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Various research works have piled up conflicting evidence questioning the effect of oxidative stress in cancer. Reactive oxygen
and nitrogen species (RONS) are the reactive radicals and nonradical derivatives of oxygen and nitrogen. RONS can act as a
double-edged weapon. On the one hand, RONS can promote cancer initiation through activating certain signal transduction
pathways that direct proliferation, survival, and stress resistance. On the other hand, they can mitigate cancer progression via
their resultant oxidative stress that causes many cancer cells to die, as some recent studies have proposed that high RONS
levels can limit the survival of cancer cells during certain phases of cancer development. Similarly, eukaryotic translation
initiation factors are key players in the process of cellular transformation and tumorigenesis. Dysregulation of such
translation initiation factors in the form of overexpression, downregulation, or phosphorylation is associated with cancer
cell’s altering capability of survival, metastasis, and angiogenesis. Nonetheless, eIFs can affect tumor age-related features.
Data shows that alternating the eukaryotic translation initiation apparatus can impact many downstream cellular signaling
pathways that directly affect cancer development. Hence, researchers have been conducting various experiments towards a
new trajectory to find novel therapeutic molecular targets to improve the efficacy of anticancer drugs as well as reduce
their side effects, with a special focus on oxidative stress and initiation of translation to harness their effect in cancer
development. An increasing body of scientific evidence recently links oxidative stress and translation initiation factors to
cancer-related signaling pathways. Therefore, in this review, we present and summarize the recent findings in this field
linking certain signaling pathways related to tumorigeneses such as MAPK and PI3K, with either RONS or eIFs.

1. Introduction

Cancer is considered the second leading cause of mortality
worldwide according to the World Health Organization.
Chemotherapy and radiotherapy can help in the manage-
ment of some types of cancer, but the net outcome of onco-

logical diseases is still far from satisfactory, which directs
most of the contemporary medical researchers to focus on
this field. Several studies have been conducted to find new
molecular therapeutic strategies, to improve the efficacy of
cancer treatment and reduce the side effects. Recent research
has been focusing on oxidative stress and initiation of
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translation as a potential target in cancer treatment. Some
types of cancer such as acute lymphocytic leukemia and
neuroblastoma are more common in young adults [1, 2],
with around 50% of testicular cancer cases occurring in
men between the age of 20 and 34 [3]. Cancer diseases are
more common among the elderly population due to longer
exposure to various risk factors such as exposure to chemi-
cals, radiation, chronic inflammation, unhealthy lifestyle,
accumulation of altered macromolecules, and decreased
immunity [4]. Patients younger than 20 years old account
for only 1.4% of all newly diagnosed cancer cases according
to Global Cancer Observatory.

Cancer cells alter mitochondrial dynamics, which include
mitochondrial fission and fusion that primarily determine
the balance between mitochondrial energy production and
cell death programs. Cancer cells cause mitochondrial
dynamics to resist apoptosis and adjust their bioenergetic
and biosynthetic requirements to support tumor initiation
and transformation properties such as autophagy, prolifera-
tion, migration, and therapeutic resistance. Microenviron-
mental stresses impact intratumoral heterogeneity and
impose stem-like traits on cancer cells. Major cancer-
related pathways such as mitogen-activated protein kinase
and phosphatidylinositol-3-kinase, which are both activated
by reactive oxygen and nitrogen species, can reprogram
mitochondrial function and dynamics. Cancer cells rely on
such reprogramming for sustained proliferation, the capacity
to metastasize and to resist apoptosis, thus positioning mito-
chondria as a pivot for major cancer traits [5].

Aerobic eukaryotes are faced with a phenomenon known
as the oxygen paradox, where they cannot survive without
oxygen, but at the same time, oxygen is considered lethal to
their survival. This is due to the presence of unpaired elec-
trons. The mitochondrial electron transport chain produces
water from the reduction of oxygen. However, the univalent
reduction of oxygen produces reactive intermediates which
are frequently encountered within the physiological cellular
state [6]. Reactive oxygen species are those reactive interme-
diates, in other words, partially reduced oxygen molecules
that can give rise to functional and morphological cellular
disturbances being capable of reacting with almost every
component of the cell [7]. On the one hand, RONS can
mutate nucleic acid and damage cellular components that
raised the assumption many years ago stating that both
cellular aging and cancer initiation may reflect accumulated
damage of RONS over periods [8]. On the other hand,
Gonskikh and Polacek demonstrated that RONS can be
beneficial. They explained that reduced protein synthesis
caused by oxidative stress is associated with increased pro-
duction of specific proteins that improve the overall cellular
performance [9].

