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Abstract

Specific binding between proteins plays a crucial role in molecular functions and biological processes. Protein binding
interfaces and their atomic contacts are typically defined by simple criteria, such as distance-based definitions that only use
some threshold of spatial distance in previous studies. These definitions neglect the nearby atomic organization of contact
atoms, and thus detect predominant contacts which are interrupted by other atoms. It is questionable whether such kinds
of interrupted contacts are as important as other contacts in protein binding. To tackle this challenge, we propose a new
definition called beta (b) atomic contacts. Our definition, founded on the b-skeletons in computational geometry, requires
that there is no other atom in the contact spheres defined by two contact atoms; this sphere is similar to the van der Waals
spheres of atoms. The statistical analysis on a large dataset shows that b contacts are only a small fraction of conventional
distance-based contacts. To empirically quantify the importance of b contacts, we design bACV, an SVM classifier with b
contacts as input, to classify homodimers from crystal packing. We found that our bACV is able to achieve the state-of-the-
art classification performance superior to SVM classifiers with distance-based contacts as input. Our bACV also outperforms
several existing methods when being evaluated on several datasets in previous works. The promising empirical
performance suggests that b contacts can truly identify critical specific contacts in protein binding interfaces. b contacts
thus provide a new model for more precise description of atomic organization in protein quaternary structures than
distance-based contacts.
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Introduction

Specific binding between proteins plays a fundamental role in

molecular functions and biological processes. The discovery of

governing principles behind specific protein interactions is thus an

essential issue in proteomics. Protein interactions are generally

considered to be governed by their binding interfaces which

consist of interfacial residues/atoms and their contacts. In order to

uncover contributing factors to specific interactions, binding

interfaces and their contacts are firstly quantified according to

several widely-used criteria: some definitions consider atomic

distance between atoms each from one protein [1–7], while

another more complicated definition takes into account Voronoi

diagrams of entire complexes [8–13]; the other criterion defines

binding interfaces using the change of solvent accessible surface

area (DASA) upon the formation of protein complexes [14–21].

Under these definitions, protein binding is found to be driven by

forces from those atomic contacts such as hydrogen bonds,

electrostatic interactions, van der Waals forces, salt bridges,

hydrophobic attractions, etc.

However, these criteria define an interface simply as a cluster of

spatially close atoms and their contacts but pay little attention to

the local surroundings of its defined contacts. Thus, a lot of non-

specific contacts are detected, which makes it still very difficult, if

not completely impossible, to pinpoint the governing principles

according to these existing contact definitions. One piece of

evidence for the non-specific contacts is that these definitions will

detect larger ‘binding interfaces’ in crystal packing, and it is very

hard to distinguish these crystal-packing ‘binding interfaces’ from

true ones. Here, crystal packing is the artifact of the crystallo-

graphic packing environments and is randomly formed during the

crystallization process; but they do not occur in solution or in their

physiological states [22]. With crystal packing as the reference

state, a perfect contact definition is expected to satisfy that no or

fewer contacts are detected in crystal packing; based on this

definition, crystal packing should be easily distinguished from

specific biological binding of proteins using a simple learning

algorithm.

In this work, we propose a new definition: b atomic contacts. A

b atomic contact b of atoms b and j must satisfy b-skeletons [23]

where c’s forbidden region contains no other atom. This forbidden

region is defined by the parameter b. In this work, b is set to 1,

defining a sphere with the midpoint of i and j as the center and

with the spatial distance between i and j as the diameter (similar to

the van der Waals spheres of atoms). Thus, our definition only

detects ‘‘perceptually meaningful’’ contacts. We expect b atomic

contacts to provide a more precise model of atomic organization in

protein 3D structures than the previous definitions.

To demonstrate the efficacy of our b contacts in identifying

critical atomic contacts in protein binding interfaces, we adopt b
atomic contacts to define protein interfaces and then investigate
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the difference between homodimeric interfaces and crystal-

packing interfaces. Many previous works also endeavored to

detect distinguishing characteristics of crystal packing and specific

biological binding. Some works have revealed a significant

difference between protein surfaces and interfaces in amino acid

composition, as well as a high similarity of protein surfaces to

crystal packing [16,18,24–26]. Several other methods have been

proposed to identify biological protein complexes from crystal

packing. Both Weng’s group [27] and Klebe’s group [28]

represented interfaces using atomic contact vectors (ACV), and

then took them as inputs of machine-learning algorithms to

construct efficient classifiers for distinguishing different types of

protein binding, such as permanent and transient interactions and

crystal packing [27,28]. PITA scored crystal packing using their

contact size and chemical complementarity [29]. Zhu et al. [15]

extracted six properties from interfaces, such as interface size,

amino acid composition and gap volume, and then fed them into

an SVM to train their NOXclass classifier to discriminate obligate

and non-obligate interactions and crystal packing [15]. Using

residue-based Voronoi tessellations of protein structures, Bernauer

et al. constructed an SVM classifier DiMoVo for identifying

biological protein interactions [11]. Taking the advantage of the

hypothesis that energetically important residues are generally

protected by the O-ring [30], Liu and Li designed the propensity

vector of residue contacts within the O-ring to develop OringPV

for the distinction between crystal packing and biological

interactions and between two different types of biological

interactions [31]. However, almost all of them use knowledge

extracted from the simple definitions, such as defining interfaces

using ASA change or defining interfacial contacts using a

threshold of atomic distance.

