
ORIGINAL ARTICLE

MEDAS: an open-source platform as a service to help break the walls
between medicine and informatics

Liang Zhang1 • Johann Li1 • Ping Li2 • Xiaoyuan Lu2 • Maoguo Gong1 • Peiyi Shen1 • Guangming Zhu1 •

Syed Afaq Shah3 • Mohammed Bennamoun4 • Kun Qian5 • Björn W. Schuller6,7

Received: 3 March 2021 / Accepted: 10 November 2021 / Published online: 16 January 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
In the past decade, deep learning (DL) has achieved unprecedented success in numerous fields, such as computer vision and

healthcare. Particularly, DL is experiencing an increasing development in advanced medical image analysis applications in

terms of segmentation, classification, detection, and other tasks. On the one hand, tremendous needs that leverage DL’s

power for medical image analysis arise from the research community of a medical, clinical, and informatics background to

share their knowledge, skills, and experience jointly. On the other hand, barriers between disciplines are on the road for

them, often hampering a full and efficient collaboration. To this end, we propose our novel open-source platform, i.e.,

MEDAS–the MEDical open-source platform As Service. To the best of our knowledge, MEDAS is the first open-source

platform providing collaborative and interactive services for researchers from a medical background using DL-related

toolkits easily and for scientists or engineers from informatics modeling faster. Based on tools and utilities from the idea of

RINV (Rapid Implementation aNd Verification), our proposed platform implements tools in pre-processing, post-pro-

cessing, augmentation, visualization, and other phases needed in medical image analysis. Five tasks, concerning lung, liver,

brain, chest, and pathology, are validated and demonstrated to be efficiently realizable by using MEDAS. MEDAS is

available at http://medas.bnc.org.cn/.

Keywords Deep learning � Medical imaging � Platform � Digital health

1 Introduction

Deep learning is the present cutting-edge technique in

computer vision, natural language processing, and other

areas, particularly healthcare. Thanks to its power,

researchers can use a regular pipeline to process and ana-

lyze the data and then obtain excellent results with the aid

of deep learning. For instance, there are a lot of recent

studies that apply deep learning in their research, especially

medical image analysis [20, 38, 49, 87, 97, 100]. However,

most researchers, who use deep learning in their research

on medical image-related tasks, are professionals in com-

puter science, and not medicine. Due to the lack of com-

puter-related knowledge, it is hard for medical researchers

to understand and apply deep learning in their research

individually for tasks such as tumor segmentation and

nuclei classification. As to computer science researchers,

they cannot amply analyze their results without the help of

medical researchers. This gap between computer science

Liang Zhang and Johann Li have contributed equally to this

work and should be considered co-first authors.

& Liang Zhang

liangzhang@xidian.edu.cn

1 Xidian University, Xi’an, China

2 Data and Virtual Research Room, Shanghai Broadband

Network Center, Shanghai, China

3 College of Science, Health, Engineering and Education,

Murdoch University, Perth, Australia

4 School of Computer Science and Software Engineering, The

University of Western Australia, Crawley, Australia

5 School of Medical Technology, Beijing Institute of

Technology, Beijing, China

6 GLAM - Group on Language, Audio & Music, Imperial

College London, London, UK

7 Embedded Intelligence for Health Care and Wellbeing,

University of Augsburg, Augsburg, Germany

123

Neural Computing and Applications (2022) 34:6547–6567
https://doi.org/10.1007/s00521-021-06750-9(0123456789().,-volV)(0123456789().,- volV)

http://medas.bnc.org.cn/
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06750-9&domain=pdf
https://doi.org/10.1007/s00521-021-06750-9

and the medical field creates a bottleneck for the use of

deep learning in medical image analysis.

The program, which is designed by the programmer, is a

series of instructions to operate the hardware. Program-

ming is a skill to convert what they want to do into

instructions, like the metaphor. However, directly operat-

ing the hardware with instructions is very difficult for most

people. Thus, there are many concepts created, such as sub-

routine, dynamically linked libraries, sharing objects,

compiler, and framework. These concepts catch the

importance of wrap and reuse. Programmers could avoid

building everything from scratch step by step but focus on

what they should focus on instead. TensorFlow [1], ITK

[33], and OpenCV [65] are typical examples to help

researchers simplify the implementation of their program

in deep learning and image analysis.

In medical areas, ITK [33], ANTs [4], FSL [35], Deep

Neuro [6], and NiftyNet [24] are the prevalent toolkits,

libraries, and frameworks to help researchers develop

programs to analyze medical images and data. These tools,

libraries, and frameworks can help them to register, pro-

cess, visualize, and analyze images. However, it still

requires a significant level of programming skills for

interested medical researchers to apply them in their

researchers.

Generally, when using the computer as a tool to solve a

problem, the approaches can be categorized into three

levels. The first level is to control the computer by pro-

gramming from bottom to top; the second level is to solve

the problem by combining other libraries via programming;

the third level is to interact with out-of-the-box software

via the user interface. The first two levels require expert

programming skills, and that limits the usage of the com-

puter from non-professionals. This creates a challenging

situation for these studies.

However, when we take a closer look at the most use-

cases of deep learning-based medical image analysis, one

easily sees that pre-processing, augmentation, neural net-

works, post-processing, visualization, augmentation, and

debugging are commonly used pipelines, and the medical

researchers are not the ones to create these tools but the

ones to set up the parameter and to use them. Furthermore,

those researchers could simply combine these tools and

make up their models without programming when applying

deep learning in their studies with visualization

programming.

Nevertheless, all these frameworks and toolkits are not

integrated as a system. Researchers need to assemble their

programs from here and there one by one with their pro-

gramming skills, unlike out-of-the-box tools, for example,

Microsoft Excel and IBM’s SPSS. In order to help

researchers build deep learning models easily, the MEDi-

cal open-source platform As Service (MEDAS) is

proposed in the oncoming. MEDAS provides a collabora-

tive and interactive platform that allows researchers to

work together to build their algorithms by coding or

visualization programming.

The main idea of MEDAS is to provide a scalable

platform and integrate a set of tools to cover the imple-

mentation of deep learning models for medical image

analysis. Moreover, MEDAS not only provides tools and

utilities, functions, and modules commonly used in deep

learning but can also help researchers to manage their

computing resources and refine their models. Currently,

MEDAS primely provides tools and components for the

classification, detection, and segmentation tasks of the MRI

images, CT images, and pathology images, respectively.

We organize the remainder sections as follows. Sec-

tion 2 introduces the related work on deep learning, med-

ical image analysis, Docker, and other technologies.

Section 3 expounds on our main idea of rapid implemen-

tation and verification, i.e., RINV. Section 4 discusses the

main components that MEDAS provides for users to

implement their algorithms and models. Section 5 intro-

duces the utilities that MEDAS provides to simplify pro-

gramming, management, and refining. Section 6 introduces

several case studies of MEDAS, including pulmonary

nodule detection & attribute classification, liver contour

segmentation, multi-organ segmentation, Alzheimer’s dis-

ease classification, and nuclei segmentation. Finally, Sec-

tion 7 provides a discussion of open questions, and

Section 8 concludes this paper.

2 Related work

In this section, we introduce (1) the related toolkits and

software for medical image analysis, (2) the deep learning

frameworks used in most relevant works, and (3) other

related technologies and software.

2.1 Toolkits of medical image

For analysis of the medical images, many institutions,

companies, and researchers created toolkits, and we list

some commonly used of them.

ANTs Advanced Neuroimaging Tools [4] is a toolkit for

brain images and provides functions to visualize, process,

and analyze the multi-modal image of the brain.

FreeSurfer FreeSurfer [22] is an open-source toolkit for

processing and analyzing MR images, and it includes

functions about skull stripping, image registration, sub-

cortical segmentation, cortical surface reconstruction, cor-

tical segmentation, cortical thickness estimation,

longitudinal processing, fMRI Analysis, tractography, and

GUI-based visualization.

6548 Neural Computing and Applications (2022) 34:6547–6567

123

ITK Insight Segmentation and Registration Toolkit [52]

is the most popular toolkit widely used in medical image

analysis. The functions provided by ITK include basic

operations of medical images, visualization, pre-process-

ing, registration, and segmentation. It is implemented with

C?? and offers templates and bindings for Python, Java,

and other languages.

2.2 Deep learning-based medical image toolkits

We listed some toolkits and software based on deep

learning and focused on medical image analysis.

DeepNeuro DeepNeuro [6] is an open-source toolkit,

which provides out-of-the-box algorithm modules and

applications based on deep learning.

MIScnn Medical Image Segmentation with Convolu-

tional Neural Networks [62], which was released recently,

targeted medical image segmentation based on convolu-

tional neural networks and deep learning. It provides

pipelines and programming-based methods to help users to

create their dedicated models.

NiftyNet NiftyNet [24] is another open-source toolkit,

similar to DeepNeuro, and provides a series of components

such as dataset splitting, data augmentation, data process-

ing, pre-designed networks, and evaluation metrics. Nif-

tyNet aims at medical image analysis with deep learning.

2.3 Deep learning frameworks

Deep learning frameworks can help researchers to avoid

wasting time on the implementation and verification of the

algorithms for the low level. Here, we list the most popular

deep learning frameworks.

Caffe Jia et al. created the Caffe framework [36], which

is an abbreviation for Convolutional Architecture for Fast

Feature Embedding. It provides a useful open-source deep

learning framework to fill the gap between different devi-

ces and platforms.

PyTorch Facebook released Torch—a scientific com-

puting framework. It widely supports machine learning

algorithms on the GPU. A few years later, Facebook

released another deep learning framework, named PyTorch

[65, 66], which puts Python first. Now, it is one of the most

popular deep learning frameworks for researchers.

TensorFlow Google released a deep learning framework

named TensorFlow [1], aimed at tensor-based deep learn-

ing. TensorFlow is based on dataflow graphs and can run

on different devices, including CPU, GPU, and Google’s

TPU. TensorFlow is widely used in both research and

industry because it can run on scaled from a personal

computing device to server clusters. Moreover, Google also

open-sourced several tools for TensorFlow, for example,

TensorBoard.

2.4 Docker and visual programming

Docker [32] is a kind of container platform and also is an

industrial-level resource management solution. Docker

takes on the management task of computing resources,

which frees its users to focus on their researches. It allows

containers to be launched in a short time, and it also allows

the mass of applications to run on the host and keep the

host without any affection.

NVIDIA released nvidia-docker [78] in 2015, which

makes it possible to use a CUDA-enabled GPU in Docker

containers. In this way, researchers can use the GPU to

accelerate algorithms in Docker.

Kubernetes [90] is one of the most famous Docker

cluster management software, which can save one from

managing a lot of workstations or servers. Users could just

submit their tasks, run them on a machine, and supervise

them on a web-based user interface.

Visualization programming allows users to create pro-

grams by manipulating program pipelines graphically or by

drag-and-drop elements, such as Unreal Engine’s Blue-

prints Visual Scripting [56] and Scratch [55]. That allows

naive programmers or researchers not familiar with pro-

gramming to build deep learning models quickly by drag-

and-drop operations.

3 Rapid implementation and verification

The naive motivation behind MEDAS is to make the

application of deep learning easier for both computer and

medical researchers in their works. The applications of

deep learning-based methods require many computer-con-

cerned skills and knowledge. To be able to use these

methods, researchers need to know how to configure the

software and hardware, how to program based on the

libraries and frameworks, and other advanced operations.

Thus, we provide MEDAS as an out-of-the-box software

and aim to provide a way of implementation and verifica-

tion but hiding the details of configuring low-level software

and hardware.

Such an idea to implement and verify a model is called

‘‘Rapid Implementation aNd Verification’’ (RINV).

RINV aims at the workflow from the sketch to the final

program and results. Based on this idea, MEDAS pro-

vides tools and utilities to help researchers simplify the

implementation and verification to focus on the

research of the model and algorithm. We introduce

RINV in this section, and Sect. 4 & 5 present the tools and

utilities based on RINV.

