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Abstract

In this article two multi-stage stochastic linear programming models are developed, one

applying the stochastic programming solver integrated by Lingo 17.0 optimization software

that utilizes an approximation using an identical conditional sampling and Latin-hyper-

square techniques to reduce the sample variance, associating the probability distributions to

normal distributions with defined mean and standard deviation; and a second proposed

model with a discrete distribution with 3 values and their respective probabilities of occur-

rence. In both cases, a scenario tree is generated. The models developed are applied to an

aggregate production plan (APP) for a furniture manufacturing company located in the state

of Hidalgo, Mexico, which has important clients throughout the country. Production capacity

and demand are defined as random variables of the model. The main purpose of this

research is to determine a feasible solution to the aggregate production plan in a reasonable

computational time. The developed models were compared and analyzed. Moreover, this

work was complemented with a sensitivity analysis; varying the percentage of service level,

also, varying the stochastic parameters (mean and standard deviation) to test how these

variations impact in the solution and decision variables.

1. Introduction

Carrying out an aggregate plan is important in manufacturing industries, especially those

where it is planned in periods of 3 to 18 months, or medium term. The production plan seeks

to determine the optimal levels of production, hiring, layoffs, inventories, subcontracting, etc.

This work presents an aggregate plan that was made for a company that manufactures furni-

ture in the State of Hidalgo. Initially, a first approach to the solution of the problem was made

in [1]. In this work, only the production capacity was considered as a random variable using

two models, one with a continuous probability distribution and the other with a discrete one.
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However, another extremely important random variable had been ignored due to complexity:

demand. Therefore, the motivation for this work is to improve productivity, have efficient pol-

icies to manage its production and minimize production costs, developing models of aggregate

production plans (APP) with uncertainty due to a real need of a furniture company, Models

are considering real characteristics such as human factor, multi-period production criteria and

service level policy due to the use of backlogs.

The main objective of this article is to develop a multi-state stochastic optimization model

applied to an APP of a local company, where the production periods are defined as the states,

the randomness of production capacity and demand are modeled through a continuous proba-

bility distribution using the stochastic programming solver integrated by Lingo. Two models

are proposed, Model-I only could solve the problem for a maximum of three periods, due the

complexity of using a continuous probability distribution, a second model is proposed with a

discretization of the probability distributions (Model-II) which could solve the problem up to

four periods. In both models a scenario tree is created. In general, this work compares the effi-

ciency between Model-I and Model-II in resolution time, number of iterations, expected value

(EV), wait-and-see value (WS), and expected value of perfect information (EVPI). The

obtained results help to determine the advantages about the proposed model (Model-II) with

respect to Model I and is useful to understand the scope of both models and in which cases it is

advisable to use each one. In addition, both models consider the impact of the service level

restriction on the optimal solution and what happen when parameters of the distribution

probabilities are varying.

The novelty of this work could be summarized in five points,1) this study provides a mathe-

matical programming model that has been adapted for real needs of a company, which incor-

porates a service level constraint that it is not found in the literature, usually a confidence

percentage is used (which could turn the problem into a chance constraint programming. 2)

In the literature only the expected value of the objective function is reported (here and now

solution) with the history of the process considered, that is, with the nonanticipativity con-

straints or the value of the expected objective function. If these constraints are removed, the

wait and see solution appears, in our research, both solutions are reported, also the absolute

difference of the two solutions is reported, called the expected value of perfect information

that could help the company to deal with uncertainty in economic decisions. 3) An extensive

sensitivity analysis is carried out, varying the cost parameters, the percentage of the service

level and varying the parameters of the probability distribution of uncertainty. Few studies

carry out a sensitivity analysis, but in our knowledge, nobody analyzes the impact of service

level and varies the parameters of the probability distribution. Through this sensitivity analysis,

interesting results were obtained, for example, that the total cost of the APP goes down, when

the variability of the production capacity (standard deviation of the probability distribution) is

reduced. 4) Due to the complexity of the problem, the software could not solve the problem

satisfactorily for a fourth period, finding a solution that is only feasible, then, a second model

is developed using discretization of the probability distribution, it has been shown that if the

distances of both distributions are minimal, the solution found is closer than the true optimum

[2–4] the quality of the proposed model is presented in the results, where both models are

compared.

Finally, 5) a methodology to deal with problems using stochastic programming is proposed,

although it was applied to the case of this APP, can be implemented in other areas of industrial

engineering sciences, such as supply chain networks, problems of vehicle routing, design, and

redesign of layouts, among others. Advantages and disadvantages are detailed in the conclu-

sions section. Table 1 shows a comparison between some relevant studies in the area and our

study, so that the novelty and contribution of our proposal can be observed.
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The contribution of this work is a real problem where uncertainty affects the production

system, generally, the models used in the literature consider demand as a random variable

with a discrete approximation (one model), in this work, in addition, the human factor is con-

sidered as a stochastic parameter that can be modeled and 2 models are compared. The rest of

the article consists of the following sections. Section 2 presents the literature review, section 3

describes the model under study, first as deterministic and then as stochastic. The methodol-

ogy is introduced in section 4. The results are given in section 5. An extensive sensitivity analy-

sis is performed in section 6. Section 7 concludes the article.

2. Literature review

Considering uncertainty within optimization problems remains a trending topic to be investi-

gated because organizations face to stochastic variables when making decisions. A search was

carried out in Scopus and in Web of Science written during 2020 and 2021 that used stochastic

programming to solve optimization problems. Huang et. al [5] develop a multistage stochastic

optimization model for system operators to efficiently schedule power-generation assets to co-

optimize power generation and regulation reserve service under uncertainty. Ghayour et al.

[6] present an approach called MLPR with linear programming used as its core in order to

solve the influence maximization problem in the linear threshold model, that is one of two

classic stochastic propagation models that describe the spread of influence in a network.

Table 1. Studies about APP with uncertainty. Own elaboration.

Characteristics This study Kazemi et al. [24] Jamalnia et al. [16] Zhao et al. [18] Tirkolaee et al. [21]

Model Class Mixed Integer linear

multi-stage stochastic

Mixed Integer linear multi-

stage stochastic

Multi-objective nonlinear multi-

stage stochastic

Mixed integer multi-

objective nonlinear

multi-stage stochastic

Mixed-integer multi-

objective nonlinear

multi-stage stochastic

Source of uncertainty Demand and capacity

production

Demand and yield Demand Patient recruitment Demand and costs

Probabilistic

distribution for the

source of uncertain

Normal distribution

and discrete

approximation

Discrete approximation Discrete empirical distribution Poisson distribution Fuzzy triangular

number

Number of models

developed

Two stochastic

models

One stochastic model One stochastic model One stochastic model One stochastic model

Solution strategy Scenario tree

approach using Lingo

17.0

Scenario tree approach and

scenario decomposition

based in PHA using CPLEX

11

Scenario decomposition based in

relaxed nonanticipativity

constraint using

WWW-NIMBUS

Scenario tree

approach and PHA

using CPLEX 12.6

Weighted goal

programming using

GAMS with CPLEX

Level service Considered Not considered Considered Not considered Not considered

Impact of level service Considered Not considered Not Considered Not considered Not considered

Iterations required for

a solution reported

Considered Not considered Not considered Not considered Not considered

CPU time required for

a solution reported

Considered Not considered Not considered Considered Considered

Here and now solution Considered Considered Not considered Considered Considered

Wait and see solution Considered Not considered Considered Not considered Not considered

Expected value for

perfect information

Considered Not considered Not considered Not considered Not considered

Sensitivity analysis

varying deterministic
parameters

Considered Not considered Considered Considered Considered

Sensitivity analysis

varying stochastic
parameters

Considered Not considered Not considered Not considered Not considered

https://doi.org/10.1371/journal.pone.0252801.t001
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Robust Multi-product Newsvendor Model with Substitution, where the demand and the sub-

stitution rates are stochastic and are subject to cardinality-constrained uncertainty sets that is

an NP hard problem is presented in [7].

