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The development and function
of CD11c+ atypical B cells -
insights from single cell analysis
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Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The
Australian National University, Canberra, ACT, Australia
CD11c+ T-bet+ atypical B cells (ABCs) have been identified in the context of

vaccination, acute and chronic infections and autoimmune disease. However,

the origins and functions of ABCs remain elusive. A major obstacle in the study

of ABCs, and human MBCs more generally, has been the use of different

phenotypic markers in different contexts to identify what appear to be

phenotypically similar cells. Advances in single-cell RNA sequencing (scRNA-

seq) technology have allowed researchers to accurately identify ABCs in

different immune contexts such as diseases and tissues. Notably, recent

studies utilizing single cell techniques have demonstrated ABCs are a highly

conserved memory B cell lineage. This analysis has also revealed that ABCs are

more abundant in ostensibly healthy donors than previously thought.

Nonetheless, the normal function of these cells remains elusive. In this

review, we will focus on scRNA-seq studies to discuss recent advances in

our understanding about the development and functions of ABCs.
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Introduction

Memory B cells form after infection or vaccination in order to provide a rapid

anamnestic response to reinfection. These cells in humans are characterized by the high

expression of CD27 and CD21 (1). As such the markers and function of these so-called

classical memory B cells (cMBCs) are well understood. However, a now seminal study

identified a population of B cells expressing FCRL4 but not CD27 in the tonsils. This

novel population was classified as a memory cell because of negligible BCL6 and BLIMP1

expression, the hallmark transcription factors (TFs) of germinal center (GC) B cells and

plasma cells (PC) respectively (2). Because of their identification in the tonsils these cells

were initially designated as tissue-like memory B cells, however their function was

unknown. The subsequent identification of similar populations mostly in conditions of

autoimmunity, chronic infection and aging but without functional characterization has
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led to these cells being grouped under the umbrella of atypical B

cells (ABCs) which is the terminology we will use here.

The study of ABCs has been hampered by a lack of consistent

flow cytometry markers to identify mouse and human ABCs.

Additionally, the appearance of ABCs in many different contexts

such as infection and autoimmunity has made it harder to

understand what drives the development of ABCs and their

function. Recently scRNA-seq has been used to investigate the B

cell compartment in a variety of human samples including blood,

tonsil, lymph node, bone marrow, kidney, liver, synovial tissues

and cerebrospinal fluid (3–14). Intriguing, most of these datasets

have identified ABCs as a distinct subset by unsupervised

clustering indicating their conserved presence in B cell

compartment. These studies have also contributed insights into

the origin and function of ABCs which we will describe here.
The identification of ABCs

The early analyses of ABCs in the tonsils revealed that these

cells were enlarged with low CD21 expression indicative of an

activated phenotype (2). Additionally, ABCs had a distinct

integrin and chemokine receptor expression profile,

characterized by the expression of CD11c and loss of CXCR5,

potentially altering their migratory patterns and tissue

localization (2, 15). Finally, while they were classified as

memory B cells based on the lack of BLIMP1 and BCL6

expression, they also had a distinct transcription factor profile

compared to cMBCs as they upregulated RUNX1, RUNX2 and

SOX5 expression, suggesting they likely maintain a distinct

global transcriptomic profile instead of being an unstable or

transient stage of memory B cell development (15).
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Subsequently, ABCs were also reported in human blood (in

healthy individuals and patients with infections or autoimmunity)

and other tissues including spleen, lymph nodes, bone marrow,

kidney, liver, synovial tissues, cerebrospinal fluid and choalveolar

lavage fluid (3–14, 16–29) (Figure 1). Interestingly, ABCs

preferentially located in the blood, spleen and bone marrow, with

fewer cells detected in lymphoid systems such as lymph nodes,

thoracic duct fluid and tonsils (28, 29). More recently ABC-like

populations have also been identified in mice facilitating

experimental studies. Initially a population of CD11c+CD11b+ or

CD21-CD23- cells was identified in older mice and classed as age-

associated B cells (30, 31). Subsequent studies in ageing, infection

and autoimmunity models have shown that murine

CD11c+CD11b+ B cells are phenotypically and transcriptomically

similar to human ABCs as they upregulate Cd72, Hck, Tbx21, Zeb2

and Zbtb32 (30–38). Consistent with the preferential tissue

localization of human ABCs, mouse hemagglutinin-specific

CD11c+T-bet+ ABCs were preferentially maintained in the spleen

but not the lymph nodes after Influenza virus infection, but they

could not migrate from the spleen of primary infected mice into

conjoined naïve mice in parabiosis experiments (28). Using Bcl6-

deficient mice, a recent study suggested that ABCs form in the

extrafollicular compartment and migrate to the marginal zones of

the spleen potentially explaining their preference for this

compartment (39).