RONS are the reactive radicals and nonradical derivatives
of oxygen and nitrogen. They are produced in all aerobic cells
and play a key role in cancer. They both originate from
endogenous and exogenous sources. Exogeneous sources
include air and water pollution, drugs (e.g., cyclosporins,
tacrolimus, gentamycin, and bleomycin), tobacco, alcohol,
heavy metals, industrial solvents, cooking (e.g., smoked meat,
waste oil, and fat), and radiation, which are metabolized
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inside the body into free radicals, whereas endogenous
sources consist of nicotinamide adenine dinucleotide phos-
phate oxidase, myeloperoxidase, lipoxygenase, and angioten-
sin II [10, 11]. Oxidative stress is a result of antioxidants and
RONS imbalance due to either depletion of antioxidants or
accumulation of RONS as shown in (Figure 1). RONS such
as superoxide, peroxyl radical, hydrogen peroxide, hydroxyl
radical, and peroxy nitrite can react with nucleic acids, pro-
teins, and lipids, thus resulting in cell and tissue damage.

Different subcellular compartments including both
enzymatic and nonenzymatic reactions produce RONS. The
enzymatic reactions include superoxide dismutase, glutathi-
one peroxidase, guaiacol peroxidase, peroxiredoxins, and
enzymes of the ascorbate-glutathione cycle, such as ascorbate
peroxidase, monodehydroascorbate reductase, dehydroas-
corbate reductase, and glutathione reductase, whereas non-
enzymatic examples include vitamin C, vitamin E, and
glutathione molecule [12]. Two main cellular organelles,
namely, the endoplasmic reticulum and the mitochondria,
are intimately involved in RONS production and their
metabolism. They both constitute a fundamental role in
redox regulation [13]. Cellular enzymes known as NADPH
oxidases produce a considerable amount of RONS in humans
[6]. Other cellular sources of RONS include neutrophils,
monocytes, cardiomyocytes, endothelial cells, xanthine
oxidases, cytochrome P450, lipoxygenases, and nitric oxide
synthases [14, 15]. Peroxisomes also produce RONS via both
beta-oxidation of fatty acids and flavin oxidase activity [16].
RONS are involved in various physiological processes and
essential protective mechanisms that living organisms use
for their survival. The protective mechanisms obviously
would be the role of the immune defense [17] and vascular
tone [18] which aims at maintaining a state of homeostasis.
Living organisms strive to keep those highly reactive mole-
cules under tight control with the help of a complex system
of antioxidants [19]. Accumulated evidence over time sug-
gested that RONS has a pivotal role in the determination of
cell fate, acting as second messengers and modifying various
signaling molecules.

Oxidative stress refers to the incapability of the cell to
detoxify free radicals produced, resulting in ineflicient cellu-
lar performance. The mechanism used by the cell in response
to oxidant effects is to restore the balance by promoting or
inhibiting genes encoding defensive enzymes, transcription
factors, and structural proteins [20]. The accumulation of
these reactive species affects normal cellular pathways and
therefore plays a positive role in cancer by damaging the
amino acids, DNA, and lipids that act as building blocks of
the body. Intracellular RONS are important components of
intracellular signaling cascades [21]. A recent study sug-
gested that RONS act as a double agent by promoting cancer
initiation through activating signaling pathways that control
proliferation, survival, and stress resistance and on the other
side by suppressing cancer initiation and progression via
oxidative stress that kills many cancer cells [22].

Initiation of translation is the complex and rate-
determining step of protein synthesis. This process is con-
served in all eukaryotes, and it involves multiple eukaryotic
initiation factors, including but not limited to eIF1, eIFla,
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FIGURE 1: A schematic presentation of RONS levels in the cell and their impact, the reasonable amounts of RONS are a key player for
activating protective signaling pathways whereas elevated RONS is considered lethal to most cellular functions and may lead to cancer
development. RONS: reactive oxygen and nitrogen species; P53: tumor suppressor; JNK: Jun N-terminal kinase.