Also, Basciftci et. al [8] reformulate the robust facility location problem, in which they inter-

pret the moments of stochastic demand as functions of facility-location decisions. In Shone et.

al [9], stochastic modeling applications within aviation are presented, with a particular focus

on problems involving demand and capacity management and the mitigation of air traffic con-

gestion; using operations research perspective, including analytical queueing theory, stochastic

optimal control, robust optimization and stochastic integer programming. Ghasemi et. al [10]

present an Evolutionary Learning Based Simulation Optimization (ELBSO) method embedded

within Ordinal Optimization. In ELBSO a Machine Learning (ML) based simulation metamo-

del is created using Genetic Programming (GP) to replace simulation experiments aimed at

reducing computation; ELBSO is evaluated on a Stochastic Job Shop Scheduling Problem

(SJSSP). Zhang et. al [11], consider a stochastic vehicle routing problem with probability con-

straints; the probability that customers are served before their (uncertain) deadlines must be

higher than a pre-specified target. Wang et. al [12] propose a model to solve a project schedul-

ing problem where resource assignments and activity schedules need to be determined to

achieve a set of due-date requirements as well as possible. Torres et. al [13] present multistage

stochastic program for the design and management of flexible infrastructure networks with

stochastic demands.

In the methods for solving stochastic programming, Dowson and Kapelevich [14] develop

the Julia package for multistage stochastic and dual programming and Gangammanavar et. al

[15] work with stochastic decomposition for two-stage stochastic linear programs with ran-

dom cost coefficients.

Talking specifically of Aggregate planning, there are some works related with it, Jamalnia

et al. [16] mention that the methodologies applied to deal with aggregate production plans

(APP) under uncertainty can be classified into six main categories: stochastic mathematical

programming, possibilistic programming, fuzzy mathematical programming, simulation

modelling, metaheuristics, and evidential reasoning. Here are some important works.

Using Multi objective stochastic optimization, Nowak [17] introduced a work that com-

bines linear mathematical programming with multiple objectives (multi-objective), simulation

and an interactive approach with uncertain demand. In contrast, Jamalnia et al. [16] presented

a nonlinear stochastic optimization model with multiple objectives for an aggregate produc-

tion plan under uncertainty. The WWW-NIMBUS software was used, using more than 500

decision variables and 1,000 restrictions with 7 objectives. Zhao et al. [18], showed a case study

for the pharmaceutical industry where they optimize the quantity of production, minimizing

the duration of clinical trials and operating costs. The problem is formulated by the multi-

stage stochastic programming using C# programming language as well as CPLEX as a solver,

comparing the Progressive Hedging Algorithm (PHA) and the Sample Average Approxima-

tion (SAA) to test the optimality GAP, the time to solve a scenario and period, the memory

used, among others. Rakes, Franz, and Wynne [19] and Chen and Liao [20] also submitted

works where there is uncertainty in production plans with multiple objectives. Recently, Tirko-

laee et al. [21] investigates a novel fuzzy multi-objective multi-period Aggregate Production

Planning (APP) problem under seasonal demand. As two of the main real-world assumptions,

the options of workforce overtime and outsourcing are studied in the proposed Mixed-Integer

Linear Programming (MILP) model.

Stochastic optimization has been applied in various production plans where the environ-

ment tends to have uncertainty as mentioned by Birge and Louveaux [22]. Wagner and Whitin

[23] are considered the first to study production plans under uncertainty, solving a one-state
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problem through dynamic forward programming for a single product. Kazemi et al. [24] per-

form a multi-stage stochastic mixed integer linear programming model for sawmill production

(lumber industry) in Canada; giving a solution through an approximation by decomposition

of scenarios. CPLEX software was used for the solution. It was shown that problems with more

than 22,000 restrictions and 44,000 decision variables can be solved within a reasonable time,

this was a single objective problem. Huang [25] also presented models for production plans

through multi-stage stochastic mathematical programming.

Using, nonlinear stochastic optimizatiom, Ning et al. [26], Mirzapour Al-e-hashem et al.

[27] and Lieckens and Vandaele [28] developed mixed integer nonlinear mathematical pro-

gramming methodologies to study the decision problem of an aggregate production plan and

they consider demand and lead time as variables with uncertainty in their proposals. Nasiri

et al. [29] suggested a non-linear stochastic model for a production and distribution plan in a

three-level supply chain (suppliers, production centers and customers). This model was solved

by using commercial packages such as Lingo in addition to a heuristic programmed in Matlab.

Similarly, Nasiri et al. [30] proposed a nonlinear stochastic integer mixed mathematical pro-

gramming model for a supply chain to later extend their work in a multi-stage system [31].

Ning et al. [26] presented a multi-product nonlinear application model where market demand

and production cost are uncertain.

Robust optimization and different techniques under uncertainty have been used in research

such as Leung and Wu [32], Kanyalkar and Adil [33], Mirzapour Al-e-hashem, Malekly and

Aryanezhad [34], Mirzapour Al-e-hashem, Aryanezhad and Sadjadi [35], Makui et. al [36]

used robust optimization techniques to deal with aggregate production plans under

uncertainty.

A key concept in stochastic programming is scenario tree. Kazemi et al. [24] mentioned that

a scenario tree is a computationally viable way of discretizing the dynamic stochastic data

underlying a problem over time, this allows to reach viable solutions in reasonable times. In a

competitive environment it is required to have results in faster times. Hu and Hu [37] used a

scenario tree to optimize the job shop scheduling problem (JSSP) and the economic order

quantity (EOQ) under uncertain demand, Körpeoglu, Yaman and Aktürk [38] used it to solve

the master production scheduling problem (MPS). In Table 1 the studies that closer to our pro-

posal are compared in different characteristics.

Reviewing the works found that are related to stochastic programming, it was observed that

all of them use mixed integer programming, Jamalnia et al. [16], Zhao et al. [18] and Tirkolaee

et al. [22] with nonlinear multiobjective, while Kazemi et al. [24] uses multistage stochastic

programming which is the same as that used in our proposal. Tirkolaee et al. [22] use demand

and costs as stochastic variables, while Kazemi et al. [24] demand and yield; the others, only

use a single variable as a stochastic. In their approaches, a single approximation is used to

explain the uncertainty, which is discrete, that is, a single stochastic model, and in our case two

models, that allow us to compare between the normal distribution and its discretization in

order to offer to the company a good solution in a reasonable computational time. The propos-

als found use the scenerio tree, except Tirkolaee et al. [22] that deal with the problem with

weighted goal using GAMS. The level of service is only handled in Zhao et al. [18], but the

impact of the service level on the solution is not considered. The sensitivity analysis varying

stochastic parameters was not used in the approaches found. After analyzing the characteristics

of the studies found, the gap was in considering the level of service, which was a very important

restriction for the company in the case study, considering demand and labor as stochastic vari-

ables, which were two variables that generate a lot of uncertainty in the company and also vary-

ing the stochastic parameters. Finally, generate an efficient model, that is to say, a model that

obtains a good response in a reasonable computational time, for that reason 2 models were
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tested for comparison. In the next section the development of mathematical models will be

described.