Historically ABCs have been identified using flow cytometry

based on a handful of key markers. Lack of CD27 and CD21 has

been frequently used to identify human ABCs during chronic or

repeated infection with Plasmodium (16). However, a more

recent study has demonstrated that CD21-CD27- circulating B

cells could be further separated into FCRL5- and FCRL5+

subsets, and only the FCRL5+ subsets expressed ABC-
FIGURE 1

scRNA-seq revealed the conserved presence of ABCs in human. Single-cell RNA-seq studies have identified ABCs in numerous tissues by
unsupervised clustering (3-14). Tissues, signature genes and estimated percentages in total B cells for ABCs cluster are shown.
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associated signature genes whereas the FCRL5- subset resembled

classical memory/naive cells (40). Similar concerns were also

raised in mouse studies. For example, CD21-CD23- B cells were

identified as ABCs in aging mice whereas these cells have been

shown in a surrogate light chain deficient lupus mouse model to

be unlikely to be ABCs because of their negligible CD11c

expression (41). CD11c has been used as a canonical ABC

marker in most ageing, infection and autoimmunity models

(31–38). Thus, the sensitivity and specificity of any gating

strategy designed to identify ABCs is unclear. Moreover, a

gating strategy that efficiently identifies ABC-like cells in one

context may not identify transcriptionally similar cells in

another setting.

Because single cell RNA-seq relies on the expression of

thousands of genes to classify and cluster cells, it should

circumvent the problems of identification by flow cytometry

which is limited to at most 10s of markers. Thus, single cell

RNA-seq has the potential to aid the identification of more

universal markers of the ABC population and determine if cells

identified in different contexts are in fact phenotypically similar

to each other. Notably, nearly all datasets have detected ABCs by

unsupervised clustering regardless of the tissue studied,

frequently marked by genes such as FCRL4+ FCRL5+ CD11c+

T-bet+ ZEB2+ and FGR+ (Figure 1) (3–13). Similar observations

had been reported by comparing ABCs in different disease

contexts. By integrating the scRNA-seq datasets obtained side-

by-side from healthy individuals, malaria and HIV infected

patients, one recent study showed ABCs from these donors co-

localized into one cluster suggesting they had overlapping

transcriptomes (13). Further analysis comparing ABC

signature genes derived from different datasets demonstrated

the high similarity between circulating ABCs induced by

infection and autoimmune diseases such as systemic lupus

erythematosus (SLE), rheumatoid arthritis and common

variable immunodeficiency (13). Interestingly, a recent scRNA-

seq dataset on horse blood also reported a ABCs cluster marked

by the expression of FCRL4, T-bet and CD11c (42). These results

suggested that ABCs identified in different tissues, organisms

and in healthy individuals and patients with different diseases,

were highly conserved and shared a similar global

transcriptomic profile.

Given that ABCs are highly conserved in different contexts,

an outstanding question is the identity of the best markers to

identify ABCs. We attempted to address this using cellular

indexing of transcriptomes and epitopes by sequencing (CITE-

seq) (43). In this approach, antibodies conjugated to

oligonucleotide sequences (barcodes) can be used to label cells

in a single cell experiment and the relative levels of barcode

sequence used to measure the level of surface expression. Using

barcoded antibodies against CD21, CD27, CXCR3 and CD11c to

phenotype ABCs in Plasmodium-exposed donors and healthy

individuals, we discovered that although ABCs in Plasmodium-

exposed donors were predominantly CD21-CD27-, ABCs in
Frontiers in Immunology 03
healthy individuals commonly expressed CD21 and CD27,

suggesting these markers were not optimal for identifying the

ABC lineage. In contrast, CD11c was upregulated on ABC

clusters in all subjects, suggesting CD11c+ was a more useful

marker for the ABC population (3). Nonetheless the variable

expression of all ABC markers probably leads to an undercount

of these cells in healthy individuals. Analysis of a more extensive

panel of antibodies should in theory yield markers with even

better resolution. However, our finding that CD11c is perhaps

the most useful marker for ABCs is consistent with a recent

cytometry by time of flight (CyTOF) study comparing 351

surface molecules on human circulating B cells which reported

CD11c as a defining marker for ABCs in healthy individuals

(44). Overall, published scRNA-seq studies showed CD11c,

FCRL4 and FCRL5 were the most frequently up-regulated

surface genes for ABCs cluster, accompanied by TFs T-bet and

ZEB2 (3–14). The utility of these markers in mice is unclear,

CD11c is commonly used but mouse Fcrl5 is not a direct

homolog of the human protein of the same name and appears

to be a marker of all murine memory B cells (32, 38).