elF2, eIF2b, elF3, elF4a, elF4e, elF4g, elF4b, elF4h, elF5,
elF5b, and elF6 [23]. elFs are proteins, most of which are
composed of several subunits, and have a major role in the
regulation of the translation initiation machinery [24]. Major
events in initiation comprise (1) formation of a 43S preinitia-
tion complex which consists of a 40S ribosomal subunit and
binds to elFs 1, 1A, 3, and 5 and also a ternary complex
consisting of the initiating methionyl-tRNA which binds to
elF2-Guanosine triphosphate (eIF2-GTP-MettRNAi); (2)
assembling of elF4F complex (eIF4E, eIF4G, elF4A) on
mRNA 5" m7GpppN cap; (3) eIF4F complex facilitating the
recruitment of the 43S PIC to the mRNA via eIlF4G-elF3
interaction to form the 43S mRNA initiation complex; (4)
in the 43S mRNA initiation complex, scanning of the mRNA
5' of the untranslated region in the 5’ to 3’ direction to the
initiation codon; (5) initiation codon recognition and 48S
complex formation; (6) eIF5B promoting the hydrolysis of
elF2-bound guanosine triphosphate, the displacement of
elFs, and the joining of a 60S subunit; (7) GTP hydrolysis
by eIF5B and release of eIF1A and guanosine diphosphate-
bound eIF5B from assembled elongation-competent 80S
ribosomes; (8) formation of an active 80S ribosome to initiate
protein synthesis; and (9) eIF5A promoting peptide bond
formation and translation elongation. The inactive eIF2-
GDP is recycled to active eIF2-GTP by GTP recycling factor
elF2B [23-27]. Dysregulation of translation initiation factors
in the form of overexpression, downregulation, or phosphor-
ylation affects cancer cell survival, metastasis, and tumor
angiogenesis and aging-related features [23, 27].

Signaling pathways and translation initiation factors have
represented a promising aspect for further studies in cancer
treatment, as their dysregulation promotes cancer progres-

sion. In addition, in vivo trials have provided up-and-
coming results, including some that have already moved to
the final phase of clinical trial. RONS play a double agent
role, depending on their cumulative amount within the cell.
The impact of elevated amounts of RONS is of greater impor-
tance when it comes to developing new cancer therapeutics;
however, targeting RONS requires determining the threshold
level of lethal RONS in different cells, opening an opportu-
nity for more research to be done concerning the mecha-
nisms and relevant applications of the proposed approaches.
Blocking dysregulated signaling pathways such as (PI3K/
Ak strain transforming/mechanistic target of rapamycin)
pathway and translation regulators by kinase inhibitors have
yielded promising outcomes as cancer treatment targets. Also,
researchers aiming at targeting dysregulated elFs as a cancer
therapy focus on eIF4 complex. This may be achieved in many
ways such as suppressing eIF4E activity or targeting its sub-
units [23]. It may help in controlling the disease and discover-
ing a new vision for cancer treatment in combination with
conventional chemotherapeutics. Future studies should focus
on determining the clear mechanism and the role of initiation
factors in aging. Another study demonstrated that overexpres-
sion of forkhead box O6 inhibits the migration and progres-
sion of breast cancer cells [28]. Understanding crosstalk
between the signaling pathways is the major challenge in
targeting signaling pathways, and also, the adverse events
associated with drugs make treatment more complicated.

2. RONS in Cancer

At low levels, RONS can be beneficial to cells activating sig-
naling pathways that promote survival. In contrast, at higher
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FIGURE 2: A schematic illustration of RONS regulation within cancer cells depicting some of the mechanisms used to reduce the extreme
accumulation of RONS to reach the optimum level for cellular performance and survival. Excessive accumulation of RONS enhances cell
death notably via ASK1/JNK/P38 MAPK pathway activation. RONS: reactive oxygen and nitrogen species; NRF2: nuclear factor

erythroid-derived 2-like 2; PGC-1a: peroxisome proliferator-activated
factor one.

levels, RONS can damage or even kill cells by oxidizing cellu-
lar components including proteins, lipids, and most impor-
tantly nucleic acids. However, recent studies have proposed
that high RONS levels can also limit the survival of cancer
cells during certain phases of cancer initiation and progres-
sion [22]. In some cancer cells, high RONS levels can be
attributed to hypoxia, sustained mitochondrial respiration,
unfolded protein response, and oncogenesis [29]. Classically,
RONS have been demonstrated to promote various types of
cancers. This was attributed to their ability to induce DNA
damage and thus enhancing the rate of tumor-causing muta-
tions and genetic instability besides their proinflammatory
effect. Recent evidence suggests that cancer cells are more
sensitive than normal cells to elevated RONS levels [30]
and that they rely on glutathione and thioredoxin for protec-
tion [31]. In some cancers, including melanomas, oxidative
stress acted as a barrier to distant metastasis [32].

