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Abstract

A broad panel of potentially amplifiable microsatellite loci and a multiplex system were

developed for the Amazonian symbol fish species Arapaima gigas, which is currently in high

danger of extinction due to the disorderly fishing exploitation. Several factors have contrib-

uted to the increase of this threat, among which we highlight the lack of genetic information

about the structure and taxonomic status of the species, as well as the lack of accurate tools

for evaluation of the effectivity of current management programs. Based on Arapaima gigas’

whole genome, available at the NCBI database (ID: 12404), a total of 95,098 unique perfect

microsatellites were identified, including their proposed primers. From this panel, a multiplex

system containing 12 tetranucleotide microsatellite markers was validated. These tools are

valuable for research in as many areas as bioinformatics, ecology, genetics, evolution and

comparative studies, since they are able to provide more accurate information for fishing

management, conservation of wild populations and genetic management of aquaculture.

1. Introduction

The species Arapaima gigas (Schinz, 1822) belongs to the Arapaimidae family–order of the

Osteoglossiformes [1], which composes one of the oldest groups of teleost fishes. It is the

world’s largest scale fish, and specimens may reach up to 200 kg of body mass and 3 m of

length [2]. The species can be found in basins of South American countries, such as Brazil,

Peru, Colombia, Ecuador, Bolivia and Guyana [3, 4]. Since years ago, A. gigas has been relevant

in aquaculture due to its fast growth, high fillet yield, mild-flavored white meat, and great mar-

ket acceptance, both domestically and abroad [5, 6].
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A. gigas is listed in Annex II of the International Convention on the Trade in Endangered

Species (CITES) and in the International Union for Conservation of Nature’s (IUCN) Red List

of Endangered Species, within the category “data deficient”, meaning that there is no proper

information to make a direct or indirect assessment of its extinction risk based on its distribu-

tion and/or population status. Furthermore, in Brazil, arapaima were not included in the

national list of endangered species due to lack of data [7].

Many reasons have contributed to the aggravation of the threat to A. gigas, including (i) the

exploitation background of wild individuals, coupled with poor management strategies to

comply with current fishing legislation; (ii) the current poorly refined genetic data on taxo-

nomic structure and status; and (iii) the lack of management in certain areas, as well as the

lack of accurate tools for evaluating the effectiveness on current management programs [8–

12].

In Brazil, the predatory fishing of A. gigas–a practice which was intensified in the 1970s,

impacted its population distribution in most parts of the Amazon basin. Consequently, strate-

gies for management of the species were adopted by government agencies, such as the estab-

lishment of a minimum size for capture, the determination of reproductive season, and the

annual fishing prohibition in the states of Amazonas, Pará, Amapá, Rondônia, Roraima,

Tocantins and Acre [13–15]. However, the supervision of these strategies is deficient due to

the lack of financial and human resources, as well as the lack of well-defined methods to iden-

tify the origins of the A. gigas’s derived products, hindering the actions of the management sys-

tem. For instance, recent data shows that 77% of A. gigas meat marketed in Santarém-PA

comes from illegal fishing [16]. Furthermore, a substantial amount of A. gigas fresh or salty-

conserved meat is exported illegally to Brazilian markets by middlemen, through the Guayara-

merı́n border, in Bolivia [17].

The population structure of A. gigas is still undefined, and although genetic analyses

revealed the existence of two distinct populations in Amazon and Araguaia-Tocantins basins,

there are evidences showing the existence of multiple species of Arapaima [18, 19]. On the

other hand, the translocation of individuals is also an imminent threat [20], which can lead to

loss of genetic diversity, decreased fitness and increased risk of extinction [21], since young

individuals have often been translocated among different parts of the Amazon basin–and

among this basin and others, mainly to attend aquaculture demand [22]. Therefore, the collec-

tion of molecular data is essential for monitoring and defining adequate strategies for the man-

agement actions.