3. Development of mathematical models

To develop the stochastic programming models a proposed methodology was used, where

before developing the stochastic programming models directly, a first deterministic model was

created, in order to observe the behavior of the model and after extended it by incorporating

the stochastic parameters.

3.1 Deterministic model

The deterministic base model for the aggregate production plan for optimizing the total cost of

production, determines the number of workers that must be hired and fired per month, the

number of parts that will be produced, the parts that will be sent to the finished product ware-

house (inventory) and the backlog per month with a service level of 90% each period. The

model considers the following assumptions that are considered in the literature review and

some others are specific for the company:

◾ The demand is known for all periods.

◾ The production capacity per worker is the same for all months.

◾ Backlog may exist in the company, but it is penalized for missing units, this is because there

is no possibility of buying parts (outsourcing) and overtime is not allowed in the company.

◾ Backlogged parts must be satisfied in the next period.

◾ The costs associated with the production of a part, inventory and backlogs are linear.

◾ There is enough raw material for production of parts (Xt).

The notation used for the model is shown in the following Table 2. Where the indices,

parameters and decision variables are detailed, later the objective function and the model

restrictions are explained.

The deterministic base model used was based by the one in Ravindran and Warsing [39]

adapting it to the needs of the company by incorporating the service level and minimum inven-

tory restrictions. The objective function of the deterministic model in Eq (1), minimizes the total

cost of the APP, considering the costs associated with the workers assigned to production, fired,

hiring, as well as inventory costs, backlogs and production, as defined in the following equation:

min Z ¼
PT

t¼1
PtCP þ

PT
t¼1

FtCF þ
PT

t¼1
RtCR þ

PT
t¼1

ItCI þ
PT

t¼1
XtCX þ

PT
t¼1

StCS ð1Þ

The model constraints are the following:

Wt ¼Wt� 1 þ Rt� 1 � Ft� 18t ¼ 2; . . . ;T ð2Þ

Wt ¼ Pt þ Ft8t ¼ 1; . . . ;T ð3Þ

Xt þ It� 1 ¼ Dt þ St� 1 þ It � St8t ¼ 1; . . . ;T ð4Þ

Xt � kPt8t ¼ 1; . . . ;T ð5Þ

It � Ia8t ¼ 1; . . . ;T ð6Þ
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Dt � St � :90Dt8t ¼ 1; . . . ;T ð7Þ

Wt; Pt; Rt; Ft; Xt; It; St; Dt � 08t ¼ 1; . . . ;T; t 2 T ð8Þ

Pt; Ft; Xt; It; Dt 2 Rþ � Zþ8t ¼ 1; . . . ;T ð9Þ

Constraint (2) focuses on the size of the workforce in the company, and it indicates that the

total number of workers in period t, it must be equal to those existing in period t−1, plus those

hired in period t−1, minus those laid off in period t−1. Constraint (3) is about the allocation of

the workforce; it simply defines how many workers will be assigned to production and the

number of workers that will be laid off in period t. Constraint (3) complements the balance

over the number of workers denoted in Eq (2) and specifies the assignment of workforce in

production and the number of workers to be fired each month. Constraint (4) refers to the bal-

ance of demand and inventory in the company, where what is produced in period t plus the

inventory of period t−1, it must be equal to the demand of period t, plus the backlog of period

t−1 plus the inventory in period t minus the backlog of period t. Constraint (5) addresses the

production capacity; it ensures that the workers assigned to production can manufacture the

units required in period t. Constraint (6) defines that the inventory of the period is greater

than the safety inventory defined by the company. Constraint (7) indicates that the service

level is greater than or equal to 90% per month, this restriction is a company’s policy. The

expression (8) defines the constraint of non-negativity decision variables. The expression (9)

specifies that the decision variables must be integers, which implies a mixed integer linear sto-

chastic programming model.

Table 2. Notation of the deterministic model (3.1).

Indexes:

T Time horizon of the aggregate plan t2T

Parameters:

Dt Monthly product demand for period t
Cp Salary of the production workers per month

CF Cost of firing a worker

CR Cost of hiring a worker

CI Inventory cost per part

CS Backlog cost per part

CX Unit cost of producing a part (raw material and indirect cost)

Iα Minimum inventory determined by company policies

k Monthly production capacity per worker

Decision variables:

Wt Number of workers per month

Pt Number of workers assigned to production per month

Rt Number of hired workers per month

Ft Number of fired workers per month

Xt Number of parts to be produced per month

It Number of parts in the inventory per month (with I0 known)

St Backlog per month (with S0 = 0)

https://doi.org/10.1371/journal.pone.0252801.t002
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The deterministic model is the basis for developing Model-I and Model-II, both are of

the multi-stage stochastic programming type, where production capacity and demand are

random parameters. The Model-I associates these random parameters to a normal distribu-

tion, so the solution strategy is to use the stochastic programming solver integrated in

Lingo 17.0 for Model-I, which internally creates a scenario tree with the same probability of

occurrence for each scenario. Subsequently, a Model-II is proposed through a discretiza-

tion of the probability distributions to create a scenario tree, each with different

probabilities.

Model-I has the same assumptions as the base model, in addition to the following:

◾ Demand follows a normal distribution with mean 353 and standard deviation 29 and pro-

duction capacity a normal distribution with mean 12 and standard deviation 2. These val-

ues were obtained through historical data of the company during 3 years prior to the start

of the study using 40 data. The Arena ™ Input Analyzer was used to determ|wine these val-

ues. The statistical tests made to the data are shown complete in https://doi.org/10.6084/

m9.figshare.14444609.v1.

◾ When considering a random demand, it is not possible to know how much to produce

before the realization of this random event, but it must be determined how many workers

are needed in each period. Therefore, the decisions of the same period can be made in dif-

ferent states. In Table 3 there are the parameters associated with this model:

Model-II has the same assumptions as the base model, in addition to the following:

◾ The discrete probability distribution is obtained with the maximum likelihood values cal-

culating the probability of some defined intervals, then the Gaussian quadrature method

is applied to calculate the probabilities (areas) of the intervals.

◾ The possible values of the random event demand are 324, 353 and 382 with probabilities

0.25, 0.50 and 0.25, respectively.

◾ The possible values of the random event production capacity are 10, 12 and 14 with prob-

abilities 0.267, 0.466 y 0.267, respectively.

◾ Similar to the Model-I, some decision variables of the same period could be done in dif-

ferent state due the stochastic process.

In both cases, because the models use a scenario tree, the equivalent deterministic model

for each problem consist of the construction of a large mixed integer linear programming

Table 3. Parameters in Model I. Own elaboration based in the organization information.

Model I-Parameters:

Dδ
t Dd

t � Nð353; 29Þ

Cp $7000

CF $10000

CR $5000

CI $7

CS $65

CX $200

Iα 100 (Units).

kωt kot � Nð12; 2Þ

https://doi.org/10.1371/journal.pone.0252801.t003
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problem, where at the end, the probability of the sum of each scenario should be one as indi-

cated Eq (10).

