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Automatic tissue segmentation in whole-slide images (WSIs) is a critical task in hematoxylin and eosin- (H&E-) stained
histopathological images for accurate diagnosis and risk stratification of lung cancer. Patch classification and stitching the
classification results can fast conduct tissue segmentation of WSIs. However, due to the tumour heterogeneity, large intraclass
variability and small interclass variability make the classification task challenging. In this paper, we propose a novel bilinear
convolutional neural network- (Bilinear-CNN-) based model with a bilinear convolutional module and a soft attention module
to tackle this problem. This method investigates the intraclass semantic correspondence and focuses on the more
distinguishable features that make feature output variations relatively large between interclass. The performance of the
Bilinear-CNN-based model is compared with other state-of-the-art methods on the histopathological classification dataset,
which consists of 107.7 k patches of lung cancer. We further evaluate our proposed algorithm on an additional dataset from
colorectal cancer. Extensive experiments show that the performance of our proposed method is superior to that of previous
state-of-the-art ones and the interpretability of our proposed method is demonstrated by Grad-CAM.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths
worldwide [1, 2]. Precise diagnosis is crucial for treatment
planning. Histological assessment of hematoxylin and eosin-
(H&E-) stained tissue specimens remains the gold standard
for lung cancer diagnosis [3, 4]. In clinical practice, patholo-
gists use their domain knowledge and experience to assess
the complex morphological and cytological features of tissue

samples under a light microscope to diagnose [5, 6]. How-
ever, the process is time-consuming, subjective, with consid-
erable inter- and intraobserver variability [3, 7]. Recently,
digital pathology, converting conventional glass slides into
digital resources known as whole-slide images (WSIs), rises
the development of automatic diagnosis [8–10]. One of the
most needs for automatic disease diagnosis is to distinguish
different tissue components (tumour epithelium, stroma,
necrosis, tumour-infiltrating lymphocytes, etc.) in H&E-
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stained WSIs [11–13]. Therefore, an initial step in automatic
diagnosis is to develop a robust automatic tissue segmenta-
tion algorithm.

Deep learning models have demonstrated a strong seg-
mentation ability in histopathological images [14–16]. Vari-
ous DL models have been proposed for patch-level tissue
segmentations in WSIs. Xu et al. [15] proposed a DCNN
model to extract the convolutional features for classifying
epithelial and stromal in histopathological images. Zhao
et al. [17] presented a VGG19-based model for automatic
tissue segmentation and automated TSR quantification in
WSIs of colorectal cancer. Kather et al. [18] compared
recently deep learning models in histopathological images
in colon cancer and concluded that the VGG19 model
worked best at tissue classification. Chan et al. [8] applied
a CAM-based method with a fully connected conditional
random field for patch-level tissue segmentation. Xu et al.
[14] proposed a DenseNet-based approach with focal loss
to deal with class imbalance in histopathological images.
Anklin et al. [19] proposed a weakly supervised method
based on tissue graphs to utilize inexact and incomplete
annotations to segment whole-slide images. Yang et al.
[20] found that the multimodel method was relatively better
than single model-based ones for the automatic diagnosis of
lung cancer. Li et al. [21] proposed an EfficientNet-based
model to identify tissue in histopathological images. How-
ever, they did not take into account the high heterogeneity
of tissue types (as shown in Figure 1). Even homogeneous
tissue types differ in color, shape, and texture, which pro-
vides a further challenge for automatic segmentation.

Bilinear convolutional neural network (Bilinear-CNN) is
an effective architecture for fine-grained visual recognition
tasks [22–24]. The original bilinear pooling can be general-
ized to all convolutional neural networks [25]. The bilinear
pooling provides an advantage for Bilinear-CNN in that
computational layers in networks can have a strong capacity
with pairwise interactions [25, 26].

In this paper, we propose a novel Bilinear-CNN-based
model to handle the issue of large intraclass variability and
small interclass variability in histopathological images. The
Bilinear-CNN-based model combines a bilinear convolu-
tional module and soft attention module to perform multi-
tissue classification of histopathological images in lung
cancer. It investigates the correct semantic correspondence
of intraclass and focuses on the more distinguishable fea-
tures that make feature output variations relatively large
between interclass.