In this work, we use b atomic contacts in interfaces to classify

homodimers from crystal packing. In this classification, we

represent an interface by an ACV [27] based on b contacts, and

then design a new classifier, called b atomic contact vector

(bACV). bACV is a linear SVM classifier with selected

distinguishable types of b atomic contacts by SVM-RFE as input.

Evaluated on several previous datasets, bACV achieves better

classification than the ACV classifier simply based on the distance-

based contacts, although b atomic contacts are only a small

fraction of the contacts under the latter definition. Our bACV is

also compared with several existing methods in the literature,

including PISA, DiMoVo and NOXclass. The results demonstrate

that b contacts are superior to these methods in most cases. All

these comparisons suggest that b contacts are more capable of

capturing specific binding contacts than the other definitions. A

web server of the proposed bACV solution is also available at

http://sunim1.sce.ntu.edu.sg/liuqian/bacv/index.py.

Materials and Methods

Datasets
Three datasets in the literature are used to comprehensively

evaluate b atomic contacts.

The first Bahadur dataset contains 178 crystal packing and 113

biological homodimers from the previous works [16,19]. This

dataset has been used to develop DiMoVo [11].

The second Ponstingl dataset has 95 crystal packing and 76

homodimers [32]. This dataset has been used in several existing

works [27,28], including PITA [29] and PISA [33].

The third non-redundant dataset is compiled by [11] from the

Bahadur, Ponstingl and NOXclass datasets [15]. In this non-

redundant dataset, two proteins have no more than 30% sequence

identity. This dataset includes 314 crystal packing and 144

homodimers after preprocessing [11].

What are b atomic contacts
As presented in the File S1, the various definitions of atomic

contacts proposed in previous works have several limitations. To

tackle these limitations, we propose a new definition–-b atomic

contacts. Given a protein complex p, an atomic contact,
denoted as c(i,j), between two atoms i and j is called a b
contact if and only if
d i,jð Þƒ Td ^ c i,jð Þ [ e VD pð Þð Þ ^ c i,jð Þ [ e b pð Þð Þ. Specifically,

these three requirements are described as follows:

d i, jð ÞƒTd : This first requirement states that the surface

distance between i and j, d(i,j), must be less than or equal to Td .

Here, a surface distance of two heavy atoms is their Euclidian

distance minus the sum of their van der Waals radii as defined in

[34]. A similar surface distance definition is also used in [5,35,36].

For a simple description, the ‘distance’ in our definition and

method is always calculated in this way except when otherwise

specified. These contacts under this requirement are called

distance-based contacts.

c i, jð Þ [ e VD pð Þð Þ: For the second requirement, i and j must

share a Voronoi facet in VD(p) where VD(p) is the Voronoi

diagram of p and e(VD(p)) is a set of edges in VD(p). These

contacts under the two requirements above are called Voronoi-

based contacts.

c i, jð Þ [ e b pð Þð Þ: The last requirement indicates that c(i,j)
cannot break b-skeletons [23]. That is, c(i,j) is an edge of the b-

skeleton b(p) of p where e(b(p)) is a set of edges in b(p). These

contacts under the three requirements above are called b atomic

contacts.

A b-skeleton of a discrete set p is an undirected graph in

computational geometry where two points i and j have an edge if

any angle ikj is sharper than a threshold determined by

b,Vk [ p,k=i,j. b actually defines a forbidden region for the

contact between i and j, just like the gray regions in Figure 1(a)–(c)

with different b values. In Figure 1, two atoms i and j have an edge

in b-skeletons if there are no other atoms k whose center is in their

forbidden region. In other words, if there is any atom whose center

is in the gray region, the atomic contact between i and j is

interrupted, and the contact should not exist in b-skeletons. For

example when b = 1, two atoms i’ and j’ do not have a b contact

in Figure 1(d) because there is a k’ in their forbidden region, while

the contact between two atoms i and j is a b contact in Figure 1(e)

since any atom k is outside the forbidden region. It is also

interesting to note that in Figure 1(d), two atoms i’ and j’ have a

Voronoi-based contact, but they only share a smaller-size facet

(e.g., the dash gray line down in Figure 1(d)) which is also far away

from the center region of the contact–-the center region of the

contact between two atoms i’ and j’ is a small arch region very

close around the contact, that is, the magenta region in Figure 1(d).

Compared to this contact in the Voronoi-based definition, our b
criterion assumes that two atoms should have enough contact area

in their center region to form an important interaction.

In b-skeletons, with different values of b from bigger to smaller,

the forbidden gray regions decrease as shown in Figure 1 from (a)

to (c), and thus the number of atomic contacts in b-skeletons

increases. When b is small enough, the contacts defined on b-

skeletons are similar to those on Voronoi diagrams or even to

those on distance-based definitions. In this work, b is set to 1, and

this b-skeleton is also called the Gabriel graph [37,38]. We would

like to emphasize that (i) b-skeletons are a totally different concept

from b shape [39], a generalization of the a shape [40], which is

also commonly used in the analysis of protein structures, such as

Beta Atomic Contacts in Protein Binding Interfaces
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ASA calculation and protein shape detection; and (ii) b contacts

can be either long-range contacts or short-range contacts in

tertiary structures which are different contact definitions based on

both sequence separation and spatial distance(please refer to the

references [41–43] for the definitions of long-range contacts); but

short- and long-range contacts focus on sequence separation while

b contacts emphasize the spatial organization of atomic interac-

tions.