It is a consensus that A. gigas populations are following a declining trend, where the main

threat is overfishing [16, 23], and the majority of communities do not practice sustainable

management–with few exceptions, such as the Mamirauá Reserve, in Brazil. However, even in

communities where sustainable management is done, there is no consistent, available data

concerning the current conservation status of the species, much less concerning the population

trends within these communities [11]. This reinforces the need of more precise management

and the establishment of stakeholders to ensure the conservation and sustainable management

of the species [24].

Due to the history of disorderly exploitation and the risk of extinction of the Amazonian’s

symbol fish Arapaima gigas, specialists emphasize the need of using molecular markers to sup-

port management strategies and the evaluation of the effectiveness of the A. gigas’s conserva-

tion programs, highlighting the importance of using these markers for the identification and

genetic tracing of marketed specimens [18].

Microsatellite markers, also known as short tandem repeats (STR) or simple sequence

repeats (SSR), are DNA sequences consisting of tandemly repeating mononucleotide, dinucle-

otide, trinucleotide, tetranucleotide and pentanucleotide units, arranged throughout the
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genomes of most eukaryotic species [25]. They present features such as broad distribution in

eukaryotic genomes, which can easily be detected by polymerase chain reaction (PCR), locus-

specific nature, co-dominant inheritance, and high mutation rate, being highly polymorphic

and hyper-variable [26–28]. All these features contribute to the advantages of using microsatel-

lite markers in several research areas–as forensic and population genetics, conservation biol-

ogy, and for genome mapping in evolutionary and biological scenarios, since these biomarkers

allow two or more loci amplifications in a single multiplex PCR reaction.

The multiplex PCR system consists of the simultaneous amplification of various loci, tagged

by a distinct fluorescent label, and posterior analysis by capillary electrophoresis in an auto-

mated sequencing machine. It is considered a trustworthy technique since the use of capillary

electrophoresis with fluorescently labeled primers provides high detection sensibility of the

amplified DNA fragments [29]. Several methods are used in microsatellite markers design.

However, the majority of these are longstanding and more laborious. With the advances in

Next Generation Sequencing (NGS) technologies, increased data became available, allowing a

faster, cost-effective, large-scale mining of molecular markers [30, 31].

It is urgent to develop new, more accurate and numerous A. gigas molecular markers, not

only to be applied as a tool for genetic studies, but also to improve the management system,

refining the effectiveness of conservation programs, as well as to be used as a tool for the

genetic tracing of wild and marketed individuals.

Thus, in order to contribute to the preservation and sustainable management, we developed

a broad genomic panel of microsatellite loci potentially amplifiable. Based on this broad panel,

we designed an unprecedented multiplex system containing 12 tetranucleotide microsatellite

markers, which are more defined markers and are easily discriminated in polyacrylamide gel.

Hence, the use of tetranucleotide markers is also a low-cost approach, which can be optimized

in laboratories equipped with simpler infrastructure, being useful in populational genetics,

conservation biology, and forensic studies of the A. gigas.

2. Results

2.1. Broad panel

A broad amplifiable panel of microsatellites was designed (available at Figshare online data

repository via https://doi.org/10.6084/m9.figshare.8088533), based on the A. gigas’ genome

published by Vialle et al. (2018), who obtained a total of 76.91 Gb of high-quality filtered data,

such as assembled genome size of 661,278,939 bp, 5,301 scaffolds, scaffold N50 = 668 kb, con-

tig N50 = 51.23 kb, largest scaffold of 5,332,704 (bp), and GC content of 43.18% [32].

We found a set of 95,098 single loci of perfect microsatellites with simple repeat sequences,

from the dinucleotide to hexanucleotide classes, in the genome of the A. gigas (as observed in

the Supplementary Table S1 via https://doi.org/10.6084/m9.figshare.8088533). The set con-

tained information about the microsatellite motif, the repeat copy number, the initial and final

positions, the scaffold and size, the forward and reverse primers, and the expected Polymerase

Chain Reaction (PCR) products. The average size of the estimated PCR products was 207 bp.