2. Materials and Methods

2.1. Datasets. In this work, lung cancer and colorectal cancer
multitissue histopathological image datasets are used for
experiments.

The lung cancer multitissue histopathological image data-
set is introduced in this work. It contains 107.7 k patches from
67 slides of lung cancer, which were scanned by an Aperio-
AT2 scanner in the Department of Pathology at Guangdong
Provincial People’s Hospital, China. Each slide corresponds
to an independent patient. The training set includes 78k

image patches from 57 slides. The independent test set
includes 29.7k image patches from 10 slides. The image
patches are extracted partially overlapping tiles from H&E-
WSI images by a sliding window with the resolution of 224
× 224 (20xmagnification). The step size of the sliding window
is 56 pixels. Within this dataset, tumour epithelium (TUM),
stroma (STR), tumour-infiltrating lymphocytes (LYM), necro-
sis (NEC), bronchus (BRO), vessel (VES), normal (NOR),
background (BAC), areas polluted by carbon dust (APC),
and others (OTH) can be observed. The dataset is validated
by two experienced pathologists and judged by a senior
pathologist if there are differences in classification.

The colorectal cancer multitissue histopathological
image dataset was published by Zhao et al. [17]. Tissue types
were grouped into nine classes, including TUM, STR, LYM,
BAC, NOR, debris (DEB), mucus (MUS), smooth muscle
(MUC), and adipose (ADP). The training set included
283.1 k image patches from 191 slides. The independent test
set included 28.8 k image patches from 48 slides. Then,
image patches with the size 224 × 224 (20x magnification)
were extracted partially overlapping tiles from H&E-WSI
images. The step size of the sliding window was 84 pixels.

2.2. Methodology. In this part, we describe our proposed
two-stage multitissue segmentation algorithm. First, we
introduce a novel Bilinear-CNN-based model to discrimi-
nate multiclass tissue types. Second, patches are predicted
by our model, then stitched back to get the prediction
map. The entire algorithm for automatic tissue segmentation
is shown in Figure 2, and an overview of the proposed clas-
sification network is shown in Figure 3.

2.2.1. Classification Network. To make feature output varia-
tions relatively large between interclass and within the intra-
class, we propose a simple but effective method that
combined Bilinear-CNN and a soft attention module
(Figure 3). The portion of the network to extract the features
is ResNet50, because of its outstanding performance in
recent computer vision tasks. We remove the global average
pooling layer compared to the standard pretrained ResNet50
implementation. Instead, the features extracted by the con-
volution layer are fed into a bilinear pooling module. Then,
a soft attention module is added after the bilinear pooling
module and used to receive the features that represented
the biological significance of the tissue components, which
is the output of the bilinear pooling module. Finally, the
softmax layer is used for prediction.

(1) Bilinear Pooling Module. The bilinear pooling module
[24] is used to investigate the correct semantic correspon-
dence between the intraclass. When given an input feature
vector x ∈ Rn of a sample, the general linear transformation
can be expressed as

y = b +wTx, ð1Þ

where y is the output of a node, b is the bias, w ∈ Rn is the
corresponding transformation weight matrix, and the
dimension of the input features is n.
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To investigate the correct semantic correspondence
between the intraclass, we use the bilinear pooling module
as follows:

y = b +wTx + xT FT Fx, ð2Þ

where F ∈ Rk×n is the corresponding reciprocity weight
matrix with k ∈N+ factors.

To illustrate the bilinear pool module more clearly, the
expression of Equation (2) can be expatiated as

y = b + 〠
n

i=1
wixi + 〠

n

i=1
〠
n

j=1
f i, f j

D E
xixj: ð3Þ

The ith value of the input x is xi. The ith variable of the
first-order weight is wi, and the ith column of F is f i. h f i, f ji
is the inner product of f i and f j, which explains the interac-
tion between the ith and jth values of the input feature
vector.

Compared to other deep learning models, we not only
use first-order features but also use second-order features
to achieve better classification. The bilinear pooling module
can help the convolution layer and full connection layer to
break through linear transformation, capture nonlinear fea-
tures, improve the richness of extracted features, and thus

obtain bilinear features of the same subclass, which we use
as input into the attention module.