The notation for Model-II is detailed in Table 4, Model-I is similar in structure to

Model-II, the difference is that Model-I, the probability of occurrence for each scenario is

the same, in addition the occurrence values are obtained by Lingo using identical condi-

tional sampling and for this, it uses variance reduction techniques to improve the quality of

the solution.

The objective function of the stochastic Model-II (11), as in (1) minimizes the total cost of

the APP, considering the costs associated with the workers assigned to production, fired

Table 4. Notation of the stochastic model (11).

Indices:

T Time horizon of the aggregate plan t2T.

H Set of states (con h2H 8 h = 0,. . .,H).

O Set of random events with {ω,δ}2O.

ω Random event of production capacity.

δ Random event of demand.

N Number of scenarios for capacity production with N = it.
M Number of scenarios for demand with M = jt.
i Possible scenarios for capacity production with i = {10, 12, 14} and i2ω.

j Possible scenarios for demand with j = {324, 353, 382} and j2δ.

Parameters:

Dj
t Monthly product demand for the scenario of each realization, with three possible values j = {324, 353, 382}

and respectively probabilities Pj = {0.25, 0.50, 0.25} (stochastic parameter)

Cp Salary of the production workers per month = $7000

CF Cost of firing a worker = $1000

CR Cost of hiring a worker = $5000

CI Inventory cost per part = $7

CS Backlog cost per part = $65

CX Unit cost of producing a part (raw material and indirect cost) = $200

Iα Minimum inventory determined by company policies = 100(units)

ki
t

Monthly production capacity per worker for the scenario of each realization, with three possible values i =

{10, 12, 14} and respectively probabilities Pi = {0.267, 0.466, 0.267} (stochastic parameter).

Pij Probability of occurrence of random events {ω,δ}, where the following equation is obtained:

XM

j¼1

XN

i¼1

Pijt ¼ 1 ð10Þ

Which indicate that the probability sum of all scenarios across the scenario tree must be one as indicated Eq

(10).

Decision variables:

Wij
tðhÞ

Number of workers per month

PijtðhÞ Number of workers assigned to production per month

RijtðhÞ Number of hired workers per month

FijtðhÞ Number of fired workers per month

Xij
tðhÞ

Number of parts to be produced per month

IijtðhÞ Number of parts in the inventory per month (with I0 known).

SijtðhÞ Backlog per month (with S0 = 0)

https://doi.org/10.1371/journal.pone.0252801.t004
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workers, hired workers, in addition to inventory costs, backlogs and production.

min z

¼
XM

j¼1

XN

i¼1

pijt
XT

t¼1

Pij
tðh� 1ÞðOÞCP þ

XM

j¼1

XN

i¼1

Pijt
XT

t¼1

Fij
tðh� 1ÞðOÞCF þ

XM

j¼1

XN

i¼1

Pijt
XT

t¼1

Rij
tðh� 1ÞðOÞCR þ

XM

j¼1

XN

i¼1

Pijt
XT

t¼1

IijtðhÞðOÞCI

þ
XM

j¼1

XN

i¼1

Pijt
XT

t¼1

Xij
tðhÞðOÞCX

þ
XM

j¼1

XN

i¼1

Pijt
XT

t¼1

SijtðhÞðOÞCS

ð11Þ

The model constraints of the stochastic model are the following:

Wij
1ð0Þ ¼ Pij

1ð0Þ þ Fij
1ð0Þ ð12Þ

Xij
1ð1Þ þ I0 ¼ D1 þ Iij1ð1Þ � Sij1ð1Þ ð13Þ

Xij
1ð1Þ � kij1P

ij
1ð0Þ ð14Þ

Wij
tðhÞðOÞ ¼Wij

t� 1ðh� 1ÞðOÞ þ Rij
t� 1ðh� 1ÞðOÞ � Fij

t� 1ðh� 1ÞðOÞ

8t ¼ 2; . . . ;T; h ¼ 1; . . . ;H;o ¼ 1; . . . ;N; d ¼ 1; . . . ;M ð15Þ

Wij
tðhÞðOÞ ¼ Pij

tðhÞðOÞ þ Fij
tðhÞðOÞ

8t ¼ 2; . . . ;T; h ¼ 1; . . . ;H;o ¼ 1; . . . ;N; d ¼ 1; . . . ;M ð16Þ

Xij
tðhÞðOÞ þ Iijt� 1ðh� 1ÞðOÞ ¼ Dj

t þ Sijt� 1ðh� 1ÞðOÞ þ IijtðhÞðOÞ � SijtðhÞðOÞ

8t ¼ 2; . . . ;T; h ¼ 1; . . . ;H;o ¼ 1; . . . ;N; d ¼ 1; . . . ;M ð17Þ

Xij
tðhÞðOÞ � kijt P

i
tðhÞðOÞ8t ¼ 2; . . . ;T; h ¼ 1; . . . ;H;o ¼ 1; . . . ;N; d ¼ 1; . . . ;M ð18Þ

IijtðhÞðoÞ � Ia8t ¼ 1; . . . ;T; h ¼ 1; . . . ;H;o ¼ 1; . . . ;N; d ¼ 1; . . . ;M ð19Þ

Dj
t � SijtðhÞðOÞ � :90Dj

t 8t ¼ 1; . . . ;T; h ¼ 1; . . . ;H o ¼ 1; . . . ;N;o 2 O; d ¼ 1; . . . ;M ð20Þ

Wij
1 ; P

ij
1;R

ij
1; F

ij
1 ;X

ij
1 ; I

ij
1 ; S

ij
1 � 0 ð21Þ

Pij
1 ;R

ij
1; F

ij
1 ; S

ij
1; I

ij
1 2 Rþ � Zþ ð22Þ

Wij
tðhÞðOÞ; P

ij
tðhÞðOÞ;R

ij
tðhÞðOÞ; Fij

tðhÞðOÞ; Xij
tðhÞðOÞ; IijtðhÞðOÞ; SijtðhÞðOÞ � 0

8t ¼ 1; . . . ;T; h ¼ 1; . . . ;H;o ¼ 1; . . . ;N; d ¼ 1; . . . ;M ð23Þ
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Pij
tðhÞðOÞ;R

ij
tðhÞðOÞ; F

ij
tðhÞðOÞ; S

ij
tðhÞðOÞ; I

ij
tðhÞðOÞ 2 Rþ � Zþ8t ¼ 1; . . . ;T; h ¼ 1; . . . ;H ð24Þ

h ¼ h
¼

h
¼ 0

h ¼
0

h
¼ 0

h
¼ 00

h ¼ @
h
¼ 00

h8½h� ¼ ½0�; . . . ; ½H� ð25Þ

Constraints (12) and (14) are zero state (or first state) constraints, these are considered

before the occurrence of the random event and are equivalent to the constraints (3) and (5) of

the deterministic model. Constraint (13) is equivalent to constraint (4) only for the first period.

Constraints (15) to (20) are the same of (2) to (7) of the deterministic model, considering the

random events ω, δ the necessary corrections are made in order to deal with the uncertainty,

these variables are called recourse variables.