Detecting b atomic contacts in protein 3D structures
A protein 3D structure can be modeled as a b atomic contact

graph b(p) where heavy atoms are considered as points, and b
atomic contacts as edges. Given a protein 3D structure, its b(p) can

be produced by the following process.

First, Qhull is used to produce Delaunay triangulation [44] for

all points. Second, a surface-distance threshold Td is used to

remove those atomic contacts whose distances are too large. Td is

set to 3.3 Å (the diameter of a water molecule 2.8 Å plus 0.5 Å). Td

is the maximum surface-distance between the van der Waals

spheres of two atoms, as discussed in the b contact definition.

Thirdly, each atomic contact is checked to guarantee that it

satisfies b skeletons, that is, the Gabriel graph here. Since we are

interested in atomic contacts between proteins, all atoms which

have no contact across binding interfaces are removed.

b atomic contact vectors in protein interfaces
An atomic contact vector (ACV for short) [27] is adopted to

represent an interface. In this vector representation, all heavy

atoms of the twenty standard residues in proteins are grouped

according to twelve atomic types in the File S1. These atomic types

are similar to those in [45]. Hence, the atomic contact vector for

an interface has 78 atomic pairs (78 = 12|11
2

z 12). The value for

each pair is its occurrence in a b atomic contact graph when Td is

set to 3.3 Å. Since disulfide bonds are almost as strong as covalent

bonds, disulfide bonds whose spatial distance of two sulfur atoms

across interfaces is less than 2.6 Å are also considered as an atomic

pair in the vector. Finally, the vector for a protein interface has 79

pairs, called bACV1a (b atomic contact vectors) for short.

Similarly, we also construct bACV1 in which the surface-distance

threshold of two contact atoms is as small as 0.5 Å, that is,

Td ~ 0:5 Å.

In addition to atomic types, the distance between contact atoms

is also an important factor in protein binding. Given two atomic

pairs with the same types, one pair has a small distance between

atoms, while atoms in the other pair have a much larger distance;

the first pair generally has different importance to protein binding

from the second pair. One example with this property is hydrogen

bonds in interfaces: if a Nitrogen atom and an Oxygen atom have

less than 3.5 Å spatial distance, their contact may be a hydrogen

bond; but these two atoms cannot form a hydrogen bond directly if

their spatial distance is too large, for example, more than 5 Å.

Therefore, we take into account the surface-distance information

of atomic contacts and split bACV1a into three sub-vectors: each

of them contains atomic contacts whose surface-distance falls in

one of the three regions: #0.5, (0.5,1.9] and (1.9,3.3], and they are

named as #0.5 contacts, (0.5,1.9] contacts and (1.9,3.3] contacts

for short. Here1:9~0:5z2:8=2. This vector representation has

235 pairs (235 = (12|11
2

z12)|3z1), which is referred to as

bACV3 for short.

Meanwhile, to enable a fair comparison, distance-based ACV1

(dACV1), ACV1a (dACV1a) and ACV3 (dACV3) are also

constructed in a similar way.

Our proposed classifier bACV and evaluation measures
We want to evaluate b contacts in classifying homodimers and

crystal packing. In our classification task, a dataset of crystal

packing and homodimers is represented

byD~f(xi,yi)jyi[f{1,1gn
i~1g, where yi~{1 indicates that this

vector is from crystal packing or yi~1 indicates it is from

homodimers; n is the total number of crystal packing and

homodimers; xi is the b atomic contact vector (bACV1, bACV1a

or bACV3) for interface i. SVM with a linear kernel in LIBSVM

[46] (the freely available SVM library) is then employed to train

our classifier for identifying homodimers from crystal packing. A

short description of SVM is provided in the File S1.

In our bACV classifier, SVM-RFE (a short description of RFE

is provided in the File S1) is firstly used to find the feature set Sf

with the best accuracy for the features bACV1 or bACV1a or

bACV3. SVM-RFE uses SVM learning to obtain feature weight

wi and then removes features with the lowest value EwiE2 step-by-

step until the predefined criteria are satisfied. This process uses a

five-fold cross-validation. Then, two established ways are used to

evaluate classification performance. One is feature-selection

classification performance by using a leave-one-out cross-valida-

tion on the learning datasets. The other is the independent-dataset

testing. That is, a bACV classifier with features Sf is constructed

for predicting those complexes whose proteins have low sequence

similarity to the complexes in the dataset for feature selection. The

independent-testing datasets for the Bahadur, Ponstingl and

NOXclass datasets can be found in [11].

Finally, recall(r:), specificity(sp:), accuracy(acc:), and Mat-

thew’s correlation coefficient MCC are adopted to evaluate the

classification performance of b atomic contact vectors. Their

definitions are provided in the File S1. MCC is more meaningful

in a dataset which has a significant imbalance between the

numbers of positive and negative samples.