(2) Soft Attention Module. The soft attention module [27]
receives the bilinear features of the same subclass and
increases the feature output variations between different
subclass. The attention module provides an attention weight
for features that can be participated in backpropagation.
First, matrix multiplication between attention weights with
feature vector is performed. Then, we get the scalar by using
the softmax function, which can be learned with training
iterations. Finally, we take the corresponding scalar and
matrix multiply each neuron, and sum to get the distinguish-
able features as follows:

c = 〠
n

i=1
ai f i, ð4Þ

where c is the distinguishable feature, ai is the ith variable of
the attention weight a, and f i is the ith value of the input fea-
ture y from Equation (3).

The expression of the differentiable a can be explained as

ai =
exp eið Þ

∑n
i=1exp eið Þ , ð5Þ

(a) (b)

(c) (d)

(e)

Figure 1: Example images of the (a–d) tumour epithelium and (e) stroma. Tumour epithelium (a–d) has large intraclass variability. (e)
Stroma has small interclass variability with (c) tumour epithelium.
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where ei is ith value of the scalar and e is expatiated as

e = 〠
n

i=1
wif i, ð6Þ

where wi is ith variable of the attention weight, which can be
learned with training iterations.

The soft attention module can improve the ability of the
model to learn distinguishable features of different subclass

in histopathological images. The scalar is used to make the
model focus on the more distinguishable features, and with
the learning, important distinguishable features become
more prominent in the model. And we have demonstrated
the effectiveness of this method through experiments. The
details of the experiments are shown in Section 2.3.

2.2.2. Transfer Learning. In the lung multitissue histopathol-
ogical image classification task, the classification network
pretrained with transfer learning. This strategy can make

Rough segmentationH&E WSI

Colorectal cancer
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Training set

Lung cancer
data set

Stage 1:

Stage 2:

Pre-trained model CNN model

Transfer learning

Confidence interval

TUM
LYM
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NOR
VES
BRO
NEC
APC
BAC
OTH

Classification network
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Figure 2: An overview of the proposed multitissue segmentation algorithm. Stage 1: a classification network is pretrained on the colorectal
cancer dataset, and transfer learning is used to train the classification network with the training set of the lung cancer dataset. The
independent image dataset is used to evaluate the classification accuracy of the network. Stage 2: H&E-WSI image (20x magnification) is
segmented through stitching the classification results tile by tile. H&E: hematoxylin and eosin; WSI: whole-slide image; TUM: tumour
epithelium; LYM: tumour-infiltrating lymphocytes; STR: stroma; NOR: normal; VES: vessel; BRO: bronchus; NEC: necrosis; APC: areas
polluted by carbon dust; BAC: background; OTH: others.

Input
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Figure 3: An overview of the proposed classification network. First, the images are fed into ResNet50 to get the feature maps, and feature
maps are input to the bilinear function to obtain the bilinear vector; then, the attention weight is got from the attention function, and finally,
the bilinear vector multiplies the attention weight to obtain the attention feature flowed into the softmax layer for classification.
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better use of existing public multitissue histopathological
image datasets and achieve better results on the multitissue
classification task. We used the Bilinear-CNN-based model
trained on colorectal cancer multitissue histopathological
image dataset as the pretrained model. And then, we fine-
tuned the model in the lung multitissue histopathological
images dataset based on the pretrained model.

2.2.3. Visual Interpretability of the Classification Network. To
demonstrate that the Bilinear-CNN-based model can iden-
tify the tissue types, we utilized the Grad-CAM to generate
the visual interpretability of the classification network.
Grad-CAM [28] describes a visual explanation of models
based on object gradients. A localization map of important
image regions is highlighted by Grad-CAM. In the
decision-making process, the gradient information flowing
into the last convolutional layer of the CNN is utilized by
Grad-CAM to assess the importance of features.

2.2.4. Segmentation Map. The trained Bilinear-CNN-based
model is used for patch-level multitissue segmentation on
histopathological images, and a predictive segmentation
map is generated. The detailed operations are as follows.
First, we use OpenSlide software to downsample the WSI
of lung cancer to get the tissue mask. To distinguish tissue
from the background, the tissue region is obtained by
threshold segmentation algorithm from the tissue mask.
Overlapping tiles are extracted partially by a sliding window
with a size of 224 × 224 from the tissue region. The step size
of the sliding window is set at 128 pixels. Then, each image
tile is input into the trained multitissue classification model
to generate a prediction probability. Finally, the tissue class
with the highest prediction probability is selected as the clas-
sification result of the image tile.