However, we could not design primers for 647 loci, since these sequences were rich in TA

repeats, and because the TA motif were at the beginning or at end of the scaffold.

Table 1 presents the abundance of the motifs categorized by class. Here, the dinucleotide

class is the most frequent, representing more than 70% of the total microsatellites found in A.

gigas’s genome. In this class, the TG-repeat motif was the most frequent (15,8). Additionally,

we characterized the minisatellites present in 387 loci (see Supplementary Table S2 via https://

doi.org/10.6084/m9.figshare.8088629).
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The number of repeats in microsatellites present in the genome of A. gigas was quite vari-

able among the 6 classes, presenting an inverse relationship with the size of the motif. The

dinucleotide class, for example, presented the largest number of repeats, whereas the class of

hexanucleotides presented fewer repeats (Fig 1).

The majority of the identified microsatellites were located out of exon and intron

sequences, referred here as genomic regions: 68.1% of these were dinucleotides (71,269),

67.8% were trinucleotides (13,026), 67.6% were tetranucleotides (8,785), 67.4% were pentanu-

cleotides (1,107), and 69.9% were hexanucleotides (911). We observed a few microsatellites

located within gene coding regions, 8.3% of which were dinucleotides (5,915), 8.1% were

Table 1. Absolute and relative frequency (percentage) of different perfect microsatellite motifs found in the

genome of Arapaima gigas.

Motif class Count %

Dinucleotides 71,269 74.94

Trinucleotides 13,026 13.70

Tetranucleotides 8,785 9.24

Pentanucleotides 1,107 1.16

Hexanucleotides 911 0.96

Total 95,098 100

https://doi.org/10.1371/journal.pone.0240002.t001

Fig 1. Distribution of the classes of Arapaima gigas microsatellites how much to number of repetitions.

https://doi.org/10.1371/journal.pone.0240002.g001
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trinucleotides (1,054), 8.3% were tetranucleotides (725), 8.2% were pentanucleotides (91) and

7.8% were hexanucleotides (71) (Fig 2).

2.2. Multiplex system

The broad panel generated in our study allowed the fast selection and validation of 12 tetranu-

cleotide microsatellite loci on a multiplex system (Agig13519, Agig50571, Agig58115,

Agig08356, Agig67103, Agig93614, Agig33291, Agig90836, Agig05001, Agig70664, Agig08912

and Agig06409). The multiplex system presented a high resolution, with no overlap between

the microsatellite alleles and no artifact peaks (Fig 3). Moreover, we did not detect any geno-

typing errors attributed to stutter bands, large allele dropouts or null alleles, which are frequent

in dinucleotide microsatellites.

The panel was used to evaluate a wild population of A. gigas from Santarem (n = 30). The

obtained data revealed a total of 73 alleles. The average rate of alleles per locus (NA) is 6.08.

The observed (HO) and expected (HE) heterozygosity rates range from 0.867 (Agig 33291) to

0.100 (Agig 05001), with an average of 0.59 and 0.64, respectively (Table 2).

There was no significant deviation from Hardy-Weinberg equilibrium (HWE) after Bonfer-

roni correction (p<0.0041). Loci pairs in linkage disequilibrium (LD) were not registered. The

average inbreeding coefficient value (FIS) was 0.06.

Forensic parameters investigated for this multiplex system presented average polymorphic

informative content (PIC) value of 0.53. The average power of discrimination (PD) was 0.77

and the power of exclusion (PE) was 0.33. The average combined power of discrimination

(CPD) and the combined power of exclusion (CPE) for the 12 microsatellite markers investi-

gated was 0.999 and 0.999, respectively (Table 2).