Constraints (21) and (22) indicate the nonnegativity constraint and assigning some vari-

ables as integers for the zero state, it should also be noted that not all variables are forced to

be integers, a computational advantage is obtained and makes the model of the mixed integer-

linear class. Constraints (23) and (24) indicate the non-negativity constraint and assigning

some variables as integers for the next states. The nonanticipativity constraints (25) with

h; h
;

h
; 0

h;
0

h
; 0

h
; @h; @h y @h column vectors of the decision variables for every

realization of ij (that is the reason to use 9 vectors) and [h] = [0],. . .,[H] the history process,

where ; and are the column vectors for the decision variables in the scenarios for the

production capacity production low, medium and high respectively, and it is indicated if the

demand is low when they do not have a quote, medium demand if they have one quote

( 0

h;
0

h
; 0

h
) and double quote if the demand is high (, @h; @h y @h).

In Fig 1 it can be observed how for a period nine scenarios are generated considering 3 pos-

sible scenarios for each random variable, each one with its respective probability. Then for the

first node another nine scenarios are generated, that is, for two periods the scenario tree grew

up to a total of 81 scenarios. The sum of all the probabilities of the nine scenarios must be

equal to the probability of the predecessor node to those scenarios, and in the same way the

sum of all the 81 scenarios must be 1 and the filtering process of the sigma algebras is

respected, which implies respecting the nonanticipativity constraints.

4. Methodology

The methodology used in this article was divided into five stages. Each stage is briefly

described below:

1.- Data collection and analysis: In order to prepare the aggregate production plan, historical

company data was used to obtain production parameters and associated costs. An ABC clas-

sification of products was carried out, where the main product was determined, this product

generates more income for the company. In this case it turned out to be a rustic chair.

2.- Deterministic mathematical modeling: a deterministic model was developed that mini-

mized the production costs of the product. The company’s policies to maintain a minimum

inventory every month and have a service level of at least 90%, both were considered in the

model.

3.- Generation of the first stochastic model (Model-I): Due to the hiring and firing policy,

ergonomic factors, learning curve, among other factors (elements, aspects), it was noted

that the worker’s production capacity was not constant over time. Based on historical pro-

duction data, the Input Analyzer tool of the Arena ™ software was used, observing that the

production capacity follows a normal distribution with a mean of 12 units and a standard
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deviation of approximately 2 units. Similarly, with a historical data on the demands of past

periods, the Input Analyzer tool of the Arena ™ software was used, observing that the

demand follows a normal distribution with a mean of 353 units and a standard deviation of

approximately 29 units. Addtitionally, different test were made in order to validate the data,

these analyzes are save in https://doi.org/10.6084/m9.figshare.14444609.v1.

The solution strategy for this problem was to implement the Monte Carlo technique of

identical conditional sampling. Lingo uses identical conditional sampling and calculates the

expectation for each state in a similar way to SAA, associating the random variable "Produc-

tion capacity" and "demand" to a normal distribution with known distribution parameters.

Additionally, the variance reduction technique is carried out using Latin-hyper-cubes in order

to improve the solution.

The sample size is obtained in such a way that it does not generate an excessive computa-

tional effort in time and iterations and that in the solution obtained is still of quality. However,

the use of variance reduction techniques in numerous studies (Kleywegt et al. [40]; Verweij et.

al [41]; Shapiro & Homem-de-Mello [42]; Ruszczynski & Shapiro [43]) has shown that the

number of samples to require a solution with the same quality as using a simple sampling is 10

to 100 times less, so the use of 3 samples is justified in this case.

Fig 1. Scenario tree for stochastic Model-I and Model-II. Own elaboration.

https://doi.org/10.1371/journal.pone.0252801.g001
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4.- Generation of the second stochastic model (Model-II): The maximum likelihood values of

the normal distribution were used to approximate it to a discrete distribution with three

possible values 10, 12 and 14 (low, medium and high) with their probabilities obtained

using the Gaussian quadrature technique [44] associated with that values (0.267, 0.466 and

0.267) for the random parameter “production capacity”. For the random parameter

“demand”, the values 324, 353 and 382 with their respective probabilities (0.25, 0.50, 0.25)

were used.

5.- Resolution and comparison of the models: Both stochastic models were processed to solve

from two periods to the maximum number of periods that the computer was able to pro-

cess. An optimization gap between the models was calculated. Also, a sensitivity analysis

was performed, the impact of the percentage of service level and the parameters of probabil-

ity distributions were analyzed.

Once the robustness and structure of the solution obtained has been confirmed, finally the

optimal values of the related aggregate plan production will be prepared to be implemented in

the manufacturing system. It is worth mentioning that this phase will be outside the domain of

this study and remains as a possible future research direction. The lingo models are in https://

doi.org/10.6084/m9.figshare.14450430. The work methodology is summarized in the Fig 2, in

a flow chart.

5. Results

For the solution of the problem, a Dell Inspiron 5570 computer with an Intel1 Core™ i5-

8250U processor with 1.6GHz, with a 4Gb RAM memory with Windows 10 operating system

was used. The Lingo 17.0 software was run using the Lingo stochastic solver, this solver uses

an identical Monte Carlo sampling and Latin-hyper-cubes techniques to reduce the variance

of the samples when a continuous distribution is used.

When the discrete distribution was implemented, only the empirical distribution and its

probabilities were indicated to Lingo. It should be mentioned that in both cases the advantage

that Lingo has is that by indicating the model as stochastic, it is unnecessary to indicate nonan-

ticipativity restrictions, Lingo performs them internally.

For the solution of the equivalent determinists, five of the six available cores of the parallel

processor were used (this option can be registered in the Lingo options), for the prior relaxa-

tion of the problem, it was specified in the linear solver to use 4 cores, each one with different

strategies to solve the problem (two primaries using the simplex method, one barrier and the

other dual).

For the mixed integer pre-solver, the maximum amount of heuristics (100) that Lingo has

enabled were used to find optimal pre-solutions, the other capabilities were left as they come

by default in Lingo. Finally, the Branch-and-Bound (B-and-B) algorithm was applied in the

integer solver with Lingo’s default criteria. In the case where a discrete distribution is used, a

matrix decomposition was tested to perform a faster solution time.

Approximate results were found regarding the objective function of Model-I with respect

to Model-II, which shows that the approximation of the continuous model with the discrete

model demonstrated to be efficient when the problem becomes larger. The following compara-

tive table shows how the problem grows when more periods are added in the aggregate pro-

duction plan. This growth is because the model must generate the equivalent deterministic

models for each branch of the scenario tree.

Table 5 shows how the problem grows as the number of periods increases, making it more

difficult to find a solution to the problem if it is assumed that now the random variables are
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Fig 2. Flow chart of the methodology. Own elaboration.

https://doi.org/10.1371/journal.pone.0252801.g002
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associated with a continuous distribution such as the normal distribution, regardless of the use

of variance reduction techniques.

The number of iterations continues to be significantly greater in Model-I with respect to

Model-II, therefore the time required to solve the problem is greater in Model-I as observed in

Table 6.

From Table 6, as the problem increases in periods, the time taken to find the solution of

Model-I is longer. In all cases, a global optimum was found for Model-II, for Model-I only a

feasible solution was found in period 4. Moreover, an advantage can also be observed from the

perspective of the number of iterations and CPU Time after 3 periods. number of iterations

and CPU Time after 3 periods.

Fig 3 reports the Expected Value (EV) indicator, which is the expectation of all scenarios,

Lingo reports this value also as the value of the objective function. The values are close (see Fig

2) and this causes a low gap between both models, so from a computational perspective the

Model-II is convenient, even more if the interest is to seek quick decisions in organizations.