2.3. Implementation and Training Details. The study was
implemented with the open-source software library PyTorch
version 1.6.0 on a workstation with Intel(R) Core(TM) i5-
10600KF CPU, 32GB memory, and equipped with NVIDIA
GeForce 3090 GPU. During training, the augmentation
techniques were applied for the training dataset, including
rotations, normalized color appearance, and horizontal flip-
ping. All models in this implementation received input
patches of size 224 × 224. All models were trained with a
batch size of 32, weight decay of 1e − 4, and momentum of
0.9 for 80 epochs. Adam optimization with a learning rate
of 3e − 4 was used on the colorectal cancer multitissue histo-
pathological image dataset. We used Adam optimization
with an initial learning rate of 3e − 4, and then, it reduced
to one-tenth if the loss stopped reducing for 30 epochs on
the lung cancer multitissue histopathological image dataset.

3. Results

We made independent comparisons to the evaluated model
on the lung cancer dataset and an additional dataset from
colorectal cancer. Our proposed model was compared to
state-of-the-art approaches recently used in computer vision
and models specifically designed for the task of tissue
classification.

3.1. Comparison on the Lung Cancer Dataset. For compari-
son of existing models on the lung cancer dataset, all models
were pretrained on the colorectal cancer dataset. The results
of the comparison are shown in Tables 1 and 2. Figure 4(a)
shows the comparison between the ResNet50 model with a
bilinear pooling module and attention module and other
models concerning the loss on the lung cancer dataset. The
loss of the proposed model decreases much faster and

Table 1: Results on lung cancer dataset (all models pretrained on colorectal cancer dataset).

Model Average precision Average recall Average F1

ResNet50 [29] 0.9239 0.9279 0.9259

VGG19 [30] 0.9185 0.9238 0.9211

EfficientNet [31] 0.9184 0.9295 0.9239

DeepTissue Net [14] 0.9218 0.9250 0.9234

ResNet50+bilinear pooling module 0.9253 0.9286 0.9269

ResNet50+attention module 0.9268 0.9291 0.9279

ResNet50+bilinear pooling module+attention module 0.9394 0.9415 0.9404

Table 2: The classification F1 score of tissue types on lung cancer dataset.

Model TUM LYM STR NOR VES BRO NEC APC BAC OTH

ResNet50 [29] 0.9686 0.9914 0.8687 0.8532 0.8512 0.9615 0.9668 0.9962 0.9959 0.7734

VGG19 [30] 0.9639 0.9913 0.8720 0.8354 0.8821 0.9545 0.9628 0.9939 0.9944 0.7219

EfficientNet [31] 0.9514 0.9789 0.8854 0.8414 0.8768 0.9533 0.9689 0.9955 0.9957 0.7326

DeepTissue Net [14] 0.9331 0.9640 0.8669 0.8635 0.8973 0.9542 0.9589 0.9967 0.9915 0.7852

ResNet50+bilinear pooling module 0.9698 0.9911 0.8753 0.8658 0.8736 0.9538 0.9638 0.9969 0.9936 0.7857

ResNet50+attention module 0.9712 0.9916 0.8862 0.8732 0.8954 0.9582 0.9615 0.9972 0.9931 0.7516

ResNet50+bilinear pooling module+attention module 0.9739 0.9911 0.9056 0.8788 0.9186 0.9586 0.9766 0.9952 0.9935 0.8025
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smoother than that of other models, demonstrating its supe-
rior convergence speed. The ResNet50 model with bilinear
pooling module and attention module achieves the best
performance.

To analyze which image regions the proposed model
focused on, heatmaps of different models are shown in
Figure 5. A localization map of important image regions in
heatmaps is highlighted by Grad-CAM. Heatmaps of the
four most common tissue types are shown, and the slides
of lung cancer scanned in 20x magnification factor are
selected at random. Figure 5 shows the heatmaps of different
models by Grad-CAM which highlights the importance of
regions for classification and demonstrates a better focus of
the ResNet50 model with bilinear pooling module and atten-
tion module on histopathological regions than classic CNNs.