Just like a medical researcher does not have to build a

CT scanner before he or she wants to scan, they should not

Neural Computing and Applications (2022) 34:6547–6567 6549

123

be required to spend unnecessary time on the implemen-

tation of deep learning algorithms before using it, either.

Most of the algorithms and mathematical models are a

combination of sub-algorithms, sub-pipelines, and other

models. For example, as shown in Fig. 1, a type of the

‘‘convolution block’’, which is widely used in deep learn-

ing, is combined by a series of sub-layers. Thus, for

medical researchers without the knowledge of deep learn-

ing and computer science, combining the existing models

and setting up the parameters is the best way to apply deep

learning methods in their research. One example is simply

dragging and dropping with visualization programming.

The patchwork of algorithms and models only provided

a way to simplify the implementation. However, to drive

them to work, the hardware and software should also be

configured and managed correctly, besides the implemen-

tation. That is called ‘‘resources auto-management’’.

Generally, there are a lot of steps involved to convert an

idea, a formula, or a model to a program or even a basic

system. Such a process of transforming can be split into

four tiers, as shown in Fig. 2. At tier one, researchers need

to do everything by themselves. They need to implement

and verify the algorithms with C?? and assembly, convert

mathematical formulas to a program, make sure the pro-

gram runs on the correct device, manage computing

resources, visualize results, and so on. At tier two,

researchers can use naive algorithm toolkits to implement

the complex program but still need to manage the device

resources manually. At tier three, the management of

computing resources should be handled automatically. Tier

four aims to convert mathematical formulas to results

directly.

Tier four is a moonshot, but still a utopian design.

However, researchers mostly prefer tier four, because it is

not required with coding but can get results easily. Our

aim for MEDAS is to achieve functions of tier three,

which can provide efficient tools for users to implement

and verify their models and algorithms and help them

manage their resources efficiently.

Back to verification, it is different from implementation

and testing in software development. The verification of the

deep learning-based methods and applications focus on two

points, (1) the evaluation of results by metrics and

visualization and (2) the interpretability. Therefore, we add

the visualization, analysis, and interpretability function into

the MEDAS.

3.1 Why RINV works?

MEDAS focuses on the application of deep learning-based

algorithms to medical image analysis, and the prime

focuses are the classification, detection, and segmentation

tasks of medical image analysis. The codes of these tasks

are sharing a similar architecture. There are three key parts

of the codes: (1) how to process medical data, (2) how to

design and train their model, and (3) how to optimize

parameters.

For non-computer researchers, the first two challenges to

run their codes are (1) to configure the environment of their

computer and (2) to write the codes, particularly with non-

deep-learning parts. MEDAS can help them configure the

environment, and MEDAS can also avoid coding repeti-

tively by reusing the tools provided by MEDAS, for both

computer and non-computer researchers. MEDAS models

the program to train a deep learning algorithm into seven

parts: datasets management, pre-processing, data augmen-

tation, neural network, post-processing, visualization, and

training components. MEDAS provides components of

these parts to let researchers reuse them so that their

implementation and verification of their algorithms can be

simplified. The details of these components are shown in

the following sections.

C
onv.

R
eLU

C
onv.

R
eLU

B
atch

N
orm

Conv. Block

Fig. 1 A version of the ‘‘convolution block’’. It is combined with

convolution layers, ReLU active functions, and batch normalization

layer

Fig. 2 There are four tiers of deep learning model development. Tier

one is the implementation with C/C?? and assembly, such as for

cuDNN [13]. The next tier is the combination of the basic blocks, for

example, by using TensorFlow or PyTorch. Tier three includes the

management of resources to help users focus on the model itself. Tier

four aims to convert formulas to a program directly, meaning the

implementation and verification are automatically completed by the

software

6550 Neural Computing and Applications (2022) 34:6547–6567

123

4 Core: tools of deep learning

Similar to existing toolkits and frameworks, MEDAS

provides a series of tools to allow users to create algorithms

and models with the idea of ‘‘rapid implementation and

verification’’ by the combination of bricks. We introduce

these tools in this section, and the whole architecture and

other utilities of MEDAS present in Sect. 5.

After analyzing the pipeline of deep learning from our

and others’ researches

[10, 15, 29, 47, 71, 72, 85, 102, 103], we found that the

pipeline in these studies shares similarities. The workflow

of medical image processing is relatively fixed. For most

algorithms and methods, for example, graph cut, the

workflow usually includes:

• Dataset management

• Pre-processing [5, 38, 64, 91, 99]

• Augmentation [38, 50, 67, 83]

• Kernel algorithm

• Post-processing [38]

• Visualization [101] and other operations

Each step or component has its purpose of processing, and

the importance of these pipelines is obvious. Figure 3

shows the workflow of the typical deep learning-based

medical image processing pipelines.

MEDAS implements a series of tools to meet these

requirements, including pre-processing, post-processing,

data augmentation, artificial neural network, visualization,

and other tools.

4.1 Pre-processing

As its name implies, pre-processing is the step before the

training of neural networks and includes feature processing

and data processing. The typical example of feature pro-

cessing includes feature extraction, noise reduction, data

normalization, and modalities registration, while the typi-

cal data processing contains format conversion, annotation

transformation, and others. We implement the necessary

tools to help researchers process the data before they train

their models.

There usually exists a data bias in medical images. For

radiography, such as CT and PET, the images are noisy due

to the different pieces of equipment, operators, and proto-

cols [73, 80]. Therefore, MEDAS implements the com-

monly used registration tool and N4 bias field correction

tool [94] to process data.

For pathology, the difference in stain concentration and

brands might cause different results in images [54, 74, 77].

Thus, the stain normalization tool [95] and the stain

deconvolution tool [77] are applied.

Furthermore, for general purposes, the normalization

tool, resample tool, rescale tool, mask generating tool,

resize tool, and other tools are implemented. To process

DICOM
Image

Loading

D
ata

M
anagem

ent

Registration

N4 Bias
Field

Correction

Preprocessing

Mirroring

Rotation

Crop

A
ugm

ent

Layer 1

Layer 2

N
etw

ork

Loss

Optimization
& Back

Propagation

N
euralN

etw
ork

Training

Graph cut

· · ·

Postprocessing

F1 score

Dice score

Evaluation

Metrics

Image

V
isualization

A
nnotation

G
round

Truth

Fig. 3 The general flow of an application of deep learning for MRI

image analysis. The flow shows pipelines and components about pre-

processing, post-processing, augmentation, evaluation, visualization,

and others

Neural Computing and Applications (2022) 34:6547–6567 6551

123

data files, MEDAS also implements a series of tools,

including format conversion, annotation conversion, and

others.

4.2 Augmentation

Usually, the scale of datasets in the medical areas is con-

siderably smaller than in others [7, 44, 81]. The public

medical image datasets generally have 100 to 1000 cases,

while other datasets—for example, for 3D object detection

[98]—usually feature thousands and even millions of data.

Therefore, augmentation is necessary to enlarge the size of

the dataset. Medical image datasets ‘‘always’’ lack data,

compared to other areas, because it takes too much time,

cost, and manpower to collect and annotate medical

images.

Augmentation is an efficient method to make the model

more robust, not only in medical image analysis but also in

other areas. Augmenting with mirroring, rotating, cropping,

and deep-learning-based methods, for example, Generative

Adversarial Network, are frequently used. Augmentation

diversifies the data by making it look ‘‘different’’—which

can improve the model performance [25, 60]. The key to

augmentation is that the distribution of data expands so that

the robustness of the model increases.

MEDAS provides general transformation tools, Gaus-

sian random noise, rescaling, and others. Gaussian random

noise uses noise to enhance the robustness of the model,

while some tools desensitize the noise of the scale and the

bias by resampling and transforming the distribution of the

data.

4.3 Artificial neural network

The neural network is the most important part of deep

learning. MEDAS provides several tools integrated with

different types of neural networks for training and infer-

ring. Meanwhile, MEDAS plans to integrate a neural

architecture search tool, which aims at automatically

designing neural networks for specific tasks.

The neural network (model) training is a fixed workflow,

which includes forward propagation, loss calculation, and

backward propagation [46] and is built by connecting

‘‘blocks’’ such as ‘‘max-pooling layer’’, ’’convolution

layer’’, ‘‘fully connected layer’’, ‘‘ResBlock’’, ‘‘Dense

Block’’, and so on [2, 28, 31, 43, 76, 84, 88]. Loss function

influences the search in the parametric space, and the dif-

ferent loss functions meet the different tasks. As the neural

network intends to be applied merely as a tool by medical

researchers, they are considered to be users and not

developers. Therefore, the tools with pre-designed models

can be the best choice and can meet the needs of

researchers who want to focus on the application side of

matters.

Since a few neural networks have achieved significant

success in many medical image analysis tasks, MEDAS

implements those networks as tools for segmentation,

classification, and other tasks. For instance, the 3D Mask

RCNN [27] and 3D Dual-Path Net [12] are integrated for

the detection and classification tasks on radiography ima-

ges. The U-Net [76] and V-Net [58] are integrated for the

segmentation task. Besides, the U-Net is also available to

be used in classification tasks. The other similar neural

networks are also integrated for these tasks.

Though the prime framework currently supported by

MEDAS is PyTorch, MEDAS also supports other frame-

works, such as TensorFlow. MEDAS implements the

compatibility layer so that the heterogeneous models can

be trained, respectively. When users need to reuse their

trained model, users need to load the parameter of the

model saved in the step of training and execute the model.

MEDAS will manage models which are encapsulated as

tools, and the parameter of the model is archived in the

storage of MEDAS.

4.4 Post-processing

Post-processing is a strategy that can improve the result.

For segmentation tasks, post-processing can make predic-

tions more ‘‘smooth’’. For example, [26] employed an

FCN-based neural network, which is simpler to UNet and

VNet, but achieves better performance compared with pure

UNet. The key to its success is post-processing. It uses

‘‘horizontal and vertical gradient maps’’, ‘‘energy land-

scape’’, and other features in the post-processing and then

use the watershed algorithm to process. Furthermore, the

Conditional Random Field [11], Graph Cut [37], and other

traditional algorithms can also be used as post-processing

to optimize the results of a neural network.

In a few cases, the output of the neural network is a

probability or a probability map. The tools, for example,

binary normalization, can be used for the classification and

segmentation tasks, which will reach better results com-

pared to a simple threshold.

Besides the post-processing tools introduced above, the

MEDAS also provides another series of post-processing

tools for the neural network itself. The model compression

and pruning tools can help researchers generate smaller but

faster models with better accuracy. MEDAS employed the

following tools:

• Parameter pruning and sharing [14, 19, 45, 96]

• Low-rank factorization [18, 89]

• Knowledge distillation [16, 48]

6552 Neural Computing and Applications (2022) 34:6547–6567

123

4.5 Visualization

Generally speaking, the visualization can be categorized

into result visualization, metric visualization, and analysis

visualization.

The result shows the neural network output and keeps

important links between the model and the clinic side

[30, 34, 51, 101, 104]. The input and output of the neural

network in the medical image analysis, are not the color-

based 2-D images. It is hard to show them directly, in

particular when we want to analyze the relationship

between the input and the output. Thus, a well-designed

tool of visualization can help users present and analyze

their researches corresponding with the clinical aspects,

such as segmentation visualization, mesh-based image

visualization, point cloud-based lesion visualization, and

others.

For metric visualization, MEDAS implements tools to

record the metrics and visualize them as the image, for

example, the loss visualization tool.

For analysis visualization, MEDAS implements a series

of tools for different kinds of tasks. The saliency visual-

ization, attention visualization, feature visualization, gra-

dient propagation visualization, t-SNE visualization,

sensitivity analysis, and other visualization tools are

implemented.

4.6 Others

MEDAS also includes other tools, for example, dataset

management. The dataset management tool aims at the

management of the dataset. For example, if one wants to

split one’s data into a training set and a testing set, one can

use the dataset split tool.

5 Architecture of MEDAS

Different from traditional toolkits or frameworks, MEDAS

is a system but not just a collection of functions and tools.