Figure 1. b skeletons and b contacts. Three points, i, j and k,
represent the atoms. The dash circles in blue represent van der Waals
spheres in 2D space. The lines in yellow are of interest. In the first row, if
i and j have a b contact, their surface distance is less than a threshold Td

and the gray regions are required to contain no other atom by b
skeletons when b . 1 (left), b = 1 (center) and b , 1 (right),
respectively. In (d), a region in magenta is the center area which is very
close around the line in yellow, and the dash lines represent Voronoi
facets.
doi:10.1371/journal.pone.0059737.g001
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Results and Discussion

Comparison of b atomic contacts with distance-based
atomic contacts

To demonstrate that b contacts are better than distance-based

contacts in describing protein binding interfaces, we compare

these two types of definitions from the following aspects. We firstly

measure the numbers of distance-based contacts and b atomic

contacts to see their difference. We then compare their prediction

performance on the three datasets. Following that, we provide a

detailed comparative analysis of the selected features by RFE,

especially of the top 10 atomic-contact features, for distance-based

contacts and b contacts.

b atomic contacts are a small fraction of distance-based

atomic contacts. We perform statistical analysis of the number

of atomic contacts under the three different definitions, distance-

based, Voronoi-based, and b contacts. The analysis is based on the

non-redundant dataset where Td~3:3. The result is shown in

Table 1.

From Table 1, we find that b atomic contacts are only a small

fraction of distance-based atomic contacts, i.e., 10.5% of distance-

based contacts in homodimers, and 11.3% in crystal packing.

We also show the comparison of the atoms involved in b
contacts with those in the complement of b contacts with respect to

distance-based contacts in Figure 2. These atoms and their ASA

are from the non-redundant dataset with Td~3:3. It seems that a

lot of contact atoms in distance-based contacts are not defined to

be in direct interfaces according to b contacts; Figure 2 also clearly

shows that atoms only in distance-based contacts mostly have

small ASA change after complex formation, while the atoms with

larger ASA change are mostly in b contacts.

b atomic contacts and distance-based atomic contacts in

the classification of crystal packing and homodimers. We

then compare b contacts with distance-based contacts in

classifying crystal packing and homodimers. The results are shown

in Tables 2 and 3.

It is clearly seen from Table 2 that b contacts aggregately have

better performance than distance-based contacts, although b
contacts are only a small fraction of distance-based contacts. In the

nine pair-wise comparisons in Table 2 (three pairs of bACV1

versus dACV1, bACV3 versus dACV3, and bACV1a versus

dACV1a on the three datasets), b contacts are superior in seven

times, and distance-based contacts are superior in only one (there

is one tie). For example on Bahadur, b-contact bACV3 has much

better MCC, with 7.7 percent points higher than distance-based

dACV3.

Table 3 presents the classification performance of b contacts

and distance-based contacts on the independent datasets. In these

nine comparisons, b contacts perform better in six times. Again, b
contacts aggregately demonstrate better classification performance

than distance-based contacts.

The difference between b contacts and distance-based contacts

are also evaluated by D\bACV1 and D\bACV3 which only use

the corresponding complement of b contacts with respect to

distance-based contacts, that is, those atomic contacts not in

bACV1 and bACV3 but in dACV1 and dACV3, respectively.

The results are shown in Table 3. b contacts still achieve better

performance on the independent datasets of NOXclass and

Ponstingl and similar performance on the independent dataset of

Bahadur. This similar performance should be due to the fact that

this independent dataset is easily distinguished with high

Table 1. The difference of the numbers of distance-based, Voronoi-based and b atomic contacts for 114 homodimers and 314
crystal packing.

in homodimers in crystal packing

Distance-based Voronoi-based b contacts Distance-based Voronoi-based b contacts

Voronoi-based 508,792 0 71,126 265,293 0 49,425

b contacts 579,918 71,126 0 314,718 49,425 0

Number of contacts 647,878 139,086 67,960 354,652 89,359 39,934

(4,499.262,822.3) (965.96572.8 (471.96286.4) (1,129.56533.7) (284.66125.0) (127.2657.2)

The numbers in Italics are the difference of the numbers of the contacts under the definitions of its column and row.
The number of the last two rows in bold is the number of atomic contacts under the definition of its column.
X6Y in last row: X is the mean of the number of atomic contacts in interfaces of a dataset while Y is the standard deviation.
doi:10.1371/journal.pone.0059737.t001

Figure 2. The ASA change (Å) of atoms in b contacts and in the
complement of b contacts with respect to distance-based
contacts (referred to as ‘D\Beta contacts’ for short in the
figure). The integer in bold on a bar is the number of atoms whose
ASA change falls in the region of the bar, while the percent in italics is
the corresponding percentage of atoms only in b contacts.
doi:10.1371/journal.pone.0059737.g002
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classification performance for both distance-based and b contacts

(as shown in Table 3). Meanwhile, D\bACV3 has similar

performance to dACV3, because the distance-based contacts

predominate in their used contacts.

From Tables 2 and 3, we observe that (i) bACV1 can achieve

good classification performance, which suggests that atomic

contacts with smaller distance play a vital role in protein binding;

(ii) bACV3 aggregately outperforms bACV1 and bACV1a,

indicating that atomic contacts with relatively larger distance

can also contribute to protein binding and atomic contacts with

different distances have various contributions to protein interac-

tions. In our web server, bACV3 has been made available to the

scientific community.