Besides, the survival of tumor cells outside of a normal
tissue context requires adaptation to the metabolism of dif-
ferent microenvironments. Cancer cells depend on a variety

receptor gamma coactivator one alpha; HIF-1: hypoxic inducible

of mechanisms to suppress RONS and to cope with oxidative
stress [22]. Cancer cell uses several mechanisms to avoid the
extreme accumulation of radicals as shown in Figure 2. For
example, hypoxia-inducible factor, which is a transcription
factor that responds to the decrease in available cellular oxy-
gen in response to elevated RONS levels, has been shown to
mediate the shift of oxidative phosphorylation of anaerobic
glycolysis aiming to decrease RONS levels and eventually
increase the survival of cancer cells during their metastasis
to the lungs [33]. In a new study, peroxisome proliferator-
activated receptor gamma coactivator 1-alpha protein, a key
molecule activated by RONS production, involved in mito-
chondrial biogenesis and antioxidant enzymes activation was
identified to promote chemoresistance in response to RONS
generated by exposure of cells to ovarian sphere-forming
culture conditions [34]. Moreover, nuclear factor-like, an
inducible antioxidant program, is a redox stress-sensitive
transcription factor that induces several antioxidant and
detoxification genes. The activation of the NRf2 antioxidant
program in response to cellular stressors results in a decrease
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in RONS levels. DeNicola and colleagues have demonstrated
that several endogenous oncogenes such as KRAS, BRAF,
and Myc in mice can actively induce the NRf2 expression, pro-
moting a RONS detoxification program and hence creating a
more “reduced” intracellular environment. This program is
what the authors have suggested is required for tumor initia-
tion [35]. NRF2-deficient cancer cells showed impaired cancer
progression by globally suppressing protein translation due to
unopposed oxidative stress [36]. Multiple transcription factors
such as activation transcription factor 4 also cooperate to
induce an antioxidant response that promotes survival.
NRF2 and ATF4 promote the expression of serine/glycine
biosynthesis enzymes to increase glutathione synthesis, which
reduces oxidative stress and promotes survival during
metastasis [37]. Tumors from approximately 15% of
patients with lung cancer harbor somatic mutations in
Kelch-like ECH-associated protein 1 that prevent effective
NRF2 repression [38].

Some other tumor suppressors also act partly by sup-
pressing RONS production. BCR-ABL-transformed cells
(cells with gene translocation between chromosomes 9 and
22, also known as Philadelphia chromosome) show increased
intracellular RONS, as well as oxidative DNA damage and
chromosomal fragmentation [39]. The oxidative inhibition
of phosphatase and TENsin homolog, PTEN, a tumor sup-
pressor gene, by abnormally elevated levels of RONS in many
tumors could functionally impair the tumor-suppressing
activity of the enzyme, enhancing tumor development [40].
Another study demonstrated a cysteine residue involving
the mechanism by which Maspin, another tumor suppressor,
reduces RONS production, and RONS scavenging was asso-
ciated with the inhibition of extracellular signal-regulated
kinase 1/2 [41].

2.1. Nuclear Factor Kappa-Light-Chain Enhancer of Activated
B Pathway. NF-«B is a transcription factor that is considered
crucial in many processes including inflammatory response,
cellular adhesion, differentiation, proliferation, autophagy,
senescence, and apoptosis. The disorder of NF-xB has
already been confirmed to be associated with cancer [42].
The bidirectional interrelation was found between both
RONS and NF-«B. The NF-«xB pathway may be activated
by at least two distinct pathways named canonical and non-
canonical pathways. RONS affect NF-xB in multiple man-
ners, e.g., RONS can activate the noncanonical pathway,
leading to NF-«xB activation [43]. At the same time, the
canonical pathway can be inactivated, leading to NF-xB inhi-
bition. NF-«B can influence the RONS levels by increasing
the expression of various antioxidant proteins [44]. A recent
study found that the NF-«B pathway can also be activated by
a tumor necrosis factor receptor that is regulated by eIF3b in
human osteosarcoma cells [45].

2.2. Mitogen-Activated Protein Kinase (MAPK) Pathway.
Another signaling pathway altered by RONS is the MAPK
pathway. MAPK cascades are major intracellular signal
transduction pathways that play an important role in various
cellular processes such as cell growth, differentiation, devel-
opment, cell cycle, survival, and cell death. The MAPK/ERK

pathway is activated mainly by growth factors, and this
depends primarily on RAS phosphorylation [46]. RONS have
been shown to activate the receptors of epidermal growth fac-
tor and platelet-derived growth factor in the absence of their
corresponding ligands, which can stimulate RAS and the
subsequent activation of the MAPK pathway [47]. Also, it
has been demonstrated that RONS generated by commensal
bacteria in the activated DUSP3 gene by oxidation on Cys-
124 results in MAPK pathway activation. DUSP3 gene maps
to a region that contains the BRCA-1 locus, which confers
susceptibility to breast and ovarian cancer [48]. RONS was
also found to activate c-JUN N-terminal kinase pathway that
is one of the MAPK cascades [49, 50].