Despite the highly conserved features of ABCs among

different immunological contexts, our previous scRNA-seq

analysis suggested that ABCs were heterogenous and had

different degrees of polarization towards the atypical

phenotype. In our CITE-seq analysis we found CD21-CD27-

ABCs which predominated in the Plasmodium-exposed

individuals expressed the highest levels of ABC-associated

markers such as CD11c and T-bet, whereas ABCs in healthy

individuals were predominately CD21+CD27+CD11cint (3).

Longitudinal analysis of B cells specific for the Plasmodium

circumsporozoite protein in previously malaria-naïve

individuals receiving a whole parasite vaccine revealed that

CD11c+ ABCs were induced in primary immunization but

with repeated immunizations these cells cell increasingly

adopted a CD21-CD27- phenotype (3). Additionally, FCRL4

and FCRL5 have distinct expression patterns on ABCs under

different immunological contexts. Although FCRL4 was highly

expressed on circulating CD21-CD27- ABCs in HIV infected

patients, it was not expressed by circulating CD21-CD27- ABCs

in Plasmodium-infected patients nor CD11c+CXCR5- ABCs in

SLE patients (20, 22, 23).
The development of ABCs

While single cell technologies have shown that ABCs form a

distinct lineage found not only in disease settings but also in

healthy individuals and protective immune responses, these

techniques can also help to identify the development and

origin of ABCs at the cellular level, the extracellular stimulus

level and the TF level.

A key controversy has been whether ABCs have a GC

dependent or independent origin. BCR sequence analysis in
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multiple settings has shown that ABCs have comparable or

slightly lower levels of somatic hypermutation (SHM) with

cMBCs and such values were much higher than naïve or

follicular B cells in humans and mice (3, 7, 13, 28, 45–48),

suggesting ABCs are GC-experienced cells. Similar observations

also reported on Influenza-specific ABCs which were also

mutated but formed distinct clades within phylogenetic trees

compared to cMBCs and plasmablasts (49). Consistent with this,

B cell specific knock-out of Bcl6 abolished the development of

CD11c+ T-bet+ ABCs in mice upon E. muris infection (36).

However, other evidence suggests a GC-independent origin for

ABCs. IgD+ cells with the features of ABCs have been reported in

SLE patients and in aged female mice (23, 30, 31), while Bcl6 in B

cells was not required for CD11c+ T-bet+ ABCs formation in

Lymphocytic Choriomeningitis Virus (LCMV) and Influenza

virus infection in mice (39).

Regardless of the GC or non-GC origin of ABCs their

formation appears to be T dependent. Several reports have

shown that inhibiting T-B interactions by knocking-out MHC-

II, CD40 or CD40L completely abolishes ABC formation in

aged, lupus-prone and E.muris infected mice (34, 36, 46).

Whether follicular helper T (Tfh) cells are required for ABC-

formation remains controversial since contradictory results have

been reported using T cell-specific Bcl6 deletion in LCMV and

E.muris infection models (36, 39). Nevertheless, these studies

suggest that ABC formation occurs at the T-B border, rather

than in GC structures though this localization may still permit

somatic hypermutation to occur, explaining the BCR mutations

present in ABCs. Of note, ABCs could also be GC independent,

but carry high levels of SHM if they arose from GC-experienced

cMBCs. This idea was supported by the observation that

secondary vaccination or infection can induce stronger

CD11c+ ABC production than the primary response (3, 17).

Nevertheless, perhaps the best theory to generalize these

observations is that the origin of ABC is not restricted to a

specific type of B cell. Naïve, GC B cells and cMBC might all be

the source of ABC as long as they receive the right extracellular

stimulus. This idea is supported by the observation that ABCs in

Plasmodium-exposed Malian children could be separated into

IgD-IgG+, IgD+IgM+ and IgD+IgMlow subsets with SHM rates

equivalent, respectively, to cMBCs (suggesting GC and cMBC

origin), naïve B cells (suggesting a naïve B cell origin) and

intermediate between naïve and cMBC (suggesting T-B border

origin) (13).

Extracellular factors may also play a key role in the

formation of ABC. Our previous study looking at ABCs in

individuals with high and low levels of malaria exposure found

that not only were Plasmodium-specific ABCs more common in

people from high transmission areas, but bystander B cells

specific for tetanus toxin were also more likely to be ABCs

(50). Thus, inflammatory mediators may drive ABC formation.

