from both patients and healthy controls.
Therefore, this increased heterogeneity can decrease the performance
of the classification model.

Large training data sets, on the other hand, usually increase the
performance of the classification system, and classification based on a
small sample size is more unstable (Nieuwenhuis et al., 2012;
Arbabshirani et al., 2017; Franke et al., 2010). We performed 100 re-
petitions of LOOCV to investigate the possibility of unstable results
occurring due to a small sample size. One hundred repetitions of
LOOCV also showed a very small range in the 95% confidence interval
of sensitivity and specificity (RF: 86.8–88.4%, 95.3–96.4%, respec-
tively; SVM:88.7–90.3%, 93.8–95.2%, respectively). This means that RF
and SVM produced very stable classification. Of note, overfitting is one
of important issues in machine-learning especially when trying to es-
timate parameters during the learning phase with small sample size and
relatively large numbers of features as in our study (Arbabshirani et al.,
2017). We could not find significant drop of overall performance rate
when we repeatedly performed random forest with different numbers of
features during the learning phase. We can assume that overfitting may
therefore not significantly affect findings in our study.

We also tried to classify the cases using only MRI information.
However, using MRI data alone may not be sufficient to classify cases in
the early stages of the disease. Pina-Camacho et al. compared the rate of
performance for predicting early onset FEP to develop into schizo-
phrenia spectrum disorders (SSD) using different combinations of
baseline clinical, neuropsychological, MRI, and biochemical informa-
tion. Neuroimaging and biochemical information at baseline did not
provide additional predictive value to the classification of developing
SSD from FEP (Pina-Camacho et al., 2015). Besides early stages of
disease, several studies have reported a more accurate rate of classi-
fying schizophrenia when a combination of MRI and other information
were used, such as genetic information (Greenstein et al., 2012) and
neuropsychological results (Karageorgiou et al., 2011).

Several limitations should be noted in our study. First, classification
may be carried out based on features of MRI that are related to brain

Table 1
Demographic and clinical information.

Healthy control Schizophrenia Healthy control vs.
Schizophrenia

Number of subjects 23 47
Number of Males

(%)
8 (34.8%) 18(38.3%) X2= 0.082, p=0.775

Age (years) 29.70 ± 5.15 28.68 ± 6.23 t=0.676, p=0.501
IQ 120.39 ± 9.32 97.91 ± 15.84 t=7.44, p < 0.0001a

Duration of illness
(years)

1.02 ± 1.58

PANSS
Total score 61.11 ± 14.92
Positive score 15.91 ± 6.51
Negative score 16.77 ± 7.08
General score 28.43 ± 6.82

Olanzapine equivalent dose of antipsychotics at time of MRI scan (mg/day)
Atypical antipsychotics (N=45) 15.52 ± 8.60
Typical antipsychotics (N=3) 19.33 ± 26.58

a Analyzed by Welch's t-test.

Fig. 2. Performance of classification (upper: sensitivity, lower: specificity) based on the number of used features
Abbreviations: RF (Random forest), SVM (Support vector machine).
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abnormalities, such as those that can be indexed by IQ, and are not
specific to schizophrenia. Previous studies have reported that patients
with schizophrenia have a lower IQ compared to healthy controls
(David et al., 1997) and IQ levels correlate with FA and MD (Fryer
et al., 2008). Patients in our study also had a significantly lower IQ than
healthy controls. Therefore, RF and SVM may be able to discriminate
the cases with low IQ from the cases with high IQ, rather than dis-
criminating subjects with schizophrenia from healthy controls. While it
is not easy to control the effect of IQ on MRI, we regressed out IQ from
all 504 features (volume, FA, and TR values). Then we ran 100 times
LOOCV using RF with 504 features. Mean sensitivity and specificity was
82.8% and 92.7% respectively, which was slightly lower than those
results (87.6% and 94.5%) of RF without adjustment of IQ. In addition
to IQ, although there was no significant difference of age and gender
between patients and healthy controls, these factors may be leading to
overoptimistic estimates. The second limitation is that the structural
differences that were used during the learning and classification phase
may not be core pathological features of schizophrenia. Instead, these
may be structural differences induced by several factors such as medi-
cations or life style (Dazzan et al., 2005; Jorgensen et al., 2015;
Lieberman et al., 2005; Vita et al., 2015). Therefore, classification was
carried out based on MRI differences that may not be related to core
pathological changes. The last limitation is that, as previously men-
tioned, the sample size in our study was relatively small. The results in
this study showed high prediction accuracy, while there was a chance
that several confounding factors such as age, sex, medication or IQ
might be leading to overoptimistic estimates. In addition, overfitting
might happen during RF procedures due to relatively homogenous
samples. Although we analyzed our sample data by cross-validation and
permutation to overcome the problems, there is still a high risk of
overfitting. It should be considered that even though the results showed

high classification performance, their generalizability is limited. Our
study used both volume and diffusion MRI data and performed RF
method to discriminate patients with schizophrenia from healthy con-
trols. The results of this study should be considered preliminary and
require further replications.