Researchers can only utilize traditional toolkits and

frameworks via programming, but MEDAS provides

visualization programming to help researchers intuitively

and easily implement their algorithms and models. In the

following subsections, we discuss the visualization-based

programming, auto-machine learning, Python API, and

resource management, and other features of MEDAS.

Figure 4 shows the architecture of MEDAS. From the

bottom to top, the figure depicts each component of

MEDAS, including: visualization programming, Python

API, tools, auto-machine learning, and resource man-

agement. The users can interact with MEDAS via Python

API or visualization programming, while the latter pro-

vides more functions integrated by MEDAS, such as auto-

machine learning. Resource management is a part of

MEDAS does not provide any application programming

interface. The resources management controls the tasks

scheduling and device allocation, which directly interact

with the machine.

Moreover, we introduce the technical details of the

implementation of MEDAS.

5.1 Visualization programming

Until the invention of the graphical user interface (GUI),

anyone who wanted to use a computer needs to operate the

machine by itself or the professional operator. During this

time, the operators were the experts of computers who

dressed up in formal attire and worked in a specific room to

handle the science problems from other scientists, and the

interfaces of the computer were the teletypewriter-based

terminal or the monitor-based terminal. The computer has

its own rules, but these rules broke after the rise of the GUI.

Software developers convert instructions from the ‘‘human

rules’’ to ‘‘computer rules’’, which is called ‘‘implemen-

tation’’. GUI-based software can efficiently help non-pro-

fessionals to translate their ideas from ‘‘human rules’’ to

‘‘computer rules’’, to execute them, and to show the results

of the execution.

Users

Python API Visualization Programming

Python API

Pre-processing

A
ugm

entation

N
eural N

etw
ork

Post-processing

Post-processing

D
ata M

anagem
ent

A
nalysis

A
nalysis

Auto-ML

H
yper-param

eter
O

ptim
ization

N
eural A

rchitecture
Search

Base Class Data Access Computing
Backend

Task Management Resources Management

CUDA Docker Kubernetes MySQL NFS

Machine

Fig. 4 The general architecture of MEDAS: from the bottom

(machine) to the top (user). The user can use MEDAS and its tools

(Sect. 4), auto-machine learning (Sect. 5.2), resources management

(Sect. 5.4), and other components via Python API (Sect. 5.3) or

visualization programming interface (Sect. 5.1).

Neural Computing and Applications (2022) 34:6547–6567 6553

123

Usually, a GUI is considerably more intuitive than a

Command Line Interface (CLI) or any text-based inter-

face—especially, for the people not or less familiar with

computers. If well designed, GUI can render the operation

of tools simple, visualization of results more accessible and

the users efficient, but CLI cannot.

MEDAS provides a web-based interface for researchers

to manage and browse their tasks and data. The interface

includes a visualization programming module, where

researchers can implement their models by dragging,

dropping, and connecting. Based on the website, the

researchers can access MEDAS anywhere with the Inter-

net, and it is client-free, but a web browser suffices.

5.2 Auto-machine learning

The backbone design and hyper-parameters search are the

key to deep learning to the current state-of-the-art. How-

ever, the design and refinement of the model are not trivial.

Therefore, MEDAS integrates auto-machine learning

utilities.

Optimizing the hyper-parameters of the deep learning

models is not a straightforward task and requires in-depth

expertise. Generally, the parameter h of a deep learning

model f ðx; hÞ can be optimized by gradient descent.

However, the hyper-parameter needs to be optimized

manually, and the model also needs to be designed by

hand. The first challenge of hyper-parameters optimization

is its search space. The hyper-parameters include discrete

and continuous values, and the relationship between

parameters and results cannot be formulated in a closed

way to obtain an analytic solution. Thus the search space is

too huge to set up and search in, directly. Besides, the

second challenge is that we could only change some of the

hyper-parameters after hours or days of training. Therefore,

the optimization of hyper-parameters needs to take days or

weeks, and several attempts to choose a not bad hyper-

parameter set. The third challenge is that the models for

different medical image tasks are different, so the distri-

butions of hyper-parameters are changed with different

models, which means there is no general searching algo-

rithm to find the best. These challenges make it difficult to

optimize the hyper-parameters. The optimization is a kind

of alchemy, which lacks regular rules. With that in mind,

MEDAS employs automated hyper-parameter optimization

based on Bayesian Optimization.

When we optimize the hyper-parameter H of the model

f ðx; hÞ, we actually need to optimize another model

FðH; f Þ, which represents the best score of the metric for

the function f with the hyper-parameter H, to obtain the

optimal hyper-parameters. For optimization,

argmaxFðH; f Þ, it is hard to deduce the analytical formula

of Fð�Þ; hence, we use a set of functions fFg to estimate

the distribution of Fð�Þ as Fig. 5 shows. After training the

original model and getting the hyper-parameter result of

Fð�Þ, we can remove the functions which do not fit the

result. Then, we get a subset fFgi. After several iterations,
the distribution of fFg approximates the final one. Ulti-

mately, we can obtain an approximation of the optimal

hyper-parameters.

5.3 Python API

5.3.1 Data, format, input, and output

Different modalities of the medical image have different

formats. Therefore, the tool employs SimpleITK and

OpenSlide [79] to handle the different formats of medical

images. Furthermore, MEDAS can load and save

Portable Network Graphics images (both single images and

series of images) and Numpy objects.

Plug and slot

The inputs to a tool might be all kinds of files, numbers,

or just a Numpy array. Therefore, MEDAS employs

‘‘plug’’ and ‘‘slot’’ to process these inputs with differenti-

ation and to deliver them to the kernel function with

assimilation. The plug takes charge of the process of

inputs, while the slot handles the inputs and passes them to

the kernel function, where computing. The plug

observation()

objective (·)

acquisition max

acquisition function (·)

uncertainty new observation()posterior mean

Fig. 5 The principle of the provided Bayesian-based hyper-parameter

automatic search. The above figure shows the prediction of hyper-

parameters at t ¼ ti. Two blue points show the observation x; the
black line presents the posterior mean of the prediction; the dashed

line is the objective function f ð�Þ; the green area represents the

possible functions, while the blue area is the acquisition function uð�Þ.
The maximum point of uð�Þ is the next point of the hyper-parameter to

be optimized. We use a set of the sine function to explain how

Bayesian optimization searches the hyper-parameter. The key idea of

Bayesian optimization is the iterative repetition of fitting and search.

The methods, such as Gaussian process and regression random forest,

are employed for fitting the data (x, y), where x denotes the hyper-

parameter H, and y denotes the performance of the model, i.e.,

FðH; f Þ. The acquisition function, such as Expected Improvement and

Upper Confidence Bound, is employed for searching the next best x of
the model

6554 Neural Computing and Applications (2022) 34:6547–6567

123

automatically converts the formats of inputs. For example,

when the input is a string, but the tool accepts a float

number, the plug will try to parse the string.

Constructor

Similar to the input, the output also has different kinds

of formats. Therefore, MEDAS employs ‘‘constructor’’ to

process the result of the kernel function. The constructor

converts the results to different kinds of formats, including

DICOM, NIfTI, and Numpy array. The variable simply

passes through the variable constructor to the following

modules, while the image constructor saves the data to an

image file or passes it to the following modules.

5.3.2 Computing backend

MEDAS employs Numpy, OpenCV, and other libraries to

implement algorithms, but not C/C??. The low-level

algorithm’s implementation is not a high priority, due to

the lack of time and manpower. However, there is a

reserved feature—‘‘computing backend’’, inspired by

TensorFlow’s design. The implementation of a faster ver-

sion with CPU, GPU, and FPGA, or other devices can be

added to the system via the ‘‘computing backend’’, at later

development, and different backends can be selected when

executing the instance initialization.

5.3.3 Continuous programming

Inspired by Either Monad in Haskell [57, 70], MEDAS

implements an abstract class named ‘‘Either’’, which aims

at processing the results and errors. ‘‘Either’’ of MEDAS

has two states: success and failure, just like the one in

Haskell. The tools execute one by one, and only if the

previous execution is successful, the current one is able to

execute. For example, setting up parameters must be done

successfully before calculating.

5.3.4 Others

LoggingMEDAS employs a flexible logging system, which

can output to a terminal or stored in the system. Such a

logging system supports users to monitor, diagnose, and

debug models flexibly.

Testing suit MEDAS provides a small kit for testing, by

which modules included in MEDAS or third-parties can be

well tested. At the same time, we employ tools to test

MEDAS automatically, which is known as continuous

integration.

5.4 Resource management

Resource management is important in deep learning,

medical image analysis, and other similar tasks. Let us

discuss this kind of situation. When a researcher uses one

computer with one GPU, the management means execution

and termination by the researcher. When two researchers

share one computer with a GPU, communication between

the two researchers is needed for the scheduling of indi-

vidual tasks. When several users share GPU clusters, the

situation rapidly becomes complicated. One may easily

imagine a typical scenario where every user wants to use

more resources and complete their tasks as quickly as

possible.

The computing resources include not only GPUs, but

also storage, memory, bandwidth, software, and even

energy. Cloud computing, grid computing, IaaS, PaaS,

SaaS, and CaaS1 are the concepts presented to solve the

problem of resource management. Task-based scheduling

can meet the demand for resource management of deep

learning when the GPU, CPU, memory, and disk are con-

sidered as the main resources.

The management of resources usually includes task

management and device management, as shown in Fig. 4.

The task management takes charge of the scheduling, while

the device manager is in charge of controlling and orga-

nizing the hardware.

5.5 Implementation details

In this section, we introduce the technical details about

MEDAS so that the design ideas of MEDAS will be more

reproducible.

User Interfaces

MEDAS is a web-based system, so all the interaction is

based on web pages. We use vue.js, a front-end framework,

to create a web-based.

Back-end

The programs, who manage the data, tasks, and

resources, are mainly written in Java with SpringBoot and

MyBatis, and at the same time, the non-core microservers

are written in Go with Iris. For the programs related to deep

learning and medical image programs, we use Python to

implement referred to relevant papers with PyTorch,

Numpy, SimpleITK, OpenCV, and other software.

Tasks and Resources Management

We set the basic units of task scheduling as containers

with resources limitations, and the management assigned

the containers to users to execute their programs. The

management employs Docker and Kubernetes to manage

containers and resources, and the back-end of MEDAS

communicates with Kubernetes to allocate containers.

1 IaaS is the abbreviation of ‘‘Infrastructure as a Service’’; PaaS is the

abbreviation of ‘‘Platform as a Service’’; SaaS is the abbreviation of

‘‘Software as a Service’’; and CaaS is the abbreviation of ‘‘Container

as a Service’’.

Neural Computing and Applications (2022) 34:6547–6567 6555

123

Docker containers use the ‘‘control group’’ to establish a

sandbox with resources limitations. The number of GPUs is

controlled with a different set of the plan according to the

calculation scale. Docker and Kubernetes control the

device management. For storage, we employ NFS for

containers managed by Kubernetes to store data.

6 Application case studies

In the previous sections, we introduced the tools and sys-

tems of MEDAS. In this section, we present different case

studies performed using MEDAS and selected varying

themes of tasks. Deep learning-based methods are

employed throughout these case studies. The following

subsections present these cases which were executed on the

MEDAS system. These case studies include:

• Pulmonary nodule detection & attribute classification

• Liver contour segmentation

• Multi-organ segmentation

• Alzheimer’s Disease classification

• Nuclei segmentation

On purpose to foster comparability and reproducibility, we

chose public datasets in these case studies. Each case study

introduces the workflow of the model, and the pipeline is

implemented with visualization programming via simple

drag and drop or programming via Python API. The results

of the model show in each case study. These case studies

are executed with MEDAS via the container2.

6.1 Case study 1:pulmonary nodule detection
and attribute classification

The detection and attribute classification of the pulmonary

nodule is a common medical image analysis task and is

important for lung cancer diagnosis and clinical treatment.

In this case study, we employ the neural network based on

DeepLung [106], to detect and classify the pulmonary

nodule. The dataset, we used in this case study to train the

neural network model, is the LUNA 16 dataset, which is

based on the LIDC-IDRI dataset [3].