3.2. Comparison on the Colorectal Cancer Dataset. To further
evaluate our proposed algorithm, the comparative experi-
ments on an additional dataset from colorectal cancer were
implemented. On the colorectal cancer dataset, the pre-
trained model with ImageNet was used. ImageNet is a large
image dataset containing hundreds and thousands of
images. In transfer learning tasks, ImageNet is usually used
for pretrained models. This public dataset was used to assess
the generalization ability and robustness of our multitissue
classification model. The results of the comparison are
shown in Tables 3 and 4. Figure 4(b) shows the comparison
between the ResNet50 model with a bilinear pooling module
and attention module and other models concerning the loss
on the colorectal cancer dataset. The loss of the proposed
model converges faster than in other models. The results
illustrate that the proposed model combines the bilinear
pooling module and soft attention module to make feature
output variations relatively large between interclass and
within the intraclass, learn the distinguishable features, and
improve the accuracy of the multitissue classification task.

Several conclusions can be drawn: (1) The result of the
proposed method is superior to state-of-the-arts recently.
(2) the ResNet50 model with bilinear pooling module and
attention module achieves the highest classification accuracy
in the test, and it is shown that the Bilinear-CNN-based
model works well on the multitissue task and effectively alle-
viates the problem of large intraclass variability and small
interclass variability. (3) The model combined Bilinear-
CNN, and soft attention module is suitable for the multitis-
sue task.

3.3. Visualizing the Segmentation Results of WSIs. The seg-
mentation result of H&E-stained WSIs in lung cancer is
drawn as a map covered on the tiles with various colours
representing the output tissue types. In Figure 6, colour
standing for each tissue type is randomly selected. The pre-
dictions of tissue types are observed and mapped to the in
situ tissues. Our method obtains the tissue mask of the
downscaled WSI. A threshold segmentation algorithm is
used to distinguish tissue from the background and then
get the tissue region from the tissue mask. Figure 6 also
shows that the predicted regions by our classifier are highly
consistent with the distribution of tissue types in histopa-
thological images.

4. Discussion

Automatic tissue segmentation is faced with a challenge in
that whole-slide images usually have a large resolution and
cannot be directly fed into CNNs. This challenge cannot be
alleviated by resizing the image size, which causes the loss
of much information. Moreover, in the study of lung cancer
histopathological images, the existing works are basically
based on the backbone of natural image classification to
identify the tissue types. In addition, compared with natural
images, histopathological images are high heterogeneity in
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Figure 4: Convergence analysis of models. Implementation and training details of all models are consistent with Section 2.3. (a) Loss on
lung cancer dataset. (b) Loss on colorectal cancer dataset. (1) EfficientNet, (2) DeepTissue Net, (3) VGG19, (4) ResNet50, and (5)
ResNet50 model with bilinear pooling module and attention module.
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Figure 5: Heatmap of different models generated by Grad-CAM. (a) Slides of lung cancer scanned in 20x magnification factor, (b) heatmap
of DeepTissue Net, (c) heatmap of ResNet50, (d) heatmap of the ResNet50 model with bilinear pooling module and attention module. It
shows that the ResNet50 model with bilinear pooling module and attention module can detect the largest histopathological region. TUM:
tumour epithelium; STR: stroma; LYM: tumour-infiltrating lymphocytes; NEC: necrosis.

Table 3: Results on colorectal cancer dataset (all models were pretrained on ImageNet).

Model Average precision Average recall Average F1

VGG19 [30] 0.9650 0.9660 0.9655

DeepTissue Net [14] 0.9770 0.9775 0.9772

EfficientNet [31] 0.9779 0.9784 0.9781

ResNet50 [29] 0.9736 0.9746 0.9741

ResNet50+bilinear pooling module 0.9764 0.9771 0.9767

ResNet50+attention module 0.9789 0.9794 0.9791

ResNet50+bilinear pooling module+attention module 0.9823 0.9826 0.9824

Table 4: The classification F1 score of tissue types on colorectal cancer dataset.