5. Conclusion

We were able to accurately discriminate the patients with recent
onset schizophrenia from healthy controls using volume, FA, and TR of
GM and WM with an RF and SVM methods. In order to generalize our
results further, more studies are needed with larger sample sizes that
include patients with heterogeneous symptoms.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.02.007.
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Table 2
Comparisons of the performance rate of the classification of the original group and the randomly permuted group.

Random forest
(%, Mean ± SD (95% CI))

Support vector machine
(%, Mean ± SD (95% CI))

Original class Random class Original class Random class

Sensitivity 87.6 ± 4.2 (86.8–88.4) 47.0 ± 8.3 (45.3–48.6) 89.5 ± 3.9 (88.7–90.3) 48.0 ± 9.4 (46.1–49.9)
Specificity 95.9 ± 2.8 (95.3–96.4) 48.4 ± 8.2 (46.8–50.1) 94.5 ± 3.4 (93.8–95.2) 47.1 ± 9.7 (45.2–49.0)
OOB error 8.5 ± 2.8 (7.9–9.0) 52.1 ± 6.9 (50.7–53.5)

Abbreviations: OOB (Out-of-Bag), SD (standard deviation), CI (confidence interval).

Fig. 3. Comparison of the distribution of performance between the original group and the randomly permuted group. The black lines indicate the mean and standard deviation of
performance.
Abbreviations: OOB (Out-of-Bag).
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WM/
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Value Side Location Mean ± SD (*10–3) Rank sum p

controls patients

1 GM TR Rt Middle temporal 2.6 ± 0.09 2.8 ± 0.12 249 0.0003
2 Sub TR Lt Ventral DC 3.0 ± 0.1 2.9 ± 0.1 817 0.0006
3 GM Vola Lt Parsopercularis 5.0 ± 0.5 4.6 ± 0.5 774 0.0036
4 WM Vola Rt Inferior temporal 6.4 ± 0.7 6.1 ± 0.4 730 0.0181
5 Sub Vola Rt Inf. Lat. Ventricle 0.3 ± 0.1 0.5 ± 0.2 319 0.0057
6 Sub Vola Lt Hippocampus 4.2 ± 0.4 3.9 ± 0.4 799 0.0013
7 WM FA Lt Transverse temporal 327.6 ± 36.8 353.0 ± 41.3 349 0.0169
8 Sub Vola Both 4th Ventricle 1.4 ± 0.4 1.8 ± 0.5 332 0.0093
9 WM FA Lt Precuneus 396.6 ± 17.0 383.6 ± 22.2 709 0.0357
10 WM Vola Lt Lingual 6.1 ± 0.7 5.6 ± 0.7 784 0.0024
11 GM TR Lt Caudal anterior cingulate 2.7 ± 0.2 2.8 ± 0.2 291 0.0018
12 GM TR Rt Inf. Temporal 2.5 ± 0.1 2.6 ± 0.1 280 0.0011
13 WM Vola Lt Inferior parietal 11.2 ± 1.1 10.4 ± 1.0 748 0.0096
14 Sub Vola Both CC Anterior and middle 0.6 ± 0.2 0.5 ± 0.1 666 0.1180
15 GM Vola Rt Parsopercularis 4.3 ± 0.6 3.9 ± 0.5 758 0.0067
16 GM TR Rt Caudal anterior cingulate 2.5 ± 0.1 2.6 ± 0.1 341.5 0.0131
17 GM FA Rt Middle temporal 152.8 ± 7.2 146.4 ± 10.0 762 0.0057
18 WM Vola Lt Frontal pole 0.2 ± 0.05 0.2 ± 0.04 735 0.0153
19 Sub Vola Both 3rd Ventricle 0.8 ± 0.2 1.1 ± 0.4 290 0.0018
20 WM FA Lt Precentral 393.7 ± 16.8 410.0 ± 25.8 350 0.0175

Analyzed by Wilcoxon rank sum test.
Abbreviations: GM, Gray matter; Sub, Subcortical structure; Whole, Whole brain; WM, White matter; FA, Fraction anisotropy; TR, Trace; Vol, Volume; Rt, Right; Lt, Left; Inf, Inferior; Lat,
Lateral; Vent, Ventricle; Ventral DC, Ventral Diencephalon; CC, corpus callosum.

a Corrected by estimated total intra-cranial volume.
b No., order of importance of features to discriminate the patients from the healthy controls.
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