2.3. PI3K/AKT Pathway. The PI3K/AKT pathway is involved
in many critical cellular functions, including protein synthe-
sis, cell cycle progression, proliferation, apoptosis, autoph-
agy, and drug resistance [51]. RONS do not only activate
PI3K directly but also concurrently inactivates PTEN, which
inhibits the activation of AKT. PTEN is a tumor suppressor
gene on chromosome 10, and its mutation is linked to many
cancers; RONS can also enhance PTEN to enter the proteo-
lytic degradation pathway [52].

2.4. Calcium Signaling Pathway. In eukaryotic cells, calcium
acts as one of the most versatile signals involved in the con-
trol of cellular processes and functions, such as contraction,
secretion, metabolism, gene expression, cell survival, and cell
death. A bidirectional interrelation was found between both
calcium and RONS [53]. The primary role of calcium is to
promote adenosine triphosphate synthesis and RONS gener-
ation in mitochondria via stimulating the Krebs cycle
enzymes and oxidative phosphorylation [54]. Calcium ion
regulates several extramitochondrial RONS generating
enzymes, such as NADPH oxidase and nitric oxide synthase
[55]. Besides, calcium modulates RONS clearance processes
by regulating the antioxidant defense system. Calcium ions
can directly activate antioxidant enzymes such as catalase
and glutathione reductase, increase the level of superoxide
dismutase, and induce mitochondrial glutathione release.
Meanwhile, calmodulin, a ubiquitous calcium-binding pro-
tein, activates catalase in the presence of calcium and
downregulates hydrogen peroxide levels [56]. Moreover,
RONS can also influence calcium signaling by oxidizing cys-
teine thiol groups of the calcium channel [57].

Mitochondria Permeability Transition Pore, a large, non-
specific channel spanning the inner and outer mitochondrial
membranes, is known to control the lethal permeability
changes that initiate mitochondrial-driven death [58]. RONS
modulate mPTP opening in two ways: firstly, by directly oxi-
dizing different sites in its structure [55] and secondly by
either indirectly increasing the mitochondrial calcium con-
centration [59] or by activating the Jun N-terminal kinase
pathway [50]. In a recent study, opening mPTP was shown
to cause RONS to increase and promote apoptosis in cancer
cells [60].

2.5. Protein Kinases. RONS function in various cellular pro-
cesses via oxidizing the sulfhydryl groups of cysteine residues



in various protein kinases such as protein kinase C/D,
calmodulin-dependent protein kinase II, and receptor tyro-
sine kinases such as insulin receptor, epidermal growth factor
receptor, and platelet growth factor receptor, resulting in
their activation [61, 62]. RONS play a dual role in both stim-
ulation and inactivation of PKC following its concentration:
higher doses of oxidants react with catalytically important
cysteine residues inactivating PKC whereas low doses induce
stimulation of PKC activity [63].

2.6. Ubiquitination/Proteasome System. Ubiquitination/pro-
teasome system plays an indispensable role in a variety of
biological processes such as regulation of the cell cycle,
inflammatory responses, immune response, protein misfold-
ing, and endoplasmic reticulum-associated degradation of
proteins [64]. Oxidative stress affects the process of ubiquiti-
nation in different ways. First, the rapid depletion of reduced
glutathione and improvement of the levels of oxidized
glutathione upon exposure to oxidative stress result in the
oxidation of cysteine residues at the active sites of the
ubiquitin-activating enzymes E1 and E2 and the generation
of mixed disulfide bonds, which block their binding to ubiq-
uitin thus altering its function [65]. Second, it has also been
reported that bacteria elicit RONS generation in epithelial
cells that inactivate the Ubcl2 enzyme by preventing the
neddylation of cullin-1, rendering it unable to carry out
ubiquitination and thus making it inactive [66]. Third, the
proteasome itself is considered a target of oxidative stress,
and it was proposed that the 26S proteasome is more suscep-
tible than the 20S proteasome to oxidative inactivation [67].

Meanwhile, ubiquitination impacted by RONS has been
studied in some cancers. 3-Hydroxy butyrate dehydrogenase
2 is considered to be an important tumor suppressor in
gastric cancer. BDH2 was found to regulate the level of intra-
cellular RONS to mediate the PI3K/Akt pathway through
Keapl/Nrf2 signaling, thereby inhibiting the growth of
gastric cancer. Mechanistically, BDH2 promoted Keapl
interaction with Nrf2 to increase the ubiquitination of Nrf2
consequently increasing the level of RONS, thereby inhibit-
ing the phosphorylation of AKT and mTOR [68]. Another
study handled ubiquitination in thyroid cancer, and they
found that vitamin C Kkills thyroid cancer cells by inhibiting
MAPK/ERK and PI3K/AKT pathways via a RONS-
dependent mechanism. They suggested that vitamin C
eradicated BRAF wild-type thyroid cancer cells through a
ROS-mediated decrease in the activity of epidermal growth
factor/epidermal growth factor receptor-MAPK/ERK signal-
ing and an increase in AKT ubiquitination [69]. Sajadimajd
and Khazaei studied the ubiquitination of NRF2 and its cor-
relation with RONS. They found that under normal condi-
tions, NRF2 is commonly degraded in the cytoplasm by
interaction with Keapl inhibitor as an adaptor for ubiquiti-
nation factors. However, a high amount of RONS activates
tyrosine kinases to dissociate NRF2: Keapl complex, nuclear
import of NRF2, and coordinated activation of cytoprotec-
tive gene expression [70].