Model TUM STR LYM MUC MUS NOR BAC DEB ADI

VGG19 [30] 0.9870 0.9266 0.9773 0.9748 0.9662 0.9720 0.9586 0.9642 0.9580

DeepTissue Net [14] 0.9806 0.9413 0.9722 0.9784 0.9742 0.9806 0.9988 0.9711 0.9958

EfficientNet [31] 0.9814 0.9569 0.9827 0.9665 0.9671 0.9818 0.9982 0.9718 0.9942

ResNet50 [29] 0.9756 0.9243 0.9673 0.9852 0.9568 0.9866 0.9978 0.9729 0.9972

ResNet50+bilinear pooling module 0.9787 0.9502 0.9808 0.9614 0.9602 0.9869 0.9978 0.9771 0.9940

ResNet50+attention module 0.9803 0.9554 0.9810 0.9667 0.9826 0.9851 0.9974 0.9673 0.9940

ResNet50+bilinear pooling module+attention module 0.9860 0.9591 0.9845 0.9763 0.9693 0.9879 0.9982 0.9830 0.9966
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different tissue types with large intraclass variability and
small interclass variability.

To address these issues, we propose a two-stage auto-
mated tissue segmentation framework. In the first stage,
large resolution WSIs are cut into small patches and then
feed into the proposed classification model to predict sepa-
rately. To alleviate the issue of large intraclass variability
and small interclass variability, we introduce a Bilinear-
CNN-based classification model. In previous studies, Kather
et al. [18] used the VGG model to extract deep learning fea-
ture to identify tissue types. In Results, experimental results
show that the VGG model does not perform well in the face
of high heterogeneity of multiple tissue types. It is guessed
that the model is designed for natural images and does not
take into account the subtle features of pathological images.
Chan et al. [8] improved the CNN model combined with
Grad-CAM for the segmentation and classification of histo-
logical images. It relies on the task-specific postprocessing
steps and generalizes poorly. Different from the previous
approaches, this Bilinear-CNN-based classification network
investigates the correct semantic correspondence between
the intraclass by bilinear convolutional module and focuses
on the distinguishable features of the interclass by soft atten-
tion module. The classification network can capture subtle
features of pathological images well. The classification result
of the proposed method is superior to state-of-the-arts
recently. In addition, Figure 4 shows the proposed model
has the fastest convergence speed than that of other models.
Heatmaps generated by Grad-CAM provide visual interpret-
ability of the classification results. It shows that this network

is more sensitive to histopathological regions than classic
CNNs. In the second stage, the classification results are
stitched tile by tile to implement automatic tissue segmenta-
tion. Zhao et al. [17] input each image tile of entire WSI into
the CNN model, including the background. In our method,
the threshold segmentation algorithm is introduced to dis-
tinguish the tissue region from the background, and then,
the category prediction of the tissue region is carried out.
Compared with directly traversing the whole WSI, a large
number of redundant computing overhead is reduced and
the efficiency of WSI segmentation is improved.

Although our method is effective for lung cancer seg-
mentation, some limitations remain. Our method uses the
histopathological dataset for pretrained models to accelerate
the training convergence. However, the histopathological
dataset is not as convenient as ImageNet for different models
because there are no prepared pretrained models like Ima-
geNet. Moreover, the result of segmentation is patch-level,
which is roughly compared with semantic segmentation.
But the proposed framework uses image-level annotations
to complete the segmentation tasks. Image-level annotations
are easier to obtain than pixel-level annotations. Therefore,
bridging the gap between image-level annotations and
pixel-level segmentation will be the focus of the future
investigation.

5. Conclusions

In this paper, we propose an automated tissue segmentation
framework with two stages. In the first stage, the classification

(a)

TUM
LYM
STR
NOR
VES

BRO
NEC
APC
BAC
OTH

(b)

Figure 6: (a) Examples of H&E-stained WSIs in lung cancer and (b) corresponding segmented results.
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model combines a bilinear convolutional module and soft
attention module to improve the accuracy of tissue classifica-
tion. In the second stage, the threshold segmentation algo-
rithm distinguishes tissue from the background to avoid
redundant computing of the background. The framework
completes the tissue segmentation task via utilizing the
image-level annotations.

Data Availability

Previously reported colorectal cancer data was used to sup-
port this study and is available at doi:10.5281/zenodo
.4024676. This prior study (and dataset) is cited at a relevant
place within the text as Reference [17]. The lung cancer data
used to support the findings of this study have not been
made available because of third-party rights. The code will
be available at https://github.com/Hellowmyname/bcnn_
attention_lung.
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