6.1.1 Workflow

Figure 6 shows the basic workflow of this case study,

which includes five parts:

Input The input of the whole workflow includes the CT

images of the chest and the annotations. These data are

stored in the network attached storage (NAS) and can be

mounted to the container when needed.

Pre-processing Pre-processing tools convert the formats

of the image and annotation, mask the lung area on CT, and

rescale the value of the image to [0, 1].

Dataset management Dataset management split the

dataset into a training set and a testing set to train and

evaluate the models.

Neural network We employ 3D Mask RCNN [27] for

pulmonary nodule detection, while the 3D Dual-Path Net

[12, 106] is used for attribute classification.

Visualization We employ a point cloud-based nodule

visualization tool to display the pulmonary nodule detected

by the 3D Mask RCNN and a loss visualization tool to

show the training loss of the model.

6.1.2 Implementation

Simple steps by dragging and dropping with MEDAS can

implement the workflow mentioned in the previous. Then

we launch the Docker container, mount data from NAS,

and execute the task.

6.1.3 Result and visualization

We train the 3D Mask RCNN model and the 3D Dual-Path

Net with the training set and test them with the testing set.

Figure 7 presents the training loss of the 3D Dual-Path Net.

The left plot shows the total loss, while the right plot

presents the loss for each classifier.

3D Point cloud-based visualization

MRI and CT are dense 3D images. When we are

viewing such 3D images, we can only view the cross-

section of a 3D image. We, therefore, develop a cloud

point-based visualization tool to visualize the segmentation

result in MRI and CT. Figure 8, which is rendered via this

tool, shows the result of the 3D Mask RCNN, a. k. a., the

pulmonary nodules.

6.2 Case study 2: liver contour segmentation

The liver-related radiographic analysis is also a focus of the

research based on deep learning-based methods. The first

step of the analysis is usually the segmentation of the liver

contour, so in this case study, we employ VNet [58], to

segment liver contours. The public dataset LiTS [7], which

is aimed at detection and segmentation of the liver and

tumors, is used to train the model.

2 The container includes 6 cores of Intel� Xeon� Gold 5120 CPU,

an NVIDIA Tesla V100(32G PCIe version), and 48 Gigabytes of

memory.

6556 Neural Computing and Applications (2022) 34:6547–6567

123

6.2.1 Workflow

As shown in Fig. 9, the workflow of this case study

includes six parts:

Input The input part is the source of data.

Pre-processing We employ the pre-processing tool to

convert formats of images.

Dataset management The dataset is split into a training

set and a testing set by a dataset management tool.

Neural network The VNet is employed to segment the

liver contours from the images and trained with the training

set. Then, we use the trained model to initialize the pre-

diction tool of the model for testing.

Visualization The training loss is visualized with the loss

visualization tool, while the segmentation results are pre-

sented with the segmentation visualization tool.

Analysis The prediction and ground truth are analyzed

by computing the Dice score.

6.2.2 Implementation

The algorithm can be implemented by using MEDAS’s

visualization programming. However, in this case study,

we show the alternative option available for users to pro-

gram in MEDAS. The setup, execution, and results

checking with the training tool will be shown as an

example.

To use the tool, there are four steps to follow:

1. Initializing instances

2. Setting up the tool

3. Executing the tool

4. Checking the results

The codes are shown in the following:

With continuous programming, the code above is equal

to the below one:

6.2.3 Result and visualization

The network for liver contour segmentation is trained on

the LiTS dataset, and the Dice score of the model obtains

0.92 on the testing set. Figure 10 presents the results of the

segmentation task, while Fig. 11a visualizes the training

loss.

Input Preprocessing Dataset
Managament

Neural Network Visualization

Annotation Annotation
Convert

3D Mask
RCNN

Nodule
Visualization

Image Format
Convert

Lung
Mask Rescale

Dataset
Split

3D Dual
Path Net

Loss
Visualization

path

path

image data

label

packed
data

train set
test set

train set
test set

data

log

Fig. 6 Workflow and data flow of the pulmonary nodule detection and

the attribute classification (case study 1). The workflow includes five

parts: input, pre-processing, dataset management, neural network, and

visualization. A 3D Mask RCNN is employed to detect, while a 3D

Dual-path net is employed for attribute classification

Fig. 7 The total loss and separate classification loss. The left plot
shows the training loss (blue line) and testing loss (orange line). The
right plot shows the loss of different classifiers

Fig. 8 The pulmonary nodules were detected in two subjects. The red

marks are the detected pulmonary nodules, while the blue points are

the edges of the lung

Neural Computing and Applications (2022) 34:6547–6567 6557

123

6.3 Case study 3: multi-organ segmentation

Multi-organ segmentation can help machines understand

the structure of the human body, which is very important

for all the relevant tasks. Therefore, some researchers have

focused on the single- or multi-organ segmentation tasks,

such as the liver [21, 53], and the pancreas [9, 105]. In this

case study, we use VNet-based neural network for the

multi-organ segmentation task, SegTHOR [93]. SegTHOR

challenge focuses on the segmentation of 4 organs at risk:

heart, aorta, trachea, and esophagus. This dataset provides

about 40 CT images of the chest.

6.3.1 Workflow and implementation

As shown in Fig. 12, the workflow of this case study

includes six parts:

Input The input includes the images and annotations of

the chest and is stored in NAS as a dataset.

Pre-processing Pre-processing tools rescale the range of

the image values with a window width and a window level,

resample the images to change their size.

Dataset management The dataset management tool

splits the dataset into a training and a testing set randomly.

Neural network We employ a VNet-based neural net-

work to segment organs from the chest CT images, and the

model is trained and tested with the SegTHOR dataset.

Visualization & analysis The segmented images can be

visualized via the segmentation visualization tool, and the

result analysis tool analyzes the results and generates a

report in the MS-Excel format.

6.3.2 Task management

After the user sets up and submits the task, MEDAS begins

to prepare launch a docker container to execute the user’s

task. First, the scheduler of MEDAS checks the resource

limitation of the user and system. A task will be executed

only if the required computing resources are ready and the

resources currently used by the user have not reached the

limit of its account. Then, MEDAS encapsulates the codes

and mounts the archive of code and datasets to the con-

tainer. Finally, the scheduler of MEDAS allocates the

computing resources required by the user, such as GPU,

CPU, memory, and storage, and launches the docker

container.

When there are more than one user and one GPU (or

computing resource) in the system, the scheduler strategy

will be complex. MEDAS will reject the task if it requires

interaction, but will queue the task in line when not. For

hyper-parameter searching, the new tasks will be queue

only if the old ones finish. The rejection of hyper-param-

eter searching tasks occurs only after all parameters are

reached or execution times are limited.

Input Preprocessing Dataset
Management

Neural Network

Analysis

Visualization

VNet
(train)

Loss
Visualization

LiTS
Dataset

Format
Convert

Dataset
Split

VNet
(prediction)

Segmentation
Visualization Metrics

path NIfTI
label

train set

test set

log

weight

segme
ntation

Fig. 9 Workflow and data flow for the case study 2. The workflow includes six parts: input, pre-processing, dataset management, neural network,

visualization, and ‘‘analysis

Fig. 10 The segmentation of the liver of three subjects. The window

width and level of CT images are 400 and 0. The red area is of ground

truth but not segmentation result; the green area is the segmentation

result but not ground truth; the yellow area is the right area segmented

by model

Fig. 11 Visualization of the training loss for case study 2 (left) and 3

(right)

6558 Neural Computing and Applications (2022) 34:6547–6567

123

6.3.3 Result and visualization

Figure 13 shows the obtained visualization results, and

Fig. 11b shows the training loss.

6.4 Case study 4: Alzheimer’s disease
classification

Alzheimer’s disease (AD) is a kind of progressive neuro-

degenerative disorder impairing the functions of memory

and cognition according to [59]. Till now, there is no

approach to cure the disease or even significantly slow

down its deterioration, but there are some methods to tell

the difference between AD and normal control (NC) sub-

jects, e.g. [39–41]. In this section, we employ U-Net [76],

and modify it for classification tasks, for example, AD

versus NC.

In this case study, all the subjects are selected from a

public AD dataset named ‘‘the Alzheimer’s Disease Neu-

roimaging Database’’, i.e., ADNI [61]. We select scans of

AD and NC subjects to train a classifier.

6.4.1 Workflow

As shown in Fig. 14, the workflow of this case study

includes five parts:

Input The input loads the data from the dataset.

Pre-processing The pre-processing tool generates two

images from one original image by selecting two voxels

from a box region included 8 voxels.

Dataset management The dataset management tool

splits the dataset into a training set and a testing set.

Neural network We employ a UNet-based neural net-

work for the classification task to filter AD from NC scans.

Visualization & analysis The sensitivity analysis tool

helps to identify what is relevant for the neural network by

generating a heat map that shows how the neural network

behaves when a patch of the image is occluded.

6.4.2 Result

We trained the model on MEDAS with the default

parameters. The average accuracy of the classification task

on the testing set is 0.95.

Input Preprocessing

Dataset
Managament Neural Network

Visualization

Analysis

image Rescale Resample Dataset
Split

VNet
(train)

VNet
(validation)

Organs
Visualization

annotation
Result
Analysis

image

annotation

image image
annotation

train set
validation set

weight mask

statistics

Fig. 12 The workflow of multi-organ segmentation (case study 3). The workflow includes the pre-processing of data and annotations, the

training, the evaluation, and the visualization

Fig. 13 Visualization of case study 3. The green area is the

esophagus; the red area is the heart; the blue area is the aorta; the

orange area is the trachea

Input Preprocessing Dataset
Management Neural Network

Visualization & Analysis

Label Resize
Dataset
Split

UNet
train

UNet
prediction

MRI data
Sensitivity
Analysis

class

image

train set

test set
model

inference

Fig. 14 The workflow of Alzheimer’s disease classification, case study 4. The workflow includes the pre-processing of data and annotations, the

training, the evaluation, and visualization

Neural Computing and Applications (2022) 34:6547–6567 6559

123

6.4.3 Interpretable visualization

Generally, deep learning is considered a black box. It is

difficult for researchers to understand what has been

learned by the neural network and why the algorithm works

so well. Researchers can establish models from clear rea-

sons and targets for traditional algorithms, but for deep

learning, only a general target is selected to let gradient

descent optimize their models. A general neural network

model for a complex task might include more than millions

of parameters that are hard to optimize and different to find

out the effect of each parameter.

MEDAS employs many tools to help researchers ana-

lyze and visualize their models and results. In Fig. 15, we

employ three methods to analyze and visualize the atten-

tion of our network. Such tools can easily be used for

similar tasks to generate heat map-based interpretable im-

ages. Block-based and contour-based occlusions are

employed to interpret our model.

6.5 Case Study 5: Nuclei segmentation

Nuclei segmentation is one of the basic tasks in pathology

image analysis, whether based on traditional [69] or deep

learning-based methods [63, 86, 92]. The diagnostic of

pathology images is based on many terms representing

objects, such as nuclei, cells, and glands. Researchers

extract features from these objects and use them in further

diagnosis. For example, the mitosis analysis task is based

on nuclei segmentation or detection. We use a U-Net-based

model [76] to segment the nuclei on the dataset described

in dataset MoNuSeg [44].

6.5.1 Workflow

As shown in Fig. 16, the workflow includes six parts:

Input The input loads the data from the dataset.

Pre-processing The pre-processing tools convert for-

mats and normalize the stain of the pathology image.

Dataset management The dataset management tool

splits the dataset into two sets, while the neural network

uses the training set to train the model and uses the testing

set to validate it.

Neural network We employ UNet-like neural networks,

including FCN, UNet, ResUNet, and DPUNet. The hyper-

parameter controlled which model is used.

Post-processing The post-processing tool handles the

results of the segmentation. We employ the binary nor-

malization tool to improve the segmentation results.

Visualization The visualization tool depicts the final

results to the user.