3. Discussion

The rapid development of sequencing technologies allowed the obtention of complete genome

sequences from an increasing number of species [33], which is an excellent source for identifi-

cation of microsatellite markers already used in several species [34–38]. However, the use of

Fig 2. Distribution of microsatellites in genic, intergenic and genome regions in Arapaima gigas.

https://doi.org/10.1371/journal.pone.0240002.g002

PLOS ONE A microsatellite panel for use in studies about the genetic diversity of Arapaima gigas

PLOS ONE | https://doi.org/10.1371/journal.pone.0240002 February 24, 2021 5 / 14

https://doi.org/10.1371/journal.pone.0240002.g002
https://doi.org/10.1371/journal.pone.0240002


PLOS ONE A microsatellite panel for use in studies about the genetic diversity of Arapaima gigas

PLOS ONE | https://doi.org/10.1371/journal.pone.0240002 February 24, 2021 6 / 14

https://doi.org/10.1371/journal.pone.0240002


sequencing Technologies demands laboratories equipped with high infrastructure and skilled

personal resources, which in many cases does not match the reality of several laboratories in

the Amazon region.

Fig 3. Multiplex PCR panel electrophoretogram for Arapaima gigas showing the allele size range obtained using the ABI 3130 Genetic Analyzer

(Applied Biosystems) and the GeneMapper 3.7 (Applied Biosystems) software and discrimination power per locus. Colors were assigned to

microsatellite primers labeled with 6-FAM (blue), HEX (green), NED (black), and PET (red) fluorescent dyes.

https://doi.org/10.1371/journal.pone.0240002.g003

Table 2. PCR multiplex panel characteristics of 12 microsatellite markers of Arapaima gigas, which was used to genotype 30 individuals from Santarém, a city in

the Brazilian Amazon.

Locus (GenBank) Primer (5’!3’) Repeat

Motif

Dye Proportion in

primer #
NA (Size

Range)

HO HE FIS PIC PD PE

Agig13519

(MN190311)

F:� GTGGAGAAATGGAGAATTGCAT (ATAG)16 6 –

FAM

0.25 9 (153–201) 0.667 0.782 0.15 0.736 0.915 0.378

R: CATGGTTTTTCCTCAAAACAGC

Agig50571�

(MN190312)

F:
�GATCTCACACATACACTGGCTTG

(GATA)16 0.5 10 (233–

273)

0.667 0.849 0.217 0.815 0.927 0.379

R: AGTTTGACTGTTACACGCAGGA

Agig58115

(MN190313)

F:�

ATATCACACCCTACATCCTCCTAAA
(AGAT)16 0.5 5 (311–343) 0.5 0.486 -0.03 0.446 0.667 0.187

R: GAAGCTGAAATGCAAGAACTCA

Agig08356

(MN190314)

F: �ACCTCTCACCCAAGTCAAGAAA (ATCT)15 HEX 0.5 5 (165–189) 0.6 0.589 -0.02 0.546 0.782 0.291

R:
GAAATGGGATACACAACACTACACA

Agig67103

(MN190315)

F: �TCAGACTCAATACCTCCGTCCT (ATCT)16 0.6 5 (283–311) 0.633 0.563 -0.128 0.471 0.689 0.333

R: CCTTGGTTCCCCTTATCTTACA

Agig93614

(MN190316)

F: �CAGGAAAGGGGTAGAACTCGTA (ATCT)17 0.6 6 (373–393) 0.7 0.698 -0.003 0.651 0.851 0.428

R: GAGAGAGACAGTGGCATTCAAA

Agig33291

(MN190317)

F:
�GGGGTAGTCTTTTGATGTTAAGGA

(ATCT)16 NED 0.5 8 (181–209) 0.867 0.842 -0.029 0.808 0.915 0.728

R: ATGACCAGGAGCAATACAAACC

Agig90836

(MN190318)

F:
�CAGTCAGCAGTTGGTATGGAGTT

(GATG)18 0.6 10 (308–

352)