In conclusion, b contacts are generally more capable in

capturing critical specific binding contacts than distance-based

contacts.

Analysis of the selected features in the classifications
Top 10 selected features in b atomic contacts and in

distance-based atomic contacts. To deepen our understand-

Table 2. The comparison of feature-selection classification performance achieved by distance-based and b atomic contacts and
other methods in the literature.

Dataset distance-based contacts b contacts DiMoVo
Ref
[28]

dACV1 dACV3 dACV1a b ACV1 b ACV3 b ACV1a

Ponstingl r. 0.895 0.895 0.908 0.895 0.934 0.921 - -

sp. 0.947 0.947 0.947 0.937 0.968 0.989 - -

acc. 0.924 0.924 0.93 0.918 0.953 0.959 - 0.948

MCC 0.846 0.846 0.858 0.834 0.905 0.918 - -

Bahadur r. 0.840 0.877 0.821 0.887 0.925 0.877 0.890 -

sp. 0.955 0.955 0.955 0.983 0.983 0.943 0.980 -

acc. 0.911 0.926 0.904 0.947 0.961 0.918 0.945 -

MCC 0.810 0.840 0.795 0.887 0.917 0.825 0.884 -

Nonredundant r. 0.882 0.917 0.861 0.896 0.958 0.868 - -

sp. 0.978 0.971 0.978 0.984 0.994 0.975 - -

acc. 0.948 0.954 0.941 0.956 0.983 0.941 - -

MCC 0.877 0.893 0.862 0.898 0.959 0.862 - -

r., sp., acc. and MCC represent recall, specificity, accuracy, and Matthew’s correlation coefficient respectively. The bold numbers are the larger values in each of three
pair-wise comparisons of bACV1 vs dACV1, bACV3 vs dACV3, and bACV1a vs dACV1a. In this table, significant features are selected on a dataset, and then a method with
the selected features is evaluated on this dataset under a leave-one-out cross-validation process, as discussed in Materials and Methods.
doi:10.1371/journal.pone.0059737.t002

Table 3. The comparison of classification performance on the independent datasets achieved by distance-based and b atomic
contacts and other methods in the literature.

Dataset distance-based contacts b contacts D\b contacts1
DiMoVo PISA PITA NOXclass

Training on dACV1 dACV3 dACV1a b ACV1 b ACV3 b ACV1a D\b ACV11 D\b ACV31

Ponstingl r. 0.908 0.934 0.934 0.947 0.947 0.921 0.803 0.908 0.710 0.920 0.840 -

sp. 0.934 0.929 0.898 0.938 0.934 0.938 0.863 0.929 0.920 0.760 0.910 -

acc. 0.927 0.930 0.907 0.940 0.937 0.934 0.848 0.924 0.868 0.802 0.894 -

MCC 0.815 0.827 0.780 0.851 0.844 0.832 0.627 0.808 0.643 0.602 0.730 -

Bahadur r. 0.868 0.974 0.947 0.842 0.947 0.974 0.816 0.921 0.840 - - -

sp. 0.986 0.978 0.986 1.000 0.971 0.971 1.000 0.986 0.950 - - -

acc. 0.960 0.977 0.977 0.966 0.966 0.972 0.960 0.972 0.929 - - -

MCC 0.880 0.935 0.933 0.898 0.902 0.920 0.881 0.915 0.780 - - -

NOXclass r. 0.861 0.924 0.937 0.911 0.937 0.810 0.759 0.924 0.790 - - 0.950

sp. 0.909 0.841 0.868 0.909 0.882 0.877 0.714 0.836 0.970 - - 0.680

acc. 0.896 0.863 0.886 0.910 0.896 0.860 0.726 0.860 0.920 - - 0.751

MCC 0.745 0.702 0.747 0.784 0.765 0.659 0.424 0.697 0.790 - - 0.556

r., sp., acc. and MCC represent recall, specificity, accuracy, and Matthew’s correlation coefficient respectively. The bold numbers have the same meaning as those in
Table 2. Here, significant features and a prediction method on them are trained on a dataset, and the evaluation is performed on another dataset, as discussed in
Materials and Methods. 1 D\b contacts are the complement of b contacts with respect to distance-based contacts, while D\bACV1 and D\bACV3 are ACV vectors
based on D\b contacts.
doi:10.1371/journal.pone.0059737.t003
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ing of the difference between b atomic contacts and distance-based

atomic contacts, we show the top 10 selected features of bACV3

and dACV3 by SVM-RFE in Table 4 when bACV3 and dACV3

are trained on the non-redundant dataset.

From Table 4, these top 10 features of b atomic contacts

indicate two interesting phenomena. One is the hydrophobic

effect–-the contacts among Carbon atoms are chosen to be

significantly important to biological binding, although their atomic

types are different and their surface distances are #0.5 Å, or in

(0.5,1.9] Å, or in (0.5,1.9] Å. The other is that hydrogen bonds,

#0.5 contacts between N3H1 and O1H0 in b contacts, also play an

important role in classifying biological binding from crystal

packing.

The top 10 selected features of distance-based contacts capture

contacts among Carbon atoms, but miss hydrogen bonds.