6.5.2 Implementation

After the general design of the workflow that can be done

on the draft, the user can drop selected tools in the editor

and connect them according to the data and control flow to

implement the workflow. Then, the data is uploaded into

the platform from a locally hosted or online storage system,

which is connected with the annotation systems. Finally,

is
o1

00
an

al
ys

is
is

o1
00

0
an

al
ys

is
oc

cl
us

io
n

an
al

ys
is

he
at

m
ap

an
al

ys
is

se
ns

iti
vi

ty
an

al
ys

is

Fig. 15 The heat map generated by the tool in MEDAS with block-

based and contour-based occlusions. The first two rows resemble the

analysis with color spacing split into different ranges. The third row

includes the analysis results with occlusion. The fourth row resembles

the activation heat-map. The last row depicts the sensitivity analysis

result

Input Preprocessing Dataset
Management Neural Network Postpr ocessing Visualization

<XML>
Annotation

Annotation
Convert

Dataset
Split

UNetbased
Neural Network

Binary
Normalization

Segmentation
Visualization

Pathology
Image

Format
Convert

Stain
Normalization

point train set
test set

probability
map

binary label

Fig. 16 The workflow of nuclei segmentation (case study 5). The workflow includes the pre-processing of data and annotations, the training, the

evaluation, and the visualization

6560 Neural Computing and Applications (2022) 34:6547–6567

123

the task is launched on MEDAS with the given workflow,

and the model is trained. Subsequently, the results and

intermediate data are stored in the system.

6.5.3 Hyper-parameter optimization

This case study is an example of hyper-parameter opti-

mization. Selected hyper-parameters in the neural network

were carefully picked for optimization.

The hyper-parameters optimized include the maximum

epoch of training, learning rate, criterion function, and

model. The range of the hyper-parameter ‘‘max epoch’’ is

set to be chosen within 64 to 256, while the learning rate

search range is set from 0.0001 to 0.01. The criteria could

be selected in dice loss (dice), binary cross-entropy (bce),

and Lovász loss (lovasz), while the models could be

selected in FCN, UNet, ResUNet, and DPUNet. At the

same time, ‘‘mean AJI’’ is selected as the optimization

objective.

We performed 100 iterations to search with the Bayesian

optimization algorithm. The best result of the hyper-pa-

rameter optimization and the top five results by manual

optimization are shown in Table 1 and Table 2. Further,

Fig. 17 shows the relationship between the hyper-parame-

ters and the metric ‘‘mean AJI’’. Most of the combinations

with DPUNet as a model and dice as a criterion function

show better performance, i.e., higher ‘‘mean AJI’’ score,

and the scores of these combinations are between 0.5925 to

0.6075. As shown in Fig. 17, the epoch number of the

training iterations does not result in a remarkable effect on

the metric, compared with the criterion function and the

model. Further, the smaller learning rate proves the best

choice, in general.

Table 2 shows the manual optimization result as a

comparison. When we try to optimize these hyper-param-

eters manually, we are usually facing several problems.

The most important one is how to optimize the param-

eters as it is difficult to find an analytical solution. As

outlined, MEDAS employs the Bayesian optimization

algorithm aiming to find optimal hyper-parameters.

The second problem is the time. Manual optimization

needs a lot of time. After we launch the task, we need to

wait for the task to finish to test another set of parameters.

If we have executed a task, we cannot launch another task

after the latest one has finished, because we cannot esti-

mate when the task will finish exactly.

The third problem is the resource. Manual optimization

usually needs more resources to reach a good result, since

it tends to be slower and inefficient.

6.5.4 Result and visualization

The best result of the hyper-parameters is chosen as the

final result. The DPUnet network is used as the model, and

the dice loss is selected as the criterion function. The model

is trained within 172 epochs, and the learning rate is

4:081� 10�4. The mean AJI score reaches 0.6073. The

segmentation of the nuclei is shown in Fig. 18, while the

AJI score of different organs is shown in Table 3.

Table 2 The top-five results of manual optimization with different

parameters

Epoch Criterion Learning rate Model Mean AJI

200 Dice 0.5e-3 ResUNet 0.5855

200 Dice 0.5e-3 DPUNet 0.5854

256 Lovasz 0.25e-3 ResUNet 0.5832

128 Bce 1.0e-3 DPUNet 0.5828

500 Lovasz 1.0e-3 FCN 0.5821

Fig. 17 The visualization of hyper-parameters via the parallel

coordinates. The top one shows all the hyper-parameters. The color

of the lines is related to the metric AJI: the higher, the brighter. The

bottom one shows the hyper-parameters, whose metric AJI ranges

between 0.5925 and 0.6075

Table 1 The best results of the optimization. The max epoch, crite-

rion, learning rate, number of training epochs, and model are selected

as parameters

Epoch Criterion Learning rate Model Mean AJI

172 Dice 4.081e-3 DPUNet 0.6073

Neural Computing and Applications (2022) 34:6547–6567 6561

123

7 Discussion

7.1 MEDAS

Deep learning-based medical image analysis is an inter-

disciplinary task, which combines computer and medicine

knowledge. However, on the one hand, for medical

researchers, deep learning is more like an approach applied

in medical image analysis because the medicine research-

ers would not know too much about it, and that is also

because the wall between the computer and medicine

blocks it. On the other hand, for computer researchers, such

research should focus on the algorithm or models but the

fact is that the most researchers spent some of their time in

programming, fine-tuning, and other mechanical and

repetitive tasks, on which they should not have spent too

much time.

Targeting the problems above, we implement MEDAS

for the idea of rapid implementation and verification.

MEDAS provides a set of tools for medical image analysis,

and with wrapping and reusing, researchers can simply and

rapidly implement their algorithms without wasting their

time on mechanical repetitive tasks. MEDAS also provides

a platform including visualization programming, hyper-

parameter optimization, resources management, and other

components that further simplify the implementation and

verification.

However, MEDAS cannot solve all the problems in the

processing of applying deep learning in medical image

analysis. MEDAS can remove the barriers that stop the

medical researchers from applying deep learning in their

researchers, and simply the implementation of algorithms

for computer researchers. But MEDAS cannot remove all

barriers between medical and computer knowledge. To

reduce such knowledge asymmetry, we plan to create an

application to let researchers share their knowledge, which

is named ‘‘Knowledge Base’’.

7.2 Outlook

The combination of deep learning and medical image

analysis will still be a hot topic in the next few years, and a

key problem in the present context is to break the wall

between medicine, deep learning, and computer science

knowledge. The innovation of accessible technologies and

methods, like MEDAS, will help the progress in this area.

7.2.1 Automatic DL in medical informatics

Automatic DL can help researchers to automatically design

models and search for the best hyper-parameters. Neural

network architecture and hyper-parameter optimization

search are the problems that deep learning researchers need

to face. This comes, as the choice of hyper-parameters and

the design of the neural networks do not follow any specific

rules. The rule to design the neural network cannot be

expressed with a formula or any other mathematical

approach, which can be optimized. The skillful design of a

neural network can be time-consuming and difficult and

requires expertise.

Luckily, it is possible, by now, for medical researchers

to input their data into the system, model and optimize

automatically, and fetch the best model, hyper-parameter,

and results. The algorithms to search for the best archi-

tecture of a neural network were suggested [23, 68]. Neural

architecture search and hyper-parameter optimization can

help to overcome the difficulty of manual neural network

design and refinement.

Fig. 18 Result of case study 5. Each column shows the results of four

different organs. The top row is the original image with pre-

processing. The middle one is the segmentation with post-processing

by binary normalization, while the bottom row is the ground truth

Table 3 The AJI metric of the validation set for different organs

Organ Breast Liver Bladder Colon

AJI 0.6517 0.5310 0.6543 0.5424

Organ Prostate Stomach Kidney Mean

AJI 0.6147 0.6437 0.6135 0.6073

6562 Neural Computing and Applications (2022) 34:6547–6567

123

7.2.2 Knowledge

Medical knowledge can help researchers to understand

what the machine has learned, and provide the explanation

on the medical and clinical level. The interpretability

analysis of deep learning also provides the ability to find

out the features, when it is ignored by human.

Medicine- and deep learning-concerned surveys, papers,

and even blog posts can be collected as a kind of knowl-

edge base. For medical researchers, they can quickly find

deep learning-related knowledge that is used in their

research, while deep learning researchers can also rapidly

retrieve medical knowledge. With MEDAS and such a

knowledge base, both deep learning and medical

researchers can accelerate their research.

7.2.3 Lacking data

One difference between general computer vision and

medical image analysis in deep learning is that the latter

usually lack data. First, most datasets are on a small scale.

Compared with many other computer vision datasets, such

as ImageNet [17], most medical datasets only include tens

or hundreds of subjects. Second, each group or laboratory

might have their private datasets, but mostly on a small

scale. These small isolated datasets make it difficult to use

them alone, but together.

Federal learning and decentralized learning

Federal learning [8, 42, 82] or other decentralized

learning can share what machines have learned without

sharing the data. Based on platforms such as MEDAS, and

decentralized learning, such as federal learning, researchers

from different institutions can efficiently collaborate.

Few-shot learning

Few-shot learning hits a critical spot in medical image

analysis, lacking data. When researchers apply deep

learning to medical image analysis, one of the big chal-

lenges is lacking data. Due to humans can quickly learn

from a few data, so many researchers focus on research of

few-shot learning of medical image analysis. One example

is the researcher of Rezaei et al. [75], which covers a

review of zero-shot learning from autonomous vehicles to

COVID-19 diagnosis.

Active learning

Active learning is another method to solve the problem

of lacking data by reducing the cost of annotation data.

Active learning can learn the knowledge from a small set of

training data at the beginning, and then, generate the labels

for unlabeled data by interacting with experts.

7.2.4 Platform in software engineering

Besides the topics about the development of algorithms, the

topics related to software engineering in medical image

analysis are also important. There are two topics that

MEDAS needs to improve in the future.

Link to PACS/RIS

The hospitals and medical centers usually have their

PACS or RIS. Compared to typical data access methods,

direct access to PACS and RIS can help researchers access

more data, and at the same time, the AI-based medical

image analysis algorithms can be easier applied to the

clinical environment. However, direct access risks privacy

disclosure and the strictest privacy security strategy that

impedes access to data. Therefore, how to design the

strategy of access PACS and RIS is the improvement of

MEDAS and other platforms in the future.

AI Models Evaluation

The typical evaluation of AI-based medical image

analysis is measured by the metrics, for example, accuracy.

However, these metrics can not tell the users whether it is

safe or dependable, mainly when a platform ‘‘markets’’ it

to users. Users might care about whether the model can be

easily attacked by one pixel changed or whether it can be

easily trained for their new tasks. Therefore, it is essential

for MEDAS and other platforms to research the evaluation

of the model’s safety, usability, and performance.

7.3 Plan

MEDAS is now still at the initial stage, and our users are

most of the researchers from our partners. In other words,

MEDAS is self-sufficient. MEDAS does not meet all the

needs of medical image analysis, and current focuses are

primely the detection, classification, and segmentation

tasks of MRI, CT, and pathology images.

The development plan is dependent on the community

suggestion. Our platform can be used to assist medics and

learn from medics, with the help from the technologies,

such as federated learning, active learning, life-long

learning, etc. Based on meta-learning and active learning,

MEDAS can reduce the workload of annotation. We,

therefore, currently plan to integrate more useful tools to

meet most needs from the community, and the long-term

plan currently includes an annotation tool with active

learning and other algorithms to reduce the workload of

labeling.

Neural Computing and Applications (2022) 34:6547–6567 6563

123

8 Summary

In this work, we introduced our platform, named MEDAS,

to render the application of deep learning in the medical

image analysis more user-friendly, easy, and hence acces-

sible. We designed the pipeline and user interface based on

our experience of development and analysis. The pipeline

includes pre-processing, post-processing, augmentation,

neural network, and visualization & debugging modules.

We have also performed several case studies to demon-

strate the efficient operation of MEDAS.

Acknowledgments The authors would like to acknowledge all of the

contributors to MEDAS: An open-source platform as a service to
help break the walls between medicine and informatics. This work
was supported by.—Shanghai Science and Technology Committee

(No. 18411952100, No. 17411953500)

— National Natural Science Foundation of China (No. 62072358)

— National Key R&D Program of China under Grant (No.