According to two pioneer studies, ABCs were highly responsive

to TLR7 and TLR9 ligand stimulation in vitro, and chronic TLR7
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but not TLR9 ligand treatment can induce the formation of

CD11c+CD11b+ ABCs in vivo (31). Consistent with this, B cell

specific deletion of Tlr7 orMyd88 has been shown to abolish the

development of ABCs in aged female mice (31), while malaria

induced ABC-generation was slightly impaired when Tlr9 was

specifically knocked-out in B cells (51).

In addition to TLR signaling, cytokines also play a central

role in regulating ABC formation. IL-21 was found to be crucial

for ABC development in the SWAP-70 and DEF6 double knock-

out (DKO) model of lupus as well as the E.muris infection model

(36, 52). IL-21 transgenic mice also have spontaneous ABC

formation (53), while IL-21 combined with TLR7 or TLR9

ligands, or with anti-CD40 plus anti-BCR antibodies, induced

the differentiation of CD11c+T-bet+ cells in vitro (23, 52–54). In

addition to IL-21, IFN-g has been shown to promote the

generation of CD11c+T-bet+ ABCs upon Influenza and

E.muris infection as well as in a WAS chimera lupus model

(34, 36, 53). However, IFN-g does not induce CD11c expression
in human and mouse B cells in in vitro culture (53, 55). IL-4 has

been shown to suppress the expression of CD11c and T-bet in

mouse B cell culture and upon H. polygyrus infection in vivo

(23, 53).

T-bet is often considered a key transcription factor for ABC

formation. Although T-bet is one of the highest expressed TFs in

ABCs, and T-bet overexpression can promote CD11c expression

(37), studies have shown that T-bet knock-out on B cells does

not affect the generation of CD19highCD11c+ ABCs upon E.

muris infection or in WAS chimera lupus mice (34, 36). RUNX1

and RUNX2 overexpression also does not promote FCRL4

expression although both genes are highly expressed by

human ABCs (15). Irf5 has also been reported to be required

for ABC formation in the SWAP-70 and DEF6 double knock-

out lupus model (52). However, to date, the master regulatory

TFs for ABCs’ development have not been identified. Published

transcriptomic datasets had reported several candidates such as

ZBTB32, SOX5, BHLHE40, TOX and ZEB2 that were

upregulated in human and mouse ABCs (20, 38), especially

ZEB2 which has been proposed to control ABC formation in

lupus (56).
The function of ABCs

Perhaps the major outstanding question in ABC biology is

the role these cells play in the immune system. scRNA-seq

datasets suggest that ABCs sit with the memory/naïve super-

cluster but are distinct from cMBCs, activated, and pre-GC

memory B cells (7). Consistent with this, trajectory analysis of

circulating B cells shows that ABC form a stand-alone

developmental branch sharing a common progenitor with

cMBCs (3, 13). These observations suggest ABCs might have a

different function from well-studied subsets like cMBCs.

Previous studies have reported many functional observations
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on ABCs which have posited three possible roles for ABCs:1)

ABCs are exhausted cells 2) ABCs are pre-plasma cells and 3)

APCs are specialized for antigen presentation.

Having been initially identified in a variety of pathological

conditions ABCs were assumed to be an exhausted or non-

functional population. In particular early experiments showed

that ABCs were unresponsive to BCR/CD40 stimulation and in

vitro analysis reported that ABCs had similar or slightly weaker

capacity to differentiate into PC compared with cMBCs (23–25,

30, 31, 40, 54). Using probes to track CSP-specific CD11c+ ABCs

after vaccination we found that B cells peaked around 2 weeks

after malaria vaccination (~30%) in human, but this number

dropped to baseline (~10%) after 6 weeks, suggesting that ABCs

were not as capable as cMBCs in surviving through the memory

contraction phase (3). Consistent with this, CD19high human

ABCs were more prone to FasL induced apoptosis than cMBCs

(45). Additionally, the numbers of circulating ABCs dropped

significantly after the resolution of malaria in humans and mice

or after ART treatment in HIV patients (17, 21, 32, 38). This

evidence supported the notion that ABCs were “exhausted-like”

cells which may act as a non-functional memory lineage to

antagonize strong humoral responses during chronic infections

and autoimmunity. A variant of the “exhausted cell” hypothesis

is that ABCs are formed in conditions of stress and represent a

better-than-nothing emergency response. In support of this a

recent study showed that B cell responses to a COVID vaccine in

indiv idua l s g iven immunosuppress ive drugs were

predominantly of an ABC phenotype (57).