0.833 0.854 0.025 0.822 0.935 0.662

R: GGCCTCAGCTTCTCTAAAATGAC

Agig05001

(MN190319)

F: �AGTGACCTGCATTGGACAGAT (GATG)16 PET 0.6 2 (180–184) 0.1 0.097 -0.036 0.09 0.180 0.008

R: TGCACCATTGTTTTGCCTAA

Agig70664

(MN190321)

F: �TGCAGGTAGTTTCATAGCCTGA (TGGA)16 0.6 4 (252–272) 0.5 0.65 0.234 0.58 0.798 0.187

R: AGAGCGGGATTTGAACATAAGA

Agig08912

(MN190320)

F:
�CCCTGGTTCTAGTGACAGTTCAG

(ATCT)15 0.6 4 (330–342) 0.5 0.585 0.147 0.485 0.722 0.187

R: GGATGCGTTTTGTATCAGGAA

Agig06409

(MN190322)

F: �CGGTCCTCAAATATGCATTACA (TGGA)16 0.6 5 (364–380) 0.533 0.655 0.188 0.601 0.818 0.218

R: GATGCAAGCAAAGAACAGACAC

Average 6.08 0.59 0.64 0.06 0.59 0.77 0.33

CPD >0.999

CPE >0.999

Abbreviations: F, forward primer; R, reverse primer; NA, allele number per locus; HO, observed heterozygosity; HE, expected heterozygosity; FIS, inbreeding

coefficient; PIC, polymorphism information content; PD, power of discrimination; PE, power of exclusion; CPD, combined power of discrimination; CPE, combined

power of exclusion.

�Fluorescent dye added in the forward primer.

#Relative proportion in primer mix, made up from 100 μM solutions.

https://doi.org/10.1371/journal.pone.0240002.t002
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In this study, we identified a microsatellites panel based on sequences of the complete

genome of A. gigas, a low-cost approach which can be standardized for use in laboratories

equipped with both in high or low-cost infrastructure, and can be applied in studies concern-

ing the population genetics, conservation and forensic biology of the A. gigas, and the sustain-

able management of this species in aquaculture.

Microsatellite markers with number of repeats among 15–20 tend to be highly polymorphic

[39], being the most indicated for population genetic studies. The panel of microsatellite mark-

ers developed for A. gigas included the dinucleotide, trinucleotide and tetranucleotide classes

presenting motifs with repeats within this range (Fig 1), however the tetranucleotides markers

produced weaker stutter bands and had no artificial multiband patterns [40].

Microsatellite markers are observed in almost all known eukaryotic and prokaryotic

genomes, both in coding and noncoding regions [41]. In the A. gigas genome, microsatellite

markers are more abundant in non-coding sequences, here called genomic regions (Fig 2).

This corroborates data available in the literature towards the distribution of these markers–

which may be explained by the fact that, in promoter regions, the length of microsatellites may

influence the transcription activity [42].

It is suggested that microsatellite polymorphisms are associated with the number of loci

replications [43]. Microsatellites with higher number of repeats are more prone to mutation/

expansion than those with fewer replicates. The correlation between repeat length and micro-

satellite variability is comprehensible according to replication slippage model, which is a

widely accepted mutation mechanism [44]. Another variable could be the microsatellite classi-

fication, and their results indicate that tetranucleotide microsatellites have the lowest polymor-

phism rate, comparing to dinucleotide microsatellites. Hence, we emphasize the importance

considering the number of repeats and the class of the microsatellite while selecting markers

for the accomplishment of scientific studies.

In the last years, several studies aiming to elucidate population genetics and conservation

biology of the A. gigas have used dinucleotide microsatellites as molecular markers, as reported

by Farias et al., 2003 [45], among other studies [19, 46–50]. However, our results reveal that

the use of tetranucleotide microsatellite markers has higher cost-effectiveness and may be suit-

able for laboratories equipped with high-technology or low-cost labs. Nevertheless, it is impor-

tant to consider the necessity of standardization of allelic designation and internal size-

standards, so the data interchange among different laboratories will become more effective

and accurate [51]

To validate our findings, we developed a multiplex system using the panel of 12 microsatel-

lite markers to evaluate the conservation status of an A. gigas population. This tetranucleotide

microsatellite markers of the multiplex system have the advantage of being highly polymor-

phic, more stable and presenting clearer bands than the dinucleotide markers described in

literature.