Fig 4 reports the wait-and-see (WS) indicator, this reports the expected value of the objec-

tive function by removing the nonanticipativity constraints. In practice, this is impossible due

to the randomness cannot be anticipated. The values tend to be very similar; this is because the

approximation using the maximum likelihood values of the normal distribution, minimize the

error of the approximation.

Generally, the use of heuristic and computational techniques to approximate the solution is

a motive for research, seeking speed with the cost of a solution. From Fig 3 it can be seen that

from the perspective of the WS solution the proposed model (Model-II) closely approximates

to the real problem unlike other studies (see [29, 45]).

Fig 5 reports the indicator perfect Information of expected value (EVPI) is the absolute

value of the difference between EV and WS. It is the maximum amount that would be paid to

obtain information [22] and reduce randomness. It should be mentioned that the existence of

a high EVPI justifies the use of a stochastic model, rather than using a deterministic model.

Table 7 summarizes what was mentioned about the EV, WS and EVPI stochastic optimization

indicators, adding the EV GAP. Note that the GAP obtained is low, so both models are similar

in their result of the objective value as already mentioned above.

Table 5. Comparison of how the size of the problem increases with respect to the number of periods for Model-I and Model-II (R.V. denotes random variables,

Var. denotes variables, and Int. Var. denotes integer variables). Own elaboration.

Deterministic model Equival Equivalent deterministic

Periods Scenarios RV Var. Int. Var. Constraint Var. Int. Var. Constraints

2 81 2 14 10 12 1134 810 1876

3 729 4 21 15 18 15309 10935 26338

4 6561 8 28 20 24 183708 131220 322312

https://doi.org/10.1371/journal.pone.0252801.t005

Table 6. Comparison between Model-I and Model-II regarding the time it takes to solve the problem and the number of iterations. Own elaboration.

CPU Time (s) Iterations Type of solution found

Periods Scenarios R. V. Model-I Model-II Model-I Model-II Model-I Model-II

2 81 2 1.53 0.47 6958 9877 Global optimal Global optimal

3 729 4 10.08 4.37 133406 96704 Global optimal Global optimal

4 6561 8 7200� 654.3 4736377 1406895 Feasible solution Global optimal

"�" Indicates that the problem was stopped due to not finding a better solution (R.V. denotes random variables)

https://doi.org/10.1371/journal.pone.0252801.t006
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These results show the efficiency of the proposal Model-II even when there are two random

variables, it can be noted that when the random variables are associated with a normal distri-

bution with known parameters and in a certain way compact (i.e. standard deviation and

mean close), it allows the discretization and generation of the scenario tree to be efficient

computationally.

When continuous distributions are approximated with discrete distributions, it can be

observed that it affects the quality of the Model-II solution, despite this drawback, the quality

of the solution is still acceptable in terms of the EV GAP, in this case about 5%.

6. Sensitivity analysis

In this section a sensitivity analysis is carried out to observe how robust the objective function

is, and the decision variables are when costs are changing. The problem with 3 periods was

taken as a reference for both models.

For Model-I, the middle scenario and the expected value of the objective function are

reported. For Model-II, the most probable scenario and the expected value of the objective func-

tion are reported. The decision variables that were considered indicate in what period they are.

Tables 7 and 8 show how the model change with a cost variation (in percentage), in addition to

the fact that Model-I and Model-II are remarkably similar to each other with the results.

When performing this sensitivity analysis (Tables 8 and 9), it can be observed that there are

parameters that greatly affect the objective function, such as production costs Cp and product

production costs CX, if it varies towards positive and negative percentages, and the firing cost

CF, when it varies negatively, however, there is a small difference in terms of the number of

workers assigned to production in the first period P1 (first state decision).

In general, the variation of the objective function is similar between both models except for

the variation in Cp which implies a greater increase in Model-I with respect to Model-II, and

Fig 3. Comparison between Model-I and Model-II with respect to the expected value solution. Own elaboration.

https://doi.org/10.1371/journal.pone.0252801.g003

Fig 4. Comparison between Model-I and Model-II with respect to the wait-and-see solution. Own elaboration.

https://doi.org/10.1371/journal.pone.0252801.g004
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in CF which results have greater reduction of Model-II with respect to Model-I. One consider-

ation is the hiring policy, Model-I considers hiring in 11 of the 12 sensitivity results, this

because it must be considered that the demand, from a statistical perspective, has infinite

achievements. In order to deal with this, the resource variable evaluates how many workers to

hire.

On the other hand, Model-II considers that there are only three possible realizations, there-

fore its evaluation from a computational perspective is less complex. As there are not infinite

realizations, the corrective actions by the resource variables are minimal. Another consider-

ation is when CF is null, it should be noted that the model prefers to hire and assign many

workers P1 and then carry out the fired workers, this suggests that an outsourcing policy

would mean a viable strategy for the company in a situation where the behavior of demand is

known.

For the cost CI, CR and CS there were no large significant changes in the objective function,

but reducing CR, it is possible to have a smaller workforce in the first periods, to later carry out

hiring without having an additional cost, thus indirectly reducing inventory costs and

production.

It is clear, that the proposed Model-II turns out to be in general very similar as mentioned

previously, perhaps it would be worthwhile to analyze in detail the hiring policies obtained

through the variation of parameters, particularly in economic situations where companies see

their capital reduced and they are forced to decrease payments or costs could increase.

6.1 Impact of service level on Model-I and Model-II

In this section, an analysis on the impact of the service level in Model-I and Model-II is devel-

oped, considering the same scenarios and number of periods previously used, starting from

86% to 98% of service level. Because the service level restriction is important in the model, the

Fig 5. Comparison between Model-I and Model-II with respect to the expected value for perfect information.

Own elaboration.

https://doi.org/10.1371/journal.pone.0252801.g005

Table 7. Comparison between Model-I and Model-II with respect to the importance indicators of stochastic optimization, “�” indicates approximation. Own

elaboration.

EV WS EVPI EV GAP (%)

Periods Model-I Model-II Model-I Model-II Model-I Model-II

2 594499.9 564043 464917.6 458062.7 129582.3 105980.3 5.1231

3 910984.7 860939.2 747126.9 739893.8 163857.8 121045.4 5.4936

4 1218200 1155964 1028128 1021254 190071.4 134709.7 5.1088�

https://doi.org/10.1371/journal.pone.0252801.t007
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sensitivity should be analyzed in the same way as another variation parameters of the model.

From Tables 10 and 11 it can be observed that, at a lower service level of Model-I and Model-

II, the objective function is lower (Expected Value). The EV solution gradually increases as the

service level increases.

For the indicator EVPI, this increase does not occur, in the case of Model-I a lower EVPI

implies that the model is not so affected by random issues, therefore, managing a service level

of 90% is viable for the Model- I. However, in Model-II we find that with a service level of

92%, the model does not show positive increases, hence, managing this level of service allows

reducing the EVPI, but this company policy implies a higher cost due to the increment in the

EV.

It can be noticed that the best service level policies are obtained with low service levels,

which can improve EV and EVPI, but this would imply too many backlogs that could leave a

not unfavorable impression of the company. The other option is to manage a service level pol-

icy of between 90% and 92%, being able to improve EVPI and without a drastic increase in EV,

Table 8. Sensitivity analysis of Model-I. Own elaboration.