2020YFF0304900, No. 2019YFB1311600).

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin

M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J,

Monga R, Moore S, Murray DG, Steiner B, Tucker P,

Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016)

TensorFlow: a system for large-scale machine learning. In:

Proceedings of the 12th USENIX symposium on operating

systems design and implementation, OSDI 2016, vol abs/1605.0,

pp 265–283 (2016). http://arxiv.org/abs/1605.08695

2. Andrew AM (1999) The handbook of brain theory and neural.

Networks. https://doi.org/10.1108/k.1999.28.9.1084.1. https://dl.

acm.org/citation.cfm?id=303568.303704

3. Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer

CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman

EA, Kazerooni EA, MacMahon H, Van Beek EJ, Yankelevitz D,

Biancardi AM, Bland PH, Brown MS, Engelmann RM, Lader-

ach GE, Max D, Pais RC, Qing DP, Roberts RY, Smith AR,

Starkey A, Batra P, Caligiuri P, Farooqi A, Gladish GW, Jude

CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sun-

daram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J,

Kirby J, Hughes B, Vande Casteele A, Gupte S, Sallam M,

Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Sal-

ganicoff M, Anand V, Shreter U, Vastagh S, Croft BY, Clarke

LP (2011) The lung image database consortium (LIDC) and

image database resource initiative (IDRI): a completed reference

database of lung nodules on CT scans. Med Phys

38(2):915–931. https://doi.org/10.1118/1.3528204

4. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC

(2011) A reproducible evaluation of ANTs similarity metric

performance in brain image registration. NeuroImage

54(3):2033–2044.https://doi.org/10.1016/j.neuroimage.2010.09.

025. https://www.sciencedirect.com/science/article/pii/

S1053811910012061

5. Beaulah Jeyavathana R, Balasubramanian R, Pandian AA

(2016) A survey: analysis on pre-processing and segmentation

techniques for medical images. Int J Res Sci Innov

III(June):2321–2705

6. Beers A, Brown J, Chang K, Hoebel K, Patel J, Ly KI, Tolaney

SM, Brastianos P, Rosen B, Gerstner ER, Kalpathy-Cramer J

(2021) DeepNeuro: an open-source deep learning toolbox for

neuroimaging. Neuroinformatics 19(1):127–140.https://doi.org/

10.1007/s12021-020-09477-5. https://arxiv.org/abs/1808.04589

7. Bilic1a P, Christa PF, Vorontsov E, Chlebusr G, Chenm H,

Doum Q, Fum CW, Hanp X, Hengm PA, Hesserq J, Kadourye

S, Kopczyskiv T, Leo M, Lio C, Lim X, Lipkova J, Lowengrubn

J, Meiner H, Moltzr JH, Pale C, Pirauda M, Qim X, Qil J,

Rempera M, Rothq K, Schenkr A, Sekuboyinaa A, Zhouk P,

Hulsemeyera C, Beetza M, Ettlingera F, Gruena F, Kaissisb G,

Lohferb F, Brarenb R, Holchc J, Hofmannc F, Sommerc W,

Heinemannc V, Jacobsd C, Mamanid GEH, Ginnekend BV,

Chartrande G, Tange A, Drozdzale M, Kadourye S, Ben-Cohenf

A, Klangf E, Amitaif MM, Konenf E, Greenspanf H, Moreaug J,

Hostettlerg A, Solerg L, Vivantih R, Szeskinh A, Lev-Cohainh

N, Sosnah J, Joskowiczh L, Kumarw A, Korex A, Wangy C,

Fengz D, Liaa F, Krishnamurthix G, Heab J, Wuaa J, Kimx J,

Zhouac J, Maad J, Liaa J, Maninisae KK, Kaluvax KC, Bix L,

Khenedx M, Beliverae M, Linaa Q, Yangad X, Yuanaf Y,

Chenaa Y, Liad Y, Qius Y, Wuad Y, Menzea B (2019) The liver

tumor segmentation benchmark (LiTS). http://arxiv.org/abs/

1901.04056

8. Brendan McMahan H, Moore E, Ramage D, Hampson S,

Agüera y Arcas B (2017) Communication-efficient learning of

deep networks from decentralized data. In: Proceedings of the

20th international conference on artificial intelligence and

statistics, AISTATS 2017. http://arxiv.org/abs/1602.05629

9. Cai H, Chen T, Zhang W, Yu Y, Wang J (2018) Efficient

architecture search by network transformation. In: 32nd AAAI

conference on artificial intelligence, AAAI 2018, pp 2787–2794

10. Chang CY, Chung PC, Hong YC, Tseng CH (2011) A neural

network for thyroid segmentation and volume estimation in CT

images. IEEE Computat Intell Mag 6(4):43–55. https://doi.org/

10.1109/MCI.2011.942756.. https://ieeexplore.ieee.org/docu

ment/6052365

11. Chen S, Bruijne MD (2018) An end-to-end approach to semantic

segmentation with 3D CNN and posterior-CRF in medical

images. http://arxiv.org/abs/1811.03549

12. Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J (2017) Dual path

networks. In: Adv Neural Inf Process Syst 2017:4468–4476

13. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J,

Catanzaro B, Shelhamer E (2014) cuDNN: efficient primitives

for deep learning. arXiv: Neural and evolutionary computing.

http://arxiv.org/abs/1410.0759

14. Choi Y, El-Khamy M, Lee J (2017) Towards the limit of net-

work quantization. In: 5th International conference on learning

representations, ICLR 2017—conference track proceedings.

http://arxiv.org/abs/1612.01543

15. Crankshaw D, Sela GE, Mo S, Zumar C, Gonzalez JE, Stoica I,

Tumanov A (2018) InferLine: ML prediction pipeline provi-

sioning and management for tight latency objectives. http://

arxiv.org/abs/1812.01776

16. Czarnecki WM, Osindero S, Jaderberg M, Swirszcz G, Pascanu

R (2017) Sobolev training for neural networks. Adv Neural Inf

Process Syst 2017:4279–4288

17. Deng J, Dong W, Socher R, Li LJ (2010) Kai Li, Li Fei-Fei:

ImageNet: A large-scale hierarchical image database. In: 2009

IEEE conference on computer vision and pattern recognition,

pp 248–255. IEEE. https://doi.org/10.1109/cvpr.2009.5206848.

https://ieeexplore.ieee.org/document/5206848/

6564 Neural Computing and Applications (2022) 34:6547–6567

123

http://arxiv.org/abs/1605.08695
https://doi.org/10.1108/k.1999.28.9.1084.1
https://dl.acm.org/citation.cfm?id=303568.303704
https://dl.acm.org/citation.cfm?id=303568.303704
https://doi.org/10.1118/1.3528204
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://www.sciencedirect.com/science/article/pii/S1053811910012061
https://www.sciencedirect.com/science/article/pii/S1053811910012061
https://doi.org/10.1007/s12021-020-09477-5
https://doi.org/10.1007/s12021-020-09477-5
https://arxiv.org/abs/1808.04589
http://arxiv.org/abs/1901.04056
http://arxiv.org/abs/1901.04056
http://arxiv.org/abs/1602.05629
https://doi.org/10.1109/MCI.2011.942756.
https://doi.org/10.1109/MCI.2011.942756.
https://ieeexplore.ieee.org/document/6052365
https://ieeexplore.ieee.org/document/6052365
http://arxiv.org/abs/1811.03549
http://arxiv.org/abs/Neural
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1612.01543
http://arxiv.org/abs/1812.01776
http://arxiv.org/abs/1812.01776
https://doi.org/10.1109/cvpr.2009.5206848.
https://ieeexplore.ieee.org/document/5206848/

18. Denton E, Zaremba W, Bruna J, LeCun Y, Fergus R (2014)

Exploiting linear structure within convolutional networks for

efficient evaluation. Adv Neural Inf Process Syst

2(January):1269–1277

19. Dettmers T (2016) 8-Bit approximations for parallelism in deep

learning. In: 4th International conference on learning represen-

tations, ICLR 2016—conference track proceedings

20. Dolz J, Gopinath K, Yuan J, Lombaert H, Desrosiers C, Ben

Ayed I (2019) HyperDense-net: a hyper-densely connected cnn

for multi-modal image segmentation. IEEE Trans Med Imag

38(5):1116–1126. https://doi.org/10.1109/TMI.2018.2878669..

https://arxiv.org/abs/1804.02967

21. Dou Q, Chen H, Jin Y, Yu L, Qin J, Heng PA (2016) 3D deeply

supervised network for automatic liver segmentation from CT

volumes. In: S. Ourselin, L. Joskowicz, M.R. Sabuncu, G. Unal,

W. Wells (eds.) Lecture notes in computer science (including

subseries lecture notes in Artificial intelligence and lecture notes

in bioinformatics), vol 9901 LNCS, pp 149–157. Springer

International Publishing, Cham. https://doi.org/10.1007/978-3-

319-46723-8_18

22. Fischl B (2012). FreeSurfer. https://doi.org/10.1016/j.neuro

image. 21 Jan 2012. URL: http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3685476/

23. Gao Y, Yang H, Zhang P, Zhou C, Hu Y (2019) GraphNAS:

graph neural architecture search with reinforcement learning. In:

arXiv, vol. abs/1611.0

24. Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, Eaton-

Rosen Z, Gray R, Doel T, Hu Y, Whyntie T, Nachev P, Modat

M, Barratt DC, Ourselin S, Cardoso MJ, Vercauteren T (2018)

NiftyNet: a deep-learning platform for medical imaging. Com-

put Methods Programs Biomed 158:113–122. https://doi.org/10.

1016/j.cmpb.2018.01.025.. https://www.sciencedirect.com/sci

ence/article/pii/S0169260717311823

25. Goodfellow IJ, Erhan D, Luc Carrier P, Courville A, Mirza M,

Hamner B, Cukierski W, Tang Y, Thaler D, Lee DH, Zhou Y,

Ramaiah C, Feng F, Li R, Wang X, Athanasakis D, Shawe-

Taylor J, Milakov M, Park J, Ionescu R, Popescu M, Grozea C,

Bergstra J, Xie J, Romaszko L, Xu B, Chuang Z, Bengio Y

(2015) Challenges in representation learning: a report on three

machine learning contests. Neural Netw 64:59–63

26. Graham, S., Vu, Q.D., Ahmed Raza, S.E., Azam, A., Tsang,

Y.W., Kwak, J.T., Rajpoot, N.: HoVer-Net: simultaneous seg-

mentation and classification of nuclei in multi-tissue histology

images, 1–11 (2018). http://arxiv.org/abs/1812.06499

27. He K, Gkioxari G, Dollár P, Girshick R (2020) Mask R-CNN.

IEEE Tran Pattern Anal Mach Intell 42(2):386–397. https://doi.

org/10.1109/TPAMI.2018.2844175

28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: Proceedings of the IEEE computer soci-

ety conference on computer vision and pattern recognition

2016:770–77. https://doi.org/10.1109/CVPR.2016.90http://

arxiv.org/abs/1512.03385

29. Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M

(2020) FastSurfer—a fast and accurate deep learning based

neuroimaging pipeline. NeuroImage 219. Di: 10.1016/j.neu-

roimage.2020.117012. http://arxiv.org/abs/1910.03866

30. Hohman F, Kahng M, Pienta R, Chau DH (2019) Visual ana-

lytics in deep learning: an interrogative survey for the next

frontiers. IEEE Trans Vis Comput Graph 25(8):2674–2693

31. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.:

Densely connected convolutional networks. In: Proceedings—

30th IEEE conference on computer vision and pattern recogni-

tion, CVPR 2017, vol 2017, pp 2261–2269 (2017). https://doi.

org/10.1109/CVPR.2017.243.http://arxiv.org/abs/1608.06993

32. Hykes S (2013) Empowering app development for developers |

Docker. https://www.docker.com/

33. McCormick M, Liu X, Jomier J, Marion C, Ibanez L (2014)

ITK: enabling reproducible research and open science. Front

Neuroinform 8:13. https://doi.org/10.3389/fninf.2014.00013

34. Jamaludin A, Kadir T, Zisserman A (2017) SpineNet: Auto-

mated classification and evidence visualization in spinal MRIs.