Furthermore, most of the top features of distance-based contacts

are those atomic contacts with relatively larger surface-distance, in

(1.9,3.3] Å in Table 4. The main reason is the spatial constraint:

given a sphere with an atom as the center, the larger the radius is,

i.e., the larger surface-distance threshold Td here, the more other

atoms can be covered without atomic clashes. That is, in distance-

based contacts, the number of contacts with the bigger surface-

distance (1.9,3.3] Å is generally much larger than the number of

contacts with the smaller surface-distance #0.5 Å. However, this

does not hold in b contacts. For example on the non-redundant

dataset, the number of #0.5 contacts in b contacts is 43,063, and

the number of (1.9,3.3] contacts is 14,007. (1.9,3.3] contacts are

about one-third of #0.5 contacts in b contacts. However in

distance-based contacts, the number of #0.5 contacts and that of

(1.9,3.3] contacts are 57,286 and 635,254; (1.9,3.3] contacts are

over ten times more than #0.5 contacts in distance-based

contacts. This misleads SVM and RFE to prefer the (1.9,3.3]

contacts in distance-based contacts, since they have a higher

occurrence.

With the discussion above in mind, one argument in distance-

based contacts is: when the (1.9,3.3] contacts mislead SVM and

RFE, why the SVM classifier does not have much worse

performance. There are at least two helpful factors contributing

to classifiers based on distance-based contacts. One is that

distance-based contacts can easily represent atomic density in

interfaces; the other is that interface contact size can also greatly

help the classification performance of distance-based contacts.

Both atomic density and contact size should be distinguishable

features and a possibly necessary condition for biological binding;

they are easily but indirectly implied in distance-based ACV3

vector, although the contacts are divided into different types.

However, both of them should not be sufficient conditions for

specific protein binding.

Decision trees of distinguishing features in b atomic

contacts and in distance-based atomic contacts. To visual-

ize the selected features by RFE and to provide some clues of

governing principles underlying protein binding, we show the

decision trees in Figure 3(a) for b contacts and in Figure 3(b) for

distance-based contacts only using these selected features when

bACV3 and dACV3 are trained on the non-redundant dataset.

The details of how to construct decision tree are provided in the

File S1. With these selected features, bACV3 and dACV3 achieve

accuracy of 0.983 and 0.954; in the decision trees with 5-fold

cross-validation, b contacts have accuracy of 0.891, and distance-

based contacts have accuracy of 0.915. Since the important

features in SVM cannot be guaranteed to be the same as those in

the decision trees, we do not pay more attention to the similar

performances of the two trees. Instead, we would like to see

whether easily interpretable knowledge can be derived from these

two decision trees, because SVM-based bACV3 has much better

classification performance but poor interpretability.

Figure 3(a) suggests three interesting rules. One is about

contacts between two Carbon atoms, called R1 in the first line

of Figure 3(a). R1 suggests that if an interface has more than four

#0.5 contacts between the atomic types C3 (S2)H0 and C4H3 (C3

(S2)H0_C4H3 for short), it has a probability of 98.8%(82/83) to be

a biological binding. This rule is consistent with the hydrophobic

effect. The other two interesting rules are closely related to

hydrogen bonds. One hydrogen-bond-involving rule is: given an

interface with less #0.5 C3 (S2)H0_C4H3, it can still be biological

binding if this interface has: (i) more than four (0.5,1.9] C3

(S2)H1_C4H3 contacts, and (ii) more than three hydrogen bonds

(#0.5 N3H1_O1H0 contacts), and (iii) no (1.9,3.3] O1H0-_O2H1

contacts. In the non-redundant dataset, 20 biological binding

interfaces and none of the crystal packing satisfy this rule. In

contrast, 251 crystal packing and only one biological interface

satisfy the other hydrogen-bond-involving rule (called R2 for

Table 4. The top 10 features of distance-based and b atomic contacts when bACV3 and dACV3 are trained on the non-redundant
dataset.

Rank distance-based contacts b contacts

types of atomic contacts Td range types of atomic contacts Td range

1st N3H1_C4H3 (1.9,3.3] C3 (S2)H0_C4H3 #0.5

2rd C4H1_C4H1 (1.9,3.3] N3H2_C3 (S2)H1 #0.5

3th O2H1_C4H2 (1.9,3.3] C4H1_C4H3 #0.5

4th N3H1_O1H0- (1.9,3.3] O1H0-_O2H1 (1.9,3.3]

5th C3 (S2)H0_C3 (S2)H1 (1.9,3.3] N4H3/2+_C4H1 (1.9,3.3]

6th N3H1_C4H1 (1.9,3.3] O1H0-_O1H0- (1.9,3.3]

7th O1H0_C4H3 (1.9,3.3] O2H1_C4H2 #0.5

8th O1H0_O1H0 (1.9,3.3] N3H1_O1H0 #0.5

9th C3 (S2)H1_C3 (S2)H1 (0.5,1.9] C4H3_C4H3 (1.9,3.3]

10th C4H3_C4H3 (1.9,3.3] C4H1_C4H1 (0.5,1.9]

X_Y means atomic contacts between X and Y, while X and Y are atomic types in the File S1. Carbon atoms are in bold, while Oxygen atoms are in italics.
doi:10.1371/journal.pone.0059737.t004
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short). As shown in Figure 3(a), R2 requires an interface with (i)
less than five #0.5 C3 (S2)H0_C4H3 contacts, (ii) less than five