A second hypothesis for ABC function is that they are poised

to develop into plasma cells. While the inability of ABCs to

produce antibody in response to BCR stimulation may seem to

contradict this, ABCs have been shown to be responsive to TLR7

ligands (30, 31). Moreover, previous studies suggested ABCs in

SLE patients express higher levels of PC transcription factors

IRF4 and BLIMP, hinting that they are PC-precursors, capable of

differentiating in to autoantibody secreting cells (23). Consistent

with this, ABCs in SLE patients were found to be highly enriched

with auto-reactive B cell clones while vaccine-induced ABCs

were enriched for Influenza-specific clones (49, 54). In animal

models in vivo depletion of ABCs by a B cell specific CD11c-

DTR system, significantly reduced the generation of

autoantibody in TLR7-ligand chronically treated mice (31).

However, a serious technical issue is whether CD11c-DTR

system exclusively depleted ABCs without affecting other B

cell populations because this system has been used to deplete

general activated B cells including GC B cells (58, 59). Moreover,

if ABCs were poised to differentiate into PCs, we would expect to

observe cells in intermediate stages of differentiation by

pseudotime analysis of single cell data. However, scRNA-seq

trajectory analysis on tonsillar B cells does not reveal that ABCs

are closer to the PC cluster than other memory B cell subsets (7).

Nevertheless, ABCs do retain the potential to differentiate into

PCs, since adoptively transferring ABCs from pre-immunized
Frontiers in Immunology 05
mice could potentiate antibody secretion in recipient mice upon

Virus Like Particle (VLP) immunization or LCMV infection

(39, 48).

Finally, ABCs have been proposed to be specialized for

antigen uptake and presentation to T cells. Both flow

cytometry, sc-RNA seq and conventional RNA seq show that

ABCs upregulate antigen presentation genes including MHC-II

and CD86 (13, 31, 38, 54). Interestingly, CD19hi T-bet+ ABCs in

healthy and HIV infected individuals preferentially localized in

non-GC and extrafollicular zones in LNs (45), and

CD19+B220+CD11c+ ABCs in aged mouse preferentially

localized at the T-B border in the spleen (60), implying that

ABCs are specialized to interact with T cells. Consistent with

this, non-specific CD11c+ ABCs were found to be better at

presenting OVA-protein to OT-II cells than follicular B cells

(60). Another interesting finding was that ABCs were better than

follicular B cells at priming OT-II cells into CXCR5+ follicular

helper T (Tfh)-like cells in in vitro co-culture, while ABC

generation preceded Tfh expansion in the CD19cre Shipfl/fl

lupus model (35). Notably, a recent study showed that human

CD21-CD27- ABCs had enhanced BCR signaling and antigen

uptake capacity to plate bound antigen (anti-l/k bound to

plasma membrane sheets) (61). Further work is required to

understand the role of ABCs in antigen presentation– it may be

that ABCs present antigen to prime a particular T cell fate (e.g.

Tfh vs Th1), or conversely they may have a regulatory role

sequestering antigen and limiting antigen presentation.
Concluding remarks

Conventional flow cytometry has struggled to accurately

identify ABCs in different immune contexts. Emerging

scRNA-seq technologies however have overcome such

limitations and significantly advanced our understanding of

ABC biology. First, the simultaneous detection of thousands of

genes has allowed us to identify ABCs in various immune

contexts and demonstrated their conserved and heterogenous

properties between tissues, organisms and diseases. ABCs almost

uniformly express CD11c, T-bet and ZEB2 but have different

usage of FCRL4 vs FCRL5 depending on the immune context.

Secondly, the use of CITE-seq has allowed us to explore better

markers for ABCs, demonstrating that CD11c expression is

more useful than CD21-CD27- to detect the ABC population

in healthy individuals. Third, trajectory analysis has shown that

ABCs form a separate developmental branch to well-established

B cell lineages like activated B cells and cMBCs, suggesting that

the formation of ABCs requires distinct extracellular stimuli and

that their functions are likely to be different from these well-

studied subsets.

Despite these advances, we still have limited knowledge on the

origin and normal functions of ABCs. Research in these areas has

been hampered by the inconsistent observations between different
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animal models, the lack of a reliable systems to specifically knock-

out ABCs and the lack of antigen-specific models to generate

sufficient cells for functional analysis. Therefore, future studies

should focus on using antigen specific models to identify the

master TFs for ABCs, and potentially use these mice as a tool to

specifically knock-out ABCs and thus study their functions in

normal and pathogenic settings.
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