2.7. FOXO Apoptotic Pathway. Cancer cells are known by
their ability to escape cancer drugs by hijacking autophagy;

Oxidative Medicine and Cellular Longevity

in the light of recent studies, it is idealized that blocking
autophagy can help in increasing apoptosis through tran-
scriptional factor FOXO3a which links the two processes,
by maintaining autophagy equilibrium and controlling a
gene responsible for making an apoptosis-facilitating protein
called p53 upregulated modulator of apoptosis [71].

FOXO transcription factors are involved in inducing
apoptotic injury and RONS regulation in cancer cells. Over-
expression of Survivin, an antiapoptotic protein acting on
the FOXO3 apoptotic pathway, has been reported in neuro-
blastoma cells. FOXO3a is shown to prevent reactive oxygen
species accumulation and shift energy production from oxi-
dative phosphorylation to glycolysis [72]. The pathway is
activated by cellular oxidative stress via PI3K signaling. An
elevated level of superoxide dismutase 2 is associated with
increased FOXO activity [73], while NAD-dependent deace-
tylase sirtuin-3 was demonstrated to promote the FOXO3a
expression by inhibiting the wingless-related integration
site/ 3-catenin pathway. They suggested that upregulation of
FOXO6 was shown to inhibit epithelial-mesenchymal transi-
tion and migration of breast cancer cells and vice versa [28].

2.8. Pentose Phosphate Pathway. The PPP, which branches
from glycolysis at the first committed step of glucose metab-
olism, is required for the synthesis of ribonucleotides and is a
major source of NADPH. PPP is crucial for cancer cell sur-
vival and lipid biosynthesis. Given that NADPH is central
to oxidative stress resistance, cancer cells modulate the PPP
to maintain their anabolic demands and keep a state of redox
homeostasis. Recently, several neoplastic lesions were shown
to have evolved to facilitate the flux of glucose into the
pentose phosphate pathway [74]. Circulating microRNA-
21, a homotetrameric protein that was found to be highly
expressed in many solid tumors, catalyzes the oxidative
decarboxylation of malate to yield carbon dioxide and pyru-
vate, with concomitant reduction of NAD" or NADP™. In
non-small-cell lung cancer cell lines, MIR-21 depletion
caused an inhibition of cell proliferation with induction of
cell death accompanied by increased RONS. Furthermore,
MIR-21 knockdown impacts phosphoinositide-dependent
kinase-1 and PTEN expression, leading to PI3k pathway
inhibition [75].

The big picture reflecting the contribution of various
mediators plus local environmental factors seems to be the
actual determinant for RONS-induced consequences in both
physiology and pathology; therefore, it is essential to unravel
the not-yet-well-understood parts of this intricate picture for
a better understanding of the RONS induced alterations [19].
The net effect of RONS on cancer reflects a complex combi-
nation of adaptive and maladaptive consequences within the
cells and their environment [22].

3. elFs in Cancer

Messenger RNA translation or protein synthesis plays a
major role in the regulation of the eukaryotic gene expression
[76]. Many studies confirmed that dysregulation of the trans-
lational machinery, especially in the initiation, can lead to
abnormal gene expression and uncontrolled cell growth
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TasLE 1: Functions of different elFs.

Protein Function Refs.
elF1 mRNA screening and delivery of tRNA. (23, 101]
elF2 Initiation codon recognition. 27]
elF2b Allows for the next initiation to occur (returns the released GDP to GTP).
elF3 Recruiting translation factors and 40S ribosome subunits to the mRNA. [23, 24, 102]
elF4F Multisubunit complex:

(i) eIF4E CAP binding activity, a rate-limiting factor.