(0.5,1.9] C3 (S2)H1_C4H3 contacts, (iii) less than four #0.5

C4H1_C4H3 contacts, (iv) less than eight (0.5,1.9] O1H0_O1H0

contacts, and (v) not more than three hydrogen bonds (#0.5

N3H1_O1H0 contacts). This rule is a little more complicated, but it

is reasonable: there should be more than one type of specific

important contacts to protein binding, and enough occurrence of

several of them in an interface should produce a true biological

binding; hence, a false biological binding should not have enough

critical specific contacts, which must exclude all potential

combinations of specific important contacts. This makes a

complicated rule unique to crystal packing.

According to these three rules of b contacts in Figure 3(a), we

believe that the following contacts should be closely related to

specific important contacts to protein binding: the #0.5 contacts

of C4H3 with C3 (S2)H0 and with C4H1, (0.5,1.9] C4H3_C3 (S2)H1

contacts, and #0.5 N3H1_O1H0 contacts. These contacts are

consistent with previous observations: #0.5 N3H1_O1H0 contacts

generally can be hydrogen bonds; C4H3 are mostly in the side

chains of such hydrophobic residues as Val, Ile and Leu, indicating

the hydrophobic effect; C3 (S2)H1 are almost in the aromatic side

chains, providing p-involving interactions in binding interfaces. In

contrast, it is crystal packing, not biological binding, which prefer

(1.9,3.3] O1H0-_O2H1 contacts. Further in Figure 3(a), higher

occurrence of contacts involving O1H0- almost suggests crystal

packing prediction. O1H0- should play a destructive role in

binding interfaces unless it can form salt bridges.

Similarly, distance-based contacts in Figure 3(b) also suggest two

interesting rules. One is that only 83 biological binding have more

than fifty-eight (1.9,3.3] N3H1_C4H3 contacts; the other is that in

those interfaces which have not more than thirty-four (1.9,3.3]

N3H1_C4H3 contacts, 281 crystal packing and 11 biological

binding have not more than eight (0.5,1.9] C3 (S2)H1_C3 (S2)H1

contacts. These two rules are simple. However, the second rule has

11 false negative predictions, while the first rule is much hard to

interpret according to our current biological knowledge.

Finally, we would like to note that b contacts are all in distance-

based contacts, and then those contacts in the interesting rules of b
contacts are in fact also in distance-based contacts. But distance-

based contacts have so many non-b contacts, masking the

detection of critical specific atomic contacts in the interesting

rules of b contacts.

Figure 3. Decision tree of b contacts on the non-redundant dataset. Each line is a branch in decision trees; ‘j’ and an indent represent a sub-
branch; ‘Dimers’ indicates a class label of biological binding, while ‘CP’ refers to a class label of crystal packing; means the number of misclassified
complexes in a branch; the format of a line is: types of atomic contacts with their surface-distance information, followed by a splitting rule and a class
label if possible. For example, the rule ‘C3 (S2)H0_C4H3 [,0.5] .4: Dimers (83.0)’ in the first line of Figure 3(a) suggests the following prediction: 83
interfaces have more than four #0.5 contacts of C3 (S2)H0 and C4H3 in the non-redundant dataset; among these interfaces, only one is crystal packing.
doi:10.1371/journal.pone.0059737.g003
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Two misclassified examples in the decision tree of b
contacts. In the decision tree of b contacts, each of the two

interesting rules, R1 and R2, has a misclassified interface.

According to R1 in the first line of Figure 3(a), 82 biological

interfaces have more than four #0.5 C3 (S2)H0_C4H3 contacts,

and only one out of 314 crystal packing interfaces satisfies R1 in

the non-redundant dataset. This misclassified crystal packing

interface is 1RB3 as shown in Figure 4(a). This interface has five

#0.5 C3 (S2)H0_C4H3 contacts. However, there are contradictory

conclusions on this interface. On one hand, the authors who

determined 1RB3 in PDB recommended it as a dimeric unit; it

seems that the decision tree of b contacts shares the conclusion

with the original authors of 1RB3. On the other hand, the non-

redundant dataset labels 1RB3 as ‘crystal packing’; the existing

classifiers in the literature, such as NOXclass, DiMoVo and PISA,

also predict it as a crystal packing. However, 1RB3’s interface size

is as small as 615 Å2, which is much smaller than the cut-off of

interface ASA 856 Å2 suggested by the previous work [32] to

distinguish crystal packing from homodimers. Meanwhile, almost

all of the classifiers in the literature have the same bias–-they

heavily rely on interface size. That is, 1RB3’s smaller interface size

can easily mislead their predictions: these classifiers are more likely

to have wrong predictions for 1RB3, and tend to consider 1RB3 as

a crystal packing according to the same bias of 1RB3’s smaller

interface size. Thus, these predictions provide nothing more than

1RB3’s smaller interface size. In summary, 1RB3 may be a

potential dimer, just as R1 and the original authors suggest, but

whether it is actually a dimer remains a question until it can be

verified in wet-lab experiments.