Case Parameter Variation P1 R2 F2 X1 I1 S3 Δ-Cost (%)

Base case - - 34 3 0 346 199 38 -

1 Cp 50% 34 3 0 349 202 38 78.0267

2 -50% 34 3 0 346 199 38 -38.618

3 CF 100% 34 3 0 346 199 38 1.126

4 -100% 50 0 23 515 368 38 -16.950

5 CR 100% 34 3 0 346 199 38 0.7928

6 -100% 34 5 0 346 199 38 -0.7928

7 CI 200% 34 3 0 346 199 38 0.7694

8 -100% 34 3 0 350 203 38 -0.3849

9 C5 100% 34 3 0 346 199 37 0.2488

10 -100% 34 3 0 346 199 38 -0.2489

11 CX 100% 34 3 0 346 199 38 20.2578

12 -100% 34 3 0 346 199 38 -20.482

https://doi.org/10.1371/journal.pone.0252801.t008

Table 9. Sensitivity analysis of Model-II. Own elaboration.

Case Parameter Variation P1 R2 F2 X1 I1 S3 Δ-Cost (%)

Base case - - 34 3 0 346 199 38 -

1 Cp 50% 34 3 0 349 202 38 78.0267

2 -50% 34 3 0 346 199 38 -38.618

3 CF 100% 34 3 0 346 199 38 1.126

4 -100% 50 0 23 515 368 38 -16.950

5 CR 100% 34 3 0 346 199 38 0.7928

6 -100% 34 5 0 346 199 38 -0.7928

7 CI 200% 34 3 0 346 199 38 0.7694

8 -100% 34 3 0 350 203 38 -0.3849

9 CS 100% 34 3 0 346 199 37 0.2488

10 -100% 34 3 0 346 199 38 -0.2489

11 CX 100% 34 3 0 346 199 38 20.2578

12 -100% 34 3 0 346 199 38 -20.482

https://doi.org/10.1371/journal.pone.0252801.t009
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however, the cost is higher, even though the level of service is good, and that is easy to agree

between company and clients. Tables 12 and 13 show that the level of service significantly

affects the decision variables. It is evident that as the level of service increases, more workers

are assigned to production, and with this measure the company produces more units. This

also increases the inventory level; with these countermeasures the backlogs decrease.

6.2 Impact of variation in the distribution probability parameters of the

random variables

Finally, an analysis on the impact of variation in the distribution probability in Model-I and

Model-II is developed, considering the same scenarios and number of periods previously used

in the las two sections, two different cases were analyzed, the first where the mean has different

values, but with the same standard deviation and the second case, where the mean is the same,

but the standard deviation has different values. Figs 6 and 7 explain what has been done.

Table 14 presents the sensitivity for the normal distribution parameters (mean and standard

deviation) of the two random variables (production capacity and demand). Cases 1 to 3 and 7

to 9 show how the behavior is when the mean is fixed, and the standard deviation varies for

both random variables.

Cases 4 to 6 and 10 to 12 show the sensitivity achieved when the mean of both probability

distributions is varied, leaving the standard deviation corresponding to each random variable

fixed. It is evident that the best results regarding EV are obtained in cases 1, 6, 9 and 10, which

are when the standard deviation decreases for production capacity or its mean increases, as

well as when there is a high variation in demand or its average low.

Table 10. Impact of the service level constraint in Model-I. Own elaboration.

Service level (%) Δ-EV (%) EV Δ-WS (%) Δ-EVPI (%)

86 -0.01111753 900856.8 -0.014417899 0.00393085

88 -0.0059372 905576 -0.007466469 0.00103565

90� 0 910984.7 0 0

92 0.00886085 919056.8 0.007310539 0.01592967

94 0.01651784 926032.2 0.014569279 0.0254019

96 0.02247535 931459.4 0.022478243 0.02246216

98 0.0359522 943736.6 0.029948995 0.06332442

“�” indicates base case.

https://doi.org/10.1371/journal.pone.0252801.t010

Table 11. Impact of the service level constraint in Model-II. Own elaboration.

Service level (%) Δ-EV (%) EV Δ-WS (%) Δ-EVPI (%)

86 -0.01576139 847369.6 -0.01356681 -0.029175

88 -0.01051677 851884.9 -0.0071567 -0.03105529

90� 0 860939.2 0 0

92 0.00534684 865542.5 0.00797547 -0.01072077

94 0.02064327 878711.8 0.01516109 0.05415324

96 0.02593551 883268.1 0.02204208 0.04973423

98 0.02876963 885708.1 0.02942476 0.02476509

“�” indicates base case

https://doi.org/10.1371/journal.pone.0252801.t011
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For the decision variables, the greatest changes occur when the parameters of the random

variable demand are varied, in case 12, particularly for the variables P1, S3 y X1. In the case of

the random variable production capacity, its behavior is like that found in Model-I, that a

lower variation in production capacity or that its average is higher leads to better results.

Comparing both random variables, varying the standard deviation of the production capac-

ity has more impact on the decision variables and on the model in general, but if the mean is

varied, the demand has more impact, this because the cost of the production plan will be pro-

portional to the demand.

Table 15 is the counterpart of Table 14, where the parameters of the discrete distributions

(their values and probabilities of occurrence) were obtained using the Gaussian quadrature

method proposed in the methodology. It can be observed in Table 15 similar behaviors in

terms of the variation of the parameters of the probability distribution for production capacity,

than those observed for Model-I.

It should be noted that the best results with respect to the EV indicator occur again in cases

1, 6, 10 and now in case 7. For case 10 the changes in the EV indicator They are explained

because less products are produced and the inventory reduces compared to the base case, this

is explained by the decrease in demand. Again, the higher the demand, it is clearly observed in

the results how the decision variables are affected. These results show the quality of Model-II,

using the proposed methodology because the solutions are similar.

7. Conclusions

This research considers an aggregate production plan applied to a company. Aggregate pro-

duction plans play an important role in SMEs because they allow them to manage their

resources and operations efficiently. This plays an important role in planning as it reduces the

risk of SMEs disappearing, particularly in Mexico. Due to various policies such as hiring and

firing, the production capacity in the company was not constant, which is why it was initially

considered as a random variable, later demand is incorporated as a second random variable.

Aggregate production plans under uncertainty have been studied in the literature for different

types of problem structures such as linear optimization models, mixed linear-integers, non-lin-

ear-mixed integers, among others, in addition to whether they are single-objective or multiple-

objective. Although some studies report solutions under the here and now or wait and see

Table 12. Impact of the service level constraint respect to decision variables in Model-I. Own elaboration.

Service level (%) P1 R1 F2 X1 I1 S3

86 33 0 1 336 189 54

90 34 0 0 346 199 38

94 35 0 0 360 213 23

98 36 0 0 366 219 7

https://doi.org/10.1371/journal.pone.0252801.t012

Table 13. Impact of the service level constraint respect to decision variables in Model-II. Own elaboration.

Service level (%) P1 R1 F2 X1 I1 S3

86 31 0 1 364 211 49

90 32 0 2 381 228 35

94 33 0 3 395 242 21

98 34 0 2 390 237 7

https://doi.org/10.1371/journal.pone.0252801.t013
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solution, both solutions have never been considered in the same study, in addition we incorpo-

rated the result of the expected value of perfect information in this work.