(ii) elF4G Scaffolding protein and interaction partner for other factors. [24, 103]
(iii) eIF4A RNA helicase.
(iv) eIF4B and elF4H mRNA secondary structure unwinding.
eLF5 Translation elongation and bond formation. [23]
elF6 Prevents 60S subunit association with 40S subunit in the absence of mRNA (antiassociation factor). [25]

elF: eukaryotic initiation factor; mRNA: messenger RNA; tRNA: tranfer RNA; GDP: glutamine dipeptide; GTP: glutamine tripeptide; CAP: catabolite

activator protein.

resulting in cancer [25, 77-79]. Regulation of the transla-
tional process is mainly achieved by the rate-limiting
initiation step, which is organized by multiple eukaryotic ini-
tiation factors [20]. Out of many elFs, only six are involved in
translation initiation. Table 1 describes the six factors
involved and the role of each one.

Alteration in initiation rate can occur by a change in ini-
tiation factors’ availability or activation of oncogenic signal-
ing pathways, such as PI3K/AKT/mTOR and MAPK
pathways [80]. Many relations have been found between
the translation machinery and some oncogenes such as
Myc and RAS families and tumor suppressors such as PTEN
and p53 [77-79].

Translation initiation factors also have a major role in
cellular transformation and tumorigenesis. Dysregulation of
translation initiation factors in the form of overexpression,
downregulation, or phosphorylation is involved in cancer cell
survival, metastasis, and tumor angiogenesis [23, 27]. The
regulation of initiation factors including overexpression of
elF4A, eIF4E, and elF4G; downregulation of eIF4E-binding
protein levels; and phosphorylation of elF2 is involved in
various types of cancer as shown in Table 2 [23, 27, 78, 81].
And still, the specific role played by increased initiation fac-
tors, levels, or activity in cancer behavior remains poorly
understood.

3.1. MAPK/MAPK-Interacting Kinases 1-2 Pathway. MNK1
and MNK?2 phosphorylate eIF4E on a single residue Ser209.
MAPK and ERK pathways activate MNKs in response to
stress and mitogens, respectively [82]. Hyperphosphoryla-
tion of eIF4E can lead to an increase in specific mRNA trans-
lation that encodes prosurvival proteins such as myeloid cell
leukemia-1, invasion, and epithelial to mesenchymal transi-
tion promoting proteins and cytokines [83]. Experimental
results revealed that complete loss of eIF4E phosphorylation
in the absence of MNK1 and MNK2 in the mouse model may
delay the development of tumorigenesis [84]. Hence, the

eIlF4F complex has an important role in tumorigenesis,
which is affected by many oncogenic pathways [85].

3.2. PI3K/AKT Pathway. E74-like factor 4 complex is a multi-
subunit which consists of eIF4E, eIF4A, and eIF4G. It is con-
sidered as a rate-limiting component in the initiation of
translation as its role is to recruit small ribosomal subunits
and related factors (43S, PICs) to the 5" end of mRNA [23].
The mTOR has a major role in the regulation of eIF4E [86].
As hyperphosphorylation of eIF4E binding proteins by
mTOR enables its dissociation from eIF4E, so eIF4F can
interact with eIF4G and form ELF4 complex and continue
the translation process [85].

In cancer, activation of oncogenes (e.g., AKT) or loss of
tumor suppressors (e.g., PTEN) leads to activation of
mTORCI, a hallmark of a cancer cell, which enhances cell
proliferation, survival, and invasion [86]. Hyperactivated
mTOR can lead to overexpression of eIF4E, which promotes
the translation of specific mRNAs which are involved in
angiogenesis, cell proliferation, and cell survival, namely,
vascular endothelial growth factor-A, cMyc, and B-cell lym-
phoma 2, respectively [87]. Cellular stresses, such as amino
acid deprivation and hypoxia, which are common in tumors,
downregulate mTORCI activity, preventing the formation
of the eIF4F complex, and thus downregulating protein
synthesis [85].