The second rule R2 is in the sixth line of Figure 3(a), which

covers 251 crystal packing and only one biological binding in the

non-redundant dataset. This biological binding is 3SDH whose

interface is shown in Figure 4(b). This 3SDH interface has plenty

of interfacial water molecules, and large-size non-standard residues

as shown in Figure 4(b). These two kinds of molecules are not

evaluated in b contacts so far, which may be the reason why the

decision tree of b contacts misclassifies 3SDH.

b contacts outperform previous methods in the
classification of crystal contacts and homodimers

Feature-selection classification performance. The fea-

ture-selection classification performance of b atomic contacts is

evaluated against those achieved by DiMoVo [11], and Block’s

method [28]. The best classification performance of the Block’s

method and the DiMoVo prediction are shown in Table 2.

In Table 2, our b contacts trained on the Ponstingl dataset have

better classification performance than the best performance

(accuracy 0.948) of the Block’s method. When the Block’s method

uses SVM, its best accuracy is 0.919 with an RBF kernel, which is

much less than our accuracy 0.959.

On the Bahadur dataset, DiMoVo’s performance is recalculated

by using its recalls for homodimers and crystal packing in [11]. b
contacts have at least comparable, if not better, performance with

DiMoVo. However, our bACV1a and bACV3 on b contacts

adopt a linear kernel which is simpler than the RBF kernel used in

DiMoVo.

Classification performance on the independent

datasets. In addition, the classification performance of b atomic

contacts on the independent datasets is also compared with those

achieved by other methods in the literature, including DiMoVo,

PISA, PITA [29], and NOXclass. Their classification results are

shown in Table 3 where the performance of DiMoVo, PISA,

PITA, and NOXclass on the independent datasets is recalculated

by using the recall and specificity and the datasets in [11]. Here,

Figure 4. Two misclassified examples in the decision tree of b
contacts (better viewed in color). (a) The crystal packing in 1RB3 is
misclassified as biological binding by the biological rule R1. (b) The
biological interface in 3SDH follows the crystal packing rule R2. In (a)
and (b), the residues labeled in black (chain a) and white (chain b) form
an interface; interfacial waters whose spatial distances to both chains
are less than 3.5 Å are in the red sphere view; non-standard residues are
in the magenta sphere view; Carbon: green; Oxygen: red; Nitrogen:
blue.
doi:10.1371/journal.pone.0059737.g004
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the independent dataset has protein complexes whose proteins

have less than 30% sequence similarity to those proteins of

complexes in the training dataset.

Trained on the Ponstingl dataset, our bACV3 of b contacts

have accuracy of 0.937, and MCC of 0.844, which are much

higher than those achieved by DiMoVo, PISA and PITA. For

example, PITA achieves the best accuracy of 0.894 and MCC of

0.73 among DiMoVo, PISA and PITA; its accuracy is 4.3 percent

points lower than bACV3’s accuracy, and its MCC is 11.4 percent

points lower than bACV3’s MCC.

When bACV1a and bACV3 of b contacts are trained on the

Bahadur dataset, they again achieve better performance than

DiMoVo. Our bACV3 has 0.966 accuracy, 3.7 percent points

higher than DiMoVo’s, and bACV3 has 0.902 MCC, 12.2 percent

points higher than DiMoVo’s. In this case, MCC is a better metric

than accuracy to compare b contacts with DiMoVo, since the

independent-testing dataset of Bahadur is quite unbalanced:

crystal packing is about four times larger than homodimers.

Hence, the great improvement of MCC suggests that bACV3 is

much better than DiMoVo to capture protein specific binding.

When the NOXclass dataset is the training dataset, b contacts

have much better performance than NOXclass, although b
contacts cannot achieve better performance than DiMoVo. A

reason for this is that b contacts can easily distinguish crystal

packing from homodimers in the NOXclass dataset. Removal of

several features does not change training accuracy significantly,

which misleads SVM and SVM-RFE into choosing all features or

fewer features as the best feature set. However, the samples in the

NOXclass’s independent dataset are much harder to distinguish.

In conclusion, b contacts demonstrate its superior classification

power to the other methods in the literature under non-b contact

definitions. This partially, if not entirely, results from the fact that

the new b contact definition can capture specific binding patterns

in homodimers and then benefit the classification of homodimers

from crystal packing.

Conclusion

The main contribution of this work is to propose the novel

concept of b atomic contacts to identify critical specific contacts

across protein binding interfaces. To evaluate the efficacy of the

proposed b contacts, we design a new classification scheme bACV

for classifying crystal packing and homodimers. We compare

bACV’s classification performance with those achieved by the

existing methods on the three datasets. The promising perfor-

mance achieved by bACV demonstrates that b contacts can truly

identify a compact set of critical specific contacts in protein

binding interfaces which are only a small fraction of conventional

distance-based contacts. Thus, b atomic contacts provide a new

fundamental and precise unit for atomic organization in compu-

tational structural analysis. In future, b atomic contacts have many

other applications, such as the estimation of folding and binding

free energy, the prediction of binding hot spots, protein docking as

well as other structural analyses for folding and binding of proteins

and RNA/DNA. In these potential applications, one should pay

more attention to repacking, as the exact positioning of residues is

particularly important to b contacts.

Supporting Information

File S1 Introduction of methods and measures, and more

discussion of beta contacts.

(PDF)
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