Model-I could not solve the problem for more than three periods, for which a second

model was proposed (Model-II), following a proposed methodology, achieving good results

when comparing both models that is, there is no significant difference between the objective

Fig 6. Graphical interpretation of the sensitivity analysis for Model-I varying standard deviation parameter for

the random variable demand. Own elaboration.

https://doi.org/10.1371/journal.pone.0252801.g006

Fig 7. Graphical interpretation of the sensitivity analysis for Model-I varying mean parameter for the random

variable demand. Own elaboration.

https://doi.org/10.1371/journal.pone.0252801.g007
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function, with model 2 being the most effective at the computational level. The advantages

offered by the methodology proposed is its flexibility, being able to use it in other problems

where there is uncertainty. Some of its limitations, are the need for goodness of fit tests that

ensure that the data have a certain probability distribution; if they are not done, the results will

be far from optimal. Also, the sample size or number of possible realizations of a random vari-

able when it is discretized can make the problem difficult to solve, because the equivalent

Table 14. Model-I sensitivity analysis varying parameters of the probability distribution. Own elaboration.

Case number Parameters Decision variables Δ−EV Δ−WS Δ−EVPI

(%) (%) (%)

Random variable μ σ P1 R1 F2 X1 I1 S3

Variation of the standard deviation σ of the production capacity
1 12 1 28 0 0 310 163 38 -13.184 -1.168 -67.972

2* kωt 12 2 34 0 0 346 199 38 0.000 0.000 0.000

3 12 3 46 0 2 433 286 38 23.583 2.776 118.457

Variation of the mean μ of the production capaicty
4 10 2 45 0 0 369 222 38 25.065 15.731 67.621

5* 12 2 34 0 0 346 199 38 0.000 0.000 0.000

6 14 2 27 0 0 325 178 38 -15.005 -10.917 -33.643

Variation of the standard deviation σ of the demand
7 353 15 35 0 0 357 207 37 2.821 0.189 14.819

8* Dδ
t 353 29 34 0 0 346 199 38 0.000 0.000 0.000

9 353 45 32 1 0 326 182 40 -2.948 -0.055 -16.138

Variation of the mean μ of the demand
10 300 29 28 0 0 288 194 33 -17.409 -16.589 -21.148

11* 353 29 34 0 0 346 199 38 0.000 0.000 0.000

12 400 29 40 1 0 411 217 43 15.863 14.761 20.887

"�" denotes the base case.

https://doi.org/10.1371/journal.pone.0252801.t014

Table 15. Model-II sensitivity analysis varying parameters of the probability distribution. Own elaboration, "�" denotes the base case.

Case Parameters Decision variables Δ−EV Δ−WS Δ−EVPI

(%) (%) (%)

RV*. Values and probabilities P1 R1 F2 X1 I1 S3

Approximation to the variation of the standard deviation σ of the capacity production
1 k1 = 11 k2 = 12 k3 = 13 29 0 0 341 188 35 -6.216 -0.504 -41.133

P(k1) = 0.25

P(k2) = 0.5

P(k3) = 0.25

2� kωt k1 = 10 k2 = 12 k3 = 14 32 0 2 381 228 35 0.000 0.000 0.000

P(k1) = 0.267

P(k2) = 0.466

P(k3) = 0.267

3 k1 = 9 k2 = 12 k3 = 15 35 0 3 403 250 35 7.160 0.993 44.862

P(k1) = 0.3

P(k2) = 0.4

P(k3) = 0.3

(Continued)
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deterministic grow exponentially as the number of states increases, for this study; solving a

fifth state would imply solving a deterministic equivalent of more than two million decision

variables and four million constraints because more than 40,000 scenarios are required, which

Table 15. (Continued)

Case Parameters Decision variables Δ−EV Δ−WS Δ−EVPI

(%) (%) (%)

RV*. Values and probabilities P1 R1 F2 X1 I1 S3

Approximation to the variation of the mean μ of the capacity production
4 k1 = 8 k2 = 10 k3 = 12 40 0 3 387 234 35 19.084 14.953 44.332

P(k1) = 0.267

P(k2) = 0.466

P(k3) = 0.267

5� k1 = 10 k2 = 12 k3 = 14 32 0 2 381 228 35 0.000 0.000 0.000

P(k1) = 0.267

P(k2) = 0.466

P(k3) = 0.267

6 k1 = 12 k2 = 14 k3 = 16 27 0 1 355 202 35 -12.347 -10.69 -22.503

P(k1) = 0.267

P(k2) = 0.466

P(k3) = 0.267

Approximation to the variation of the standard deviation σ of the demand
7 D1 = 338 D2 = 353 D3 = 368 30 0 0 353 200 35 -2.857 -0.02 -20.194

P(D1) = 0.225

P(D2) = 0.55

Dδ
t P(D3) = 0.225

8� D1 = 324 D2 = 353 D3 = 382 32 0 2 381 228 35 0.000 0.000 0.000

P(D1) = 0.25

P(D2) = 0.5

P(D3) = 0.25

9 D1 = 308 D2 = 353 D3 = 398 33 0 2 390 237 35 2.561 0.166 17.198

P(k1) = 0.3

P(k2) = 0.4

P(k3) = 0.3

Approximation to the variation of the mean μ of the demand
10 D1 = 271 D2 = 300 D3 = 329 27 0 1 306 137 30 -15.614 -16.47 -10.381

P(k1) = 0.25

P(k2) = 0.5

P(k3) = 0.25

11� D1 = 324 D2 = 353 D3 = 382 32 0 2 381 228 35 0.000 0.000 0.000

P(D1) = 0.25

P(D2) = 0.5

P(D3) = 0.25

12 D1 = 371 D2 = 400 D3 = 429 36 1 0 416 216 40 13.748 14.655 8.209

P(k1) = 0.25

P(k2) = 0.5

P(k3) = 0.25

�RV is Random Variables

https://doi.org/10.1371/journal.pone.0252801.t015
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is the maximum number of scenarios that the Lingo software can process without having a

computational memory deficit.

The study was complemented with sensitivity analysis, in the literature few studies report

these analyzes, generally only perform it by varying parameters associated with costs, but in

this study is carried out to see the impact of varying the percentage of the policy of level of ser-

vice, also, a sensitivity analysis is also carried out, varying the parameters of the probability dis-

tributions or stochastic parameters (mean and standard deviation) and evaluate the impacts in

the solutions and decision variables, so that the company has sufficient information for correct

planning in case these parameters could change in the future, or, as an area of opportunity to

improve productivity, for example, it could be observed that reducing the variability of the ran-

dom variable production capacity, that is, reducing its standard deviation, reduces the total

cost of the APP.

Since many of the APPs occupy neither linear functions, a direction for future research is to

make a model considering some non-linear functions, such as the inventory cost, also refor-

mulate the problem, removing some restrictions that will allow to have a lower inventory level,

allowing to solve the problem in a more efficient way, it is also interested in the use of another

algorithm to solve the equivalent determinists, in this work the algorithm B-and-B was used,

being able also to use algorithms of cut of plan, consider using multiple kernels in parallel,

using multiple heuristics to pre-solve the problem, and using robust algorithms for relaxation

of the problem.
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Writing – original draft: José Emmanuel Gómez-Rocha, Eva Selene Hernández-Gress, Héctor

Rivera-Gómez.
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