Med Image Anal 41:63–73

35. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW,

Smith SM (2012) FSL—review. NeuroImage 62(2):782–90

36. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R,

Guadarrama S, Darrell T (2014) Caffe: Convolutional archi-

tecture for fast feature embedding. In: MM 2014—Proceedings

of the 2014 ACM conference on multimedia, pp 675–678.

https://doi.org/10.1145/2647868.2654889

37. Jimenez-Carretero D, Bermejo-Peláez D, Nardelli P, Fraga P,

Fraile E, San José Estépar R, Ledesma-Carbayo MJ (2019) A

graph-cut approach for pulmonary artery-vein segmentation in

noncontrast CT images. Med Image Anal 52:144–159. https://

doi.org/10.1016/j.media.2018.11.011. http://www.sciencedirect.

com/science/article/pii/S1361841518308740

38. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD,

Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale

3D CNN with fully connected CRF for accurate brain lesion

segmentation. Med Image Anal 36:61–78

39. Khagi B, Lee CG, Kwon GR (2019) Alzheimer’s disease clas-

sification from brain MRI based on transfer learning from CNN.

In: BMEiCON 2018—11th biomedical engineering international

conference. https://doi.org/10.1109/BMEiCON.2018.8609974

40. Khvostikov A, Aderghal K, Benois-Pineau J, Krylov A,

Catheline G (2018) 3D CNN-based classification using sMRI

and MD-DTI images for Alzheimer disease studies. http://arxiv.

org/abs/1801.05968

41. Khvostikov A, Benois-Pineau J, Krylov A, Catheline G (2017)

Classification methods on different brain imaging modalities for

Alzheimer disease studies. In: GraphiCon 2017—27th interna-

tional conference on computer graphics and vision, pp 237–242

42. Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT,

Bacon D (2016) Federated learning: strategies for improving

communication efficiency. http://arxiv.org/abs/1610.05492

43. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet clas-

sification with deep convolutional neural networks. In: Commun

ACM 60:84–90. https://doi.org/10.1145/3065386

44. Kumar N, Verma R, Sharma S, Bhargava S, Vahadane A, Sethi

A (2017) A dataset and a technique for generalized nuclear

segmentation for computational pathology. IEEE Trans Med

Imag 36(7):1550–1560. https://doi.org/10.1109/TMI.2017.

2677499

45. Lebedev V, Lempitsky V (2016) Fast convnets using group-wise

brain damage. In: Proceedings of the IEEE computer society

conference on computer vision and pattern recognition

2016:2554–2564. https://doi.org/10.1109/CVPR.2016.280

46. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2323. https://doi.org/10.1109/5.726791

47. Lee LK, Liew SC (2015) A survey of medical image processing

tools. In: 2015 4th international conference on software engi-

neering and computer systems, ICSECS 2015: virtuous software

solutions for big data, pp 171–176. https://doi.org/10.1109/

ICSECS.2015.7333105

48. Li Z, Hoiem D (2018) Learning without forgetting. IEEE Trans

Pattern Anal Mach Intell 40(12):2935–2947. https://doi.org/10.

1109/TPAMI.2017.2773081

49. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F,

Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI

(2017). A survey on deep learning in medical image analysis

50. Litjens, G., Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I,

Kovacs I, Hulsbergen-Van De Kaa C, Bult P, Van Ginneken B,

Neural Computing and Applications (2022) 34:6547–6567 6565

123

https://doi.org/10.1109/TMI.2018.2878669.
https://arxiv.org/abs/1804.02967
https://doi.org/10.1007/978-3-319-46723-8_18
https://doi.org/10.1007/978-3-319-46723-8_18
https://doi.org/10.1016/j.neuroimage
https://doi.org/10.1016/j.neuroimage
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476/
https://doi.org/10.1016/j.cmpb.2018.01.025.
https://doi.org/10.1016/j.cmpb.2018.01.025.
https://www.sciencedirect.com/science/article/pii/S0169260717311823
https://www.sciencedirect.com/science/article/pii/S0169260717311823
http://arxiv.org/abs/1812.06499
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/TPAMI.2018.2844175
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1910.03866
https://doi.org/10.1109/CVPR.2017.243.
http://arxiv.org/abs/1608.06993
https://www.docker.com/
https://doi.org/10.3389/fninf.2014.00013
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1016/j.media.2018.11.011
https://doi.org/10.1016/j.media.2018.11.011
http://www.sciencedirect.com/science/article/pii/S1361841518308740
http://www.sciencedirect.com/science/article/pii/S1361841518308740
https://doi.org/10.1109/BMEiCON.2018.8609974
http://arxiv.org/abs/1801.05968
http://arxiv.org/abs/1801.05968
http://arxiv.org/abs/1610.05492
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.1109/CVPR.2016.280
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICSECS.2015.7333105
https://doi.org/10.1109/ICSECS.2015.7333105
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081

Van Der Laak J (2016) Deep learning as a tool for increased

accuracy and efficiency of histopathological diagnosis. Sci Rep

6(1):26286. https://doi.org/10.1038/srep26286.http://www.nat

ure.com/articles/srep26286

51. Liu T, Guo Q, Lian C, Ren X, Liang S, Yu J, Niu L, Sun W,

Shen D (2019) Automated detection and classification of thyroid

nodules in ultrasound images using clinical-knowledge-guided

convolutional neural networks. Med Image Anal 58:101555

52. Lowekamp BC, Chen DT, Ibáñez L, Blezek D (2013) The

design of simpleITK. Front Neuroinf 7(DEC):45. https://doi.org/

10.3389/fninf.2013.00045

53. Lu F, Wu F, Hu P, Peng Z, Kong D (2017) Automatic 3D liver

location and segmentation via convolutional neural network and

graph cut. Int J Comput Assist Radiol Surg 12(2):171–182

54. Magee D, Treanor D, Crellin D, Shires M, Smith K, Mohee K,

Quirke P (2009) Colour normalisation in digital histopathology

images. Opt Tissue Image Anal Microsc Histopathol Endosc

MICCAI Workshop, pp 100–111. https://www.researchgate.net/

publication/228855426_Colour_Normalisation_in_Digital_His

topathology_Imageshttps://www.researchgate.net/publication/

339593324_Colour_Normalisation_in_Digital_Histopathology_

Images

55. Maloney J, Resnick M, Rusk N, Silverman B, Eastmond E

(2010) The scratch programming language and environment.

ACM Trans Comput Educ 10(4):16. https://doi.org/10.1145/

1868358.1868363

56. Marcos Romero BS (2019) Blueprints visual scripting for unreal

engine. https://docs.unrealengine.com/en-US/Engine/Blueprints/

index.html

57. Marlow S (2010) Haskell 2010 language report. Language,

p 329. http://haskell.org/definition/haskell2010.pdf

58. Milletari F, Navab N, Ahmadi SA (2016) V-Net: fully convo-

lutional neural networks for volumetric medical image seg-

mentation. In: Proceedings—2016 4th international conference

on 3D vision, 3DV 2016, pp 565–571. https://doi.org/10.1109/

3DV.2016.79

59. Minati, L., Edginton, T., Grazia Bruzzone, M., Giaccone, G.:

Reviews: current concepts in alzheimer’s disease: a multidisci-

plinary review (2009). https://doi.org/10.1177/

1533317508328602

60. Moradi M, Madani A, Karargyris A, Syeda-Mahmood TF

(2018) Chest x-ray generation and data augmentation for car-

diovascular abnormality classification. In: E.D. Angelini, B.A.

Landman (eds.) Medical imaging 2018: image processing

10574:57. SPIE. https://doi.org/10.1117/12.2293971.https://doi.

org/10.1117/12.2293971

61. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust

W, Trojanowski JQ, Toga AW, Beckett L (2005) The Alzhei-

mer’s disease neuroimaging initiative. Neuroimag Clin North

Am 15(4):869–877. https://doi.org/10.1016/j.nic.2005.09.008

62. Müller, D., Kramer, F.: MIScnn: A framework for medical

image segmentation with convolutional neural networks and

deep learning (2019)

63. Naylor P, Laé M, Reyal F, Walter T (2019) Segmentation of

nuclei in histopathology images by deep regression of the dis-

tance map. IEEE Trans Med Imag 38(2):448–459. https://doi.

org/10.1109/TMI.2018.2865709

64. Ogiela MR, Tadeusiewicz R (2008) Preprocessing medical

images and their overall enhancement. Stud Comput Intell

84:65–97. https://doi.org/10.1007/978-3-540-75402-2_4

65. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z,

Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic dif-

ferentiation in nuppercasePynuppercaseTorch. In: NIPS 2017

Autodiff Workshop: the future of gradient-based machine

learning software and techniques, pp 8024–8035 (2017). http://

papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf

66. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,

Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf

A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,

Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: An

imperative style, high-performance deep learning library. http://

arxiv.org/abs/1912.01703

67. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor

segmentation using convolutional neural networks in MRI

images. IEEE Trans Med Imag 35(5):1240–1251. https://doi.

org/10.1109/TMI.2016.2538465

68. Pham H, Guan MY, Zoph B, Le QV, Dean J (2018) Efficient

neural architecture search via parameter sharing. In: 35th

International conference on machine learning, ICML 2018, vol

9, pp 6522–6531

69. Qaiser T, Tsang YW, Taniyama D, Sakamoto N, Nakane K,

Epstein D, Rajpoot N (2019) Fast and accurate tumor segmen-

tation of histology images using persistent homology and deep

convolutional features. Med Image Anal 55:1–14

70. Radul T (2001) Functional representations of Lawson monads.

Appl Categor Struct 9(5):457–463. https://doi.org/10.1023/A:

1012052928198

71. Rajan, D., Beymer, D., Abedin, S., Dehghan, E.: Pi-PE: A

pipeline for pulmonary embolism detection using sparsely

annotated 3D CT images (2019). http://arxiv.org/abs/1910.

02175

72. Rajchl, M., Pawlowski, N., Rueckert, D., Matthews, P.M.,

Glocker, B.: NeuroNet: Fast and robust reproduction of multiple

brain image segmentation pipelines (2018). http://arxiv.org/abs/

1806.04224

73. Rameshkumar S, Thilak JAJ, Suresh P, Sathishkumar S,

Subramani N (2016) Speckle noise removal in MRI scan image

using WB—filter. Int J Innov Res Sci Eng Technol

5(12):21079–21083. https://doi.org/10.15680/IJIRSET.2016.