It is important to emphasize that the history of fierce fishing exploitation of the A. gigas is a

determinant factor for the findings of this study in the population of Santarem. The reduction

Table 3. Parameters modified in SSRIT analysis.

Motif Length Minimum Number of Repeats

2 10

3 8

4 6

5 5

6–12 4

https://doi.org/10.1371/journal.pone.0240002.t003
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of natural populations and the decrease in average volume and length of the specimens landed

in the Amazon due to overfishing soon lead to the fishing collapse in 1970 [52]. This suggest

that these populations may have undergone a bottleneck effect, leading to a loss of genetic vari-

ability, however, more studies are necessary to probe this hypothesis.

Among the investigated forensic parameters, the values of PIC were considered satisfying

accordingly to the scale reported by Botstein et al., 1980 [53]. The CPD and CPE values of this

panel allow the distinction of one individual in one billion, which is similar to other multiplex

genotyping systems. For instance, the system reported by Hamoy et al., 2012 [54] was used in

conservation studies and in the aquaculture support.

Population genetics data are undoubtedly the most important component of the baseline of

any conservation and management plan [55]. The broad microsatellite panel developed for A.

gigas opens perspectives for studies in as many fields as bioinformatics, ecology, genetics, evo-

lution, and comparative studies among species [32]. And the multiplex system designed for A.

gigas allows an accurate, faster, cost-effective, and affordable genotyping for low-income labo-

ratories and conservation studies focusing on this species.

The set of 12 loci was able to measure the genetic variability of the investigated population,

providing high statistic power data, sufficient for determining kinship patterns for population

attribution tests. Therefore, this multiplex system can represent a valuable and powerful tool

for small and large-scale studies in the areas of forensic/conservation biology and population

genetics, furthermore, it can also be used as a tool for the management of wild and cultivated

populations of A. gigas.

4. Materials and methods

4.1. Data mining

The development of this study was based on the complete genome of Arapaima gigas, pub-

lished by Vialle et al., 2018 [32], available from the National Center for Biotechnology Infor-

mation (NCBI) database (https://www.ncbi.nlm.nih.gov/assembly), ID: 12404.

Raw sequencing data are available at Figshare Data Repository: https://doi.org/10.6084/m9.

figshare.8088533, https://doi.org/10.6084/m9.figshare.8088629.

4.2. Bioinformatics analysis

Simple Sequence Repeat Identification Tool (SSRIT) [39] was used to find all simple sequence

repeats (SSRs). We changed the default parameters related to motif-repeat in the source code

of SSRIT, which was made in Perl, to specify motif length and the minimum number of repeats

(Table 3). The other attributes remained with their default values.

Microsatellites sequences counted from all samples generated by the SSRIT were processed

by in-house scripts in Python (v. 3.7.2) to insert the flanking regions in the 5’ and 3’ portions

of DNA sequence, and transform them in a “doc.fasta” file. After, the sequences which exhib-

ited microsatellites were submitted to Primer 3 (v. 4.1.0), whose premise is design PCR primers

from DNA sequences. In Primer 3, the default parameters of primer length, (|Primer Opt

Size = 20|, |Primer Min Size = 18|, and |Primer Max Size = 23|) were modified to 24, 20, and

28, respectively. The parameters of primer product size range were modified for 50–1200

nucleotides.

The microsatellites were individually filtered by abundance and number of repetitions per

class, and subsequently mapped in regions of intron (intergenic region) and regions of exon

(exonic regions). The ones which are not present in any of the previous regions were classified

as belonging to the genome. The development of all figures was made using Matplotlib (v.