Previous studies have confirmed that the overexpression
of eIF4F or loss of eIlF4E-binding protein 1 is the key fea-
ture of most poor prognostic and drug-resistant cancer cells
[88, 89]. Some studies suggested that increased mTOR
activity can also lead to overexpression of e[F4A1 [23, 25].
On the other hand, eIF6 is necessary for ribosome biogenesis
in the nucleus. Several studies have described elF6 as an
important factor in age-related diseases such as colorectal
cancer, malignant pleural mesothelioma, and breast cancer.
In CRC and MPM, elF6 was overexpressed compared to
nonneoplastic tissues, suggesting a key contribution to
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TaBLE 2: Dysregulated eIFs in different types of cancer. TasLE 2: Continued.
Protein Form of dysregulation Resultant cancer ~ Refs. Protein Form of dysregulation Resultant cancer ~ Refs.
- Overexpression HCC [104] HCC [136]
e
Mutation Thyroid cancer  [105] Glioblastoma [137]
Lun; [138]
Increased elF5 Overexpression 8
Phosphorylation Oropharyngeal  [95] P Urinary bladder  [139]
Overexpression Gastrointestinal ~ [106] Ovarian [140]
NSCL [107] Colorectal [141]
elF2 alpha
Lymphoma (23] IF6 o . Leukemia [142]
. € 'Verexpression
Brain tumor [108] P Ovarian serous  [143]
Th}’“’ld [109] HCC: hepatocellular carcinoma; NSCL: non-small-cell lung cancer.
carcinoma
eIF3A Overexpression Colorectal [110] carcinogenesis. In a recent study, the knockdown of eIF6 in
elF3B Esophageal [111] adenocarcinoma and squamous cell carcinoma led to pre-
CIF3C Glioma [112] rRNA processing and ribosomal 60S maturation defeFts,
and in non-small-cell lung cancer, there was upregulation
Breast [92]  of elF6 [90].
elF3D Prostate [93]
Gastric [113] 3.3. Miscellaneous Pathways Involving elFs in Cancer. Other
elE3H HCC [114] studies confirmed that silencing eIF3a reverses the malignant
T3l Head and neck 1115 phenotype of human lung and breast cancer cell lines and
¢ ead and neck _ [113] downregulates the cyclin dependent kinase inhibitor p27
elF3M Colorectal [116] [91]. Silencing eIF3d also showed a role in limiting the prolif-
eIF3E Downregulation Breast 23] eration .and. invasion of cancer cells by suppressing Wnt/
B-catenin signaling and cyclin dependent kinase-1 [92, 93].
elF3F Pancreatic [117] The overexpression of elF3f may lead to suppression of
Brain [108] AKT and ERK signaling, an increase of p53 protein levels,
. and inhibition of clusters in protein expression, which also
Endometrial [118] . . .
promotes cancer cell proliferation and reduces chemosensi-
Head and neck  [119] tivity [94]. Recent studies also suggest that prolonged elF2«
Bladder (120] phosphorylation, which prevents the conversion of GDP to
Cervical [121] GTP by increasing the affinity of eIF2B for eIF2-GDP, results
elF4E Overexpression Prostate [122] in blocking of protein synthesis [27]. eIF2«a can promote cell
Colon [123] survival, transformation, and drug resistance, whereas other
Liver [124] stud.ies suggest that elF2« phosphorylation can trigger. apo-
ptosis [95, 96]. Moreover, elF6 is upregulated and active in
Lymphoma [125] .
N 126] many human cancers and may be regulated by protein kinase
Esophagus ! C by phosphorylation on $235 [97].
Gastric [127]
N h 1 128 .
asopharyngea [[80] 4. RONS Impacting elFs
Breast ’
129] RONS can affect elFs in different ways. A study confirmed
elF4G Squamous cell [130] that specific translational control driven by elF6 is essential
lung cancer for adjusting a set of RONS-controlling genes in megakaryo-
Cervical cancer  [81] cytes. Specifically, genes coding for the mitochondrial elec-
Melanoma [131] tron transport chain complex I and complex IV and those
involved in RONS production. They identified the pathways
. Breast [132] . : . 1.
elF4A Downregulation of the mitochondrial electron transport chain and oxidative
Lung [133] phosphorylation as the most significantly impaired [98].
elF4B Overexpression B-cell lymphoma  [134] Another group of researchers investigated the mechanism
linking eIF5A2 and RONS. They found that the inhibition
elF4H Lung [135]

of eIF5A2 affects epithelial mesenchymal transition progres-
sion so that it decreases the invasion and metastasis of hepa-
tocellular carcinoma cells via RONS-related pathways [99].
Moreover, it is suggested that radiation-induced autophagy
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is a prosurvival response initiated by oxidative stress and
mediated by eIF2A kinase 3 [100].

5. Conclusion

Oxidative stress and initiation of translation fundamentally
influence oncogenesis and age-related diseases by altering
the relevant downstream pathways and that can be used to
our privilege in treating oncologic diseases. Oxidative stress
has been described as one of the main causes of cellular
damage and mutations resulting in decreased cellular perfor-
mance; however, these radicals existing in reasonable
amounts within the cell can play a crucial role in the activa-
tion of various signaling pathways. Initiation of translation
is an important step in synthesizing a protein, altering of
which can affect the quantity and quality of the proteins pro-
duced. To maintain normal cellular functioning, these pro-
teins need to be degraded; failure of that degradation will
lead to accumulated proteins, consequently increasing the
possibility of cancer. Moreover, dysregulation of translation
initiation factors has been associated with cancer progres-
sion; however, more studies are needed to determine the
involved mechanism. Hence, future studies should focus
more on harnessing the initiation of translation and reactive
radicals to target cancer cells. Targeting the pathways associ-
ated with the initiation of translation and RONS should be
given the utmost priority.
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