0512161

74. Reinhard E, Ashikhmin M, Gooch B, Shirley P (2001) Color

transfer between images. IEEE Comput Graph Appl

21(5):34–41. https://doi.org/10.1109/38.946629

75. Rezaei M, Shahidi M (2020) Zero-shot learning and its appli-

cations from autonomous vehicles to covid-19 diagnosis: a

review. https://doi.org/10.1016/j.ibmed.2020.100005.. http://

arxiv.org/abs/2004.14143

76. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional

networks for biomedical image segmentation. In: Lecture notes

in computer science (including subseries Lecture Notes in

Artificial intelligence and lecture notes in bioinformatics), vol

9351, pp 234–241 (2015). https://doi.org/10.1007/978-3-319-

24574-4_28

77. Ruifrok AC, Johnston DA (2001) Quantification of histochem-

ical staining by color deconvolution. Anal Quant Cytol Histol

23(4):291–299

78. Ryan Olson, Jonathan Calmels, F.A., |, P.R.: NVIDIA Docker:

GPU server application deployment made easy (2016). https://

devblogs.nvidia.com/nvidia-docker-gpu-server-application-

deployment-made-easy/

79. Satyanarayanan M, Goode A, Gilbert B, Harkes J, Jukic D

(2013) OpenSlide: a vendor-neutral software foundation for

digital pathology. J Pathol Inf 4(1):27. https://doi.org/10.4103/

2153-3539.119005

80. Senthilraja S, Suresh P, Suganthi M (2014) Noise reduction in

computed tomography image using WB-filter. Int J Sci Eng Res

5(3):243

81. Setio AAA, Traverso A, de Bel T, Berens MS, van den Bogaard

C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B, van der

Gugten R, Heng PA, Jansen B, de Kaste MM, Kotov V, Lin

6566 Neural Computing and Applications (2022) 34:6547–6567

123

http://www.nature.com/articles/srep26286
http://www.nature.com/articles/srep26286
https://doi.org/10.3389/fninf.2013.00045
https://doi.org/10.3389/fninf.2013.00045
https://www.researchgate.net/publication/228855426_Colour_Normalisation_in_Digital_Histopathology_Images
https://www.researchgate.net/publication/228855426_Colour_Normalisation_in_Digital_Histopathology_Images
https://www.researchgate.net/publication/339593324_Colour_Normalisation_in_Digital_Histopathology_Images
https://www.researchgate.net/publication/339593324_Colour_Normalisation_in_Digital_Histopathology_Images
https://www.researchgate.net/publication/339593324_Colour_Normalisation_in_Digital_Histopathology_Images
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html
http://haskell.org/definition/haskell2010.pdf
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1177/1533317508328602
https://doi.org/10.1177/1533317508328602
https://doi.org/10.1117/12.2293971
https://doi.org/10.1117/12.2293971
https://doi.org/10.1016/j.nic.2005.09.008
https://doi.org/10.1109/TMI.2018.2865709
https://doi.org/10.1109/TMI.2018.2865709
https://doi.org/10.1007/978-3-540-75402-2_4
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1023/A:1012052928198
https://doi.org/10.1023/A:1012052928198
http://arxiv.org/abs/1910.02175
http://arxiv.org/abs/1910.02175
http://arxiv.org/abs/1806.04224
http://arxiv.org/abs/1806.04224
https://doi.org/10.15680/IJIRSET.2016.0512161
https://doi.org/10.15680/IJIRSET.2016.0512161
https://doi.org/10.1109/38.946629
https://doi.org/10.1016/j.ibmed.2020.100005.
http://arxiv.org/abs/2004.14143
http://arxiv.org/abs/2004.14143
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-made-easy/
https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-made-easy/
https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-made-easy/
https://doi.org/10.4103/2153-3539.119005
https://doi.org/10.4103/2153-3539.119005

JYH, Manders JT, Sóñora-Mengana A, Garcı́a-Naranjo JC,

Papavasileiou E, Prokop M, Saletta M, Schaefer-Prokop CM,

Scholten ET, Scholten L, Snoeren MM, Torres EL, Vande-

meulebroucke J, Walasek N, Zuidhof GC, van Ginneken B,

Jacobs C (2017) Validation, comparison, and combination of

algorithms for automatic detection of pulmonary nodules in

computed tomography images: The LUNA16 challenge. Med

Image Anal 42:1–13. https://doi.org/10.1016/j.media.2017.06.

015. http://arxiv.org/abs/1612.08012

82. Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S (2019)

Multi-institutional deep learning modeling without sharing

patient data: a feasibility study on brain tumor segmentation. In:

Lecture notes in Computer science (including subseries Lecture

notes in Artificial intelligence and lecture notes in bioinfor-

matics), vol 11383 LNCS, pp 92–104. https://doi.org/10.1007/

978-3-030-11723-8_9

83. Shorten C, Khoshgoftaar TM (2019) A survey on image data

augmentation for deep learning. J Big Data 6(1):60. https://doi.

org/10.1186/s40537-019-0197-0

84. Simonyan K, Zisserman A (2015) Very deep convolutional

networks for large-scale image recognition. In: 3rd International

conference on learning representations, ICLR 2015—conference

track proceedings

85. Skibbe H, Watakabe A, Nakae K, Gutierrez CE, Tsukada H,

Hata J, Kawase T, Gong R, Woodward A, Doya K, Okano H,

Yamamori T, Ishii S (2019) MarmoNet: a pipeline for auto-

mated projection mapping of the common marmoset brain from

whole-brain serial two-photon tomography. http://arxiv.org/abs/

1908.00876

86. Song J, Xiao L, Molaei M, Lian Z (2019) Multi-layer boosting

sparse convolutional model for generalized nuclear segmenta-

tion from histopathology images. Knowl Based Syst 176:40–53

87. Swiderska-Chadaj Z, Pinckaers H, van Rijthoven M, Balkenhol

M, Melnikova M, Geessink O, Manson Q, Sherman M, Polonia

A, Parry J, Abubakar M, Litjens G, van der Laak J, Ciompi F

(2019) Learning to detect lymphocytes in immunohistochem-

istry with deep learning. Med Image Anal 58. https://doi.org/10.

1016/j.media.2019.101547

88. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-

v4, inception-ResNet and the impact of residual connections on

learning. In: 31st AAAI conference on artificial intelligence,

AAAI 2017, pp 4278–4284 (2017)

89. Tai, C., Xiao, T., Zhang, Y., Wang, X., Weinan, E.: Convolu-

tional neural networks with low-rank regularization. In: 4th

International conference on learning representations, ICLR

2016—conference track proceedings (2016)

90. The Linux foundation: production-grade container orchestra-

tion—Kubernetes (2020). https://kubernetes.io/

91. Thenua R, Agarwal S (2010) Simulation and performance

analysis of adaptive filter in noise cancellation. Int J Eng Sci

Technol 2(9):4373–4378

92. Tofighi M, Guo T, Vanamala JK, Monga V (2019) Prior infor-

mation guided regularized deep learning for cell nucleus

detection. IEEE Trans Med Imag 38(9):2047–2058. https://doi.

org/10.1109/TMI.2019.2895318

93. Trullo, R., Petitjean, C., Ruan, S., Dubray, B., Nie, D., Shen, D.:

Segmentation of organs at risk in thoracic CT images using a

sharpmask architecture and conditional random fields. In: Pro-

ceedings—international symposium on biomedical imaging, vol

2017, pp 1003–1006 (2017). https://doi.org/10.1109/ISBI.2017.

7950685

94. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A,

Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias

correction. IEEE Trans Med Imag 29(6):1310–1320. https://doi.

org/10.1109/TMI.2010.2046908

95. Vahadane A, Peng T, Sethi A, Albarqouni S, Wang L, Baust M,

Steiger K, Schlitter AM, Esposito I, Navab N (2016) Structure-

preserving color normalization and sparse stain separation for

histological images. IEEE Trans Med Imag 35(8):1962–1971.

https://doi.org/10.1109/TMI.2016.2529665

96. Vanhoucke V, Senior A, Mao M (2011) Improving the speed of

neural networks on CPUs. Proc Deep Learn, pp 1–8. http://

research.google.com/pubs/archive/37631.pdf

97. Wang Z, Lin Y, Cheng KTT, Yang X (2020) Semi-supervised

mp-MRI data synthesis with StitchLayer and auxiliary distance

maximization. Med Image Anal 59:101565

98. Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015)

3D ShapeNets: a deep representation for volumetric shapes. In:

Proceedings of the IEEE computer society conference on com-

puter vision and pattern recognition, vol 07–12-June,

pp 1912–1920. https://doi.org/10.1109/CVPR.2015.7298801.

http://arxiv.org/abs/1406.5670

99. Yao GL (2017) A survey on pre-processing in image matting.

J Comput Sci Technol 32(1):122–138. https://doi.org/10.1007/

s11390-017-1709-z

100. Yi X, Walia E, Babyn P (2019) Generative adversarial network

in medical imaging: a review. Med Image Anal 58:101552

101. Yong CY, Chew KM, Mahmood NH, Ariffin I (2012) A survey

of visualization tools in medical imaging. Proc Soc Behav Sci

56:265–271

102. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA Beus-

sink-Nelson L, Lassen MH, Fan E, Aras MA, Jordan CR,

Fleischmann KE, Melisko M, Qasim A, Efros A, Shah SJ,

Bajcsy R, Deo RC (2017) A computer vision pipeline for

automated determination of cardiac structure and function and

detection of disease by two-dimensional echocardiography.

http://arxiv.org/abs/1706.07342

103. Zhang, K., Snavely, N., Sun, J.: Leveraging vision reconstruc-

tion pipelines for satellite imagery (2019). http://arxiv.org/abs/

1910.02989

104. shi Zhang, Q., chun Zhu, S.: Visual interpretability for deep

learning: a survey (2018). https://doi.org/10.1631/FITEE.

1700808

105. Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL

(2017) A fixed-point model for pancreas segmentation in

abdominal CT scans. In: M. Descoteaux, L. Maier-Hein,

A. Franz, P. Jannin, D.L. Collins, S. Duchesne (eds.) Lecture

notes in Computer science (including subseries Lecture notes in

Artificial intelligence and lecture notes in Bioinformatics), vol

10433 LNCS, pp693–701. Springer International Publishing,

Cham. https://doi.org/10.1007/978-3-319-66182-7_79

106. Zhu, W., Liu, C., Fan, W., Xie, X.: DeepLung: Deep 3D dual

path nets for automated pulmonary nodule detection and clas-

sification. In: Proceedings—2018 IEEE winter conference on

applications of computer vision, WACV 2018, 2018:673–681

(2018). https://doi.org/10.1109/WACV.2018.00079

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2022) 34:6547–6567 6567

123

https://doi.org/10.1016/j.media.2017.06.015.
https://doi.org/10.1016/j.media.2017.06.015.
http://arxiv.org/abs/1612.08012
https://doi.org/10.1007/978-3-030-11723-8_9
https://doi.org/10.1007/978-3-030-11723-8_9
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
http://arxiv.org/abs/1908.00876
http://arxiv.org/abs/1908.00876
https://doi.org/10.1016/j.media.2019.101547
https://doi.org/10.1016/j.media.2019.101547
https://kubernetes.io/
https://doi.org/10.1109/TMI.2019.2895318
https://doi.org/10.1109/TMI.2019.2895318
https://doi.org/10.1109/ISBI.2017.7950685
https://doi.org/10.1109/ISBI.2017.7950685
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2016.2529665
http://research.google.com/pubs/archive/37631.pdf
http://research.google.com/pubs/archive/37631.pdf
https://doi.org/10.1109/CVPR.2015.7298801.
http://arxiv.org/abs/1406.5670
https://doi.org/10.1007/s11390-017-1709-z
https://doi.org/10.1007/s11390-017-1709-z
http://arxiv.org/abs/1706.07342
http://arxiv.org/abs/1910.02989
http://arxiv.org/abs/1910.02989
https://doi.org/10.1631/FITEE.1700808
https://doi.org/10.1631/FITEE.1700808
https://doi.org/10.1007/978-3-319-66182-7_79
https://doi.org/10.1109/WACV.2018.00079

	MEDAS: an open-source platform as a service to help break the walls between medicine and informatics
	Abstract
	Introduction
	Related work
	Toolkits of medical image
	Deep learning-based medical image toolkits
	Deep learning frameworks
	Docker and visual programming

	Rapid implementation and verification
	Why RINV works?

	Core: tools of deep learning
	Pre-processing
	Augmentation
	Artificial neural network
	Post-processing
	Visualization
	Others

	Architecture of MEDAS
	Visualization programming
	Auto-machine learning
	Python API
	Data, format, input, and output
	Computing backend
	Continuous programming
	Others

	Resource management
	Implementation details

	Application case studies
	Case study 1:pulmonary nodule detection and attribute classification
	Workflow
	Implementation
	Result and visualization

	Case study 2: liver contour segmentation
	Workflow
	Implementation
	Result and visualization

	Case study 3: multi-organ segmentation
	Workflow and implementation
	Task management
	Result and visualization

	Case study 4: Alzheimer’s disease classification
	Workflow
	Result
	Interpretable visualization

	Case Study 5: Nuclei segmentation
	Workflow
	Implementation
	Hyper-parameter optimization
	Result and visualization

	Discussion
	MEDAS
	Outlook
	Automatic DL in medical informatics
	Knowledge
	Lacking data
	Platform in software engineering

	Plan

	Summary
	Acknowledgments
	References