3.0.1), which is a Python 2D plotting library.
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4.3. Validation of the multiplex microsatellite system

4.3.1. Sample collection and DNA extraction. This research was approved by the Ethics

Committee on Animal Use (CEUA) of the Federal Rural University of Amazon—UFRA, pro-

tocol number 055/2017 (CEUA)– 23084.017501/2017-02 (UFRA).

We collected 2 g of muscle tissue of 30 specimens of A. gigas from a fishing vessel landed at

the city of Santarem, localized in the Low Amazon mesoregion, Brazil. The samples were pre-

served in 70% ethanol and posteriorly stored in -20˚C.

Total genomic DNA was extracted from the digested tissue in proteinase K solution/

Sodium Dodecyl Sulfate (SDS) and purified in Phenol/Chloroform, followed by precipitation

in Isopropanol [56]. The DNA concentration was measured in the NanoDrop ND1000 spec-

trophotometer (Thermo Scientific).

4.3.2. Selection of microsatellites and polymorphism testing. After assembling the

broad microsatellite panel for A. gigas, a total of 12 microsatellite markers were selected to

compose the multiplex system, according to the following criteria: tetranucleotide microsatel-

lites, with at least 15 repeats and at maximum 20 repeats, outside of coding regions. The poly-

morphisms of the 12 selected loci were tested in 7% polyacrylamide gel electrophoresis,

stained with silver nitrate.

4.3.3. Primer testing and genotyping. The possibility of formation of secondary struc-

tures among the primers was tested in AutoDimer Software [57]. A PCR reaction consisting of

the simultaneous amplification of 12 markers was standardized to a final volume of 9.5 μL,

using 5.0 μL 2X Qiagen Multiplex PCR Master Mix (Qiagen), 1.0 μL of Q-Solution (Qiagen),

2.0 μL of H2O, 0.5 μL of primer mix, and 1.0 μL of genomic DNA. The relative proportion of

each primer in the primer mix (made up of 100 μM solutions) is listed in Table 1. The reac-

tions were optimized to amplify 5 ng of genomic DNA.

Amplification reactions were performed in a Veriti thermocycler (Applied Biosystems).

The thermocycling conditions were: initial denaturation at 95˚C for 15 min, followed by 10

cycles at 94˚C for 30 s, 60˚C for 90 s, and 72˚C for 60 s; 20 cycles at 94˚C for 30 s, 58˚C for 90

s, and 72˚C for 60 s, and a final extension at 72˚C for 60 min, 10˚ for min. Then, 1 μL of the

amplification resulting solution was mixed with 8.5 μL of Hi-Di deionized formamide

(Applied Biosystems), and 0.5 μL of GeneScan 500 LIZ (Applied Biosystems) as a molecular

weight standard. The final product was analyzed using an ABI 3130 Genetic Analyzer (Applied

Biosystems). The determination of fragment size and allele designation was done with the

GeneMapper 3.7 software (Applied Biosystems).

4.4. Statistical analysis

The dataset was checked for genotyping errors and null alleles using Micro-Checker [58]. We

analyzed the genetic variability using the allele number per locus (NA), the observed (HO) and

expected (HE) heterozygosity indexes, and the deviation from Hardy-Weinberg equilibrium

(HWE), using Arlequin 3.5.1.257 [59], followed by Bonferroni’s correction [60]. The same pro-

gram was used to determine the proportion of locus pairs in linkage disequilibrium (LD).

The inbreeding coefficient (FIS) was calculated in GENEPOP [61]. The polymorphism

information content (PIC), the power of discrimination (PD), and the power of exclusion (PE)

for all markers using the forensic statistic tool FORSTAT [62].
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na Pan-Amazônia, Figueiredo E.S.A., Eds.; IDSM: Tefé, Brasil, 2013; pp. 17–31.
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