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Abstract
Background: Fraudulent milk adulteration is a dangerous practice in the dairy
industry that is harmful to consumers since milk is one of the most consumed food
products. Milk quality can be assessed by Fourier Transformed Infrared Spectroscopy
(FTIR), a simple and fast method for obtaining its compositional information. The
spectral data produced by this technique can be explored using machine learning
methods, such as neural networks and decision trees, in order to create models that
represent the characteristics of pure and adulterated milk samples.

Results: Thousands of milk samples were collected, some of them were manually
adulterated with five different substances and subjected to infrared spectroscopy. This
technique produced spectral data from the milk samples composition, which were
used for training different machine learning algorithms, such as deep and ensemble
decision tree learners. The proposed method is used to predict the presence of
adulterants in a binary classification problem and also the specific assessment of which
of five adulterants was found through multiclass classification. In deep learning, we
propose a Convolutional Neural Network architecture that needs no preprocessing on
spectral data. Classifiers evaluated show promising results, with classification accuracies
up to 98.76%, outperforming commonly used classical learning methods.

Conclusions: The proposed methodology uses machine learning techniques on milk
spectral data. It is able to predict common adulterations that occur in the dairy
industry. Both deep and ensemble tree learners were evaluated considering binary and
multiclass classifications and the results were compared. The proposed neural network
architecture is able to outperform the composition recognition made by the FTIR
equipment and by commonly used methods in the dairy industry.

Keywords: Classification, Machine learning, Deep learning, Ensemble learning,
Infrared spectroscopy, Milk, Adulteration

Background
Milk fraudulent adulteration consists of adding foreign substances to the milk. This is a
common practice in Brazil and several countries worldwide [12], with the objective of
increasing the product volume, disguising poor quality parameters and profiting with ille-
gal actions [2, 7, 22]. Different substances can be added to milk with specific purposes.
For instance, sucrose and starch are often used to modify density and freezing point after
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extra water added to milk. Sodium bicarbonate can be added to reduce high acidity lev-
els related to high bacteria contamination and bad manufacturing practices. Hydrogen
peroxide and formaldehyde can preserve microbial count related to poor milk quality [9].
Fourier Transformed Infrared spectroscopy (FTIR) is one of the most commonly used

techniques to read the composition of a sample in the food industry [9]. FTIR is a fast,
nondestructive, and simple method that can be applied for milk composition analysis and
it generates spectral data that can be computationally explored [22]. Machine learning
techniques provide ways of understanding spectral data and producing useful knowledge
regarding milk composition quality for consumers and regulatory agencies.
These techniques have been widely used in several areas and classification is a com-

monmachine learning task capable of understanding and categorizing data. In supervised
learning, the classification task involves a training process with labeled data in order to
generate a computational model that learns with that data [14]. Once themodel is trained,
it can be used to predict the label of new, unseen data. In the testing process, the model
can be applied to a dataset and predicted labels can be compared to actual labels. Then,
classification accuracy is used to evaluate the predictive capabilities of the model [10].
Deep and ensemble learners are two well-known methods with different characteristics
that have shown excellent performance in several machine learning applications.
Ensemble learners are methods that combine many models’ predictions. Bagging (Boot-

strap Aggregating) is a technique that trains several machine learning models indepen-
dently with randomly chosen subsets of data, and it uses majority voting for aggregating
the outputs of base learners [14]. Boosting also trains classifiers using different train-
ing sets, but they are learned sequentially, with each model trying to minimize the error
from the previous one. The combination of individually weak learners creates a better
performing model [10]. Random Forest (RF) and Gradient Boosting Machine (GBM) are
examples of bagging and boosting techniques, respectively. Since ensemble methods rely
on the combination of models, they build smooth decision boundaries capable of finding
the optimal feature and model combination to the classification problem [21].
In the area of deep learning, Convolutional Neural Networks (CNNs) are gaining great

attention due to their high accuracy in pattern recognition and it has been successfully
applied in a diversity of classification problems [19]. When compared to regular neural
networks, additional layers (convolutional layers) are used in CNNs in order to filter input
data and learn specific features from the data with different levels of abstraction [17].
Machine learning classifiers have been applied successfully in many applications,

including image recognition, speech detection, and signal processing. Considering spec-
tral data classification, decision trees have been used for classification of landscapes using
satellite spectral data [8]. CNNs have been applied to electrocardiogram signals (ECG),
significantly outperforming other ECG classification methods [16]. Mineral spectrum
classification using CNN has achieved interesting results and has been compared to other
machine learning methods [17]. CNNs also have been applied to audio spectral data for
detecting sound events with human-level accuracy [15].
Milk adulteration analysis has been done withmore traditional statistical methods, such

as Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression, that
have been applied to infrared spectroscopy data in order to obtain adulteration estimates
of whey, synthetic milk, hydrogen peroxide and others [22]. Milk adulteration by whey
has also been studied by measuring specific proteins using PCA from spectral data [7].
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Differentmilk adulterants have been analyzed with infrared spectroscopy using PCAmul-
tivariate analysis [9]. The work from [2] has similarities with our study by also using neural
networks for milk adulteration detection. However, the authors used a regression model
for quantifying the adulteration by a single ingredient (whey).
The objective of this work was to perform experiments with classification methods to

recognize patterns in infrared milk composition in order to predict possible adulterations
by foreign substances.

Methods
In this work, the characterization of bovine milk was made using machine learning tech-
niques to detect the presence of milk adulterants or to assert which adulterant was found.
In order to accomplish this, classification methods were used to determine milk sample
adulteration. Classical statistical learning strategies such as Logistic Regression, Linear
Regression, and PLS, usually employed by the industry [6, 7], were explored as benchmark
models. Ensemble and deep learning classifiers were trained and tested on real, manu-
ally adulterated, milk samples in order to recognize patterns that identify adulteration
characteristics.
Two versions of the classification problem were considered: binary and multiclass clas-

sifications. In the binary problem, the possible classes for a sample classification were
either the presence or absence of an adulterant. In the multiclass problem, the classes
were either one of the specific adulterant added to the milk or the “raw” class, when the
sample has no adulterant added.

Data acquisition and sample preparation

Milk samples were acquired from the experimental farm at the Federal University of
Minas Gerais, Brazil, and from the Laboratory for Milk Quality Analysis (Accredited
ISO/IEC 17025) at the same university using commercial milk samples from the labora-
tory routine processes. A total of 4846 milk samples were collected, whereas 2376 were
adulterated for the purpose of this study. The adulterated milk samples were added with
one of five different substances (all of analytical grade): sucrose, soluble starch (amylose
and amylopectin), sodium bicarbonate, hydrogen peroxide, and formaldehyde (Synth,
Brazil). Although multiple adulterants can be found at once in a fraudulent milk sample
[4, 24], in this work we aimed to analyze the effects of each adulterant individually, in
order to describe how it affects pure milk composition.
FTIR spectroscopy was applied to all the collected milk samples in order to obtain

infrared spectra, using the FTIR equipment (LactoScope™ FTIR 400, Delta Instruments,
Drachten, The Netherlands), which outputs two pieces of information for each analyzed
sample: an infrared spectrum file (SPC format) that contains coordinates for the infrared
spectrum and a components file (CSV format), which contains numerical variables, called
component features, that the equipment calculates from the infrared spectrumAdditional
file 2.
In our milk dataset, each sample is represented by both the component features and the

spectral data. However, we used each of the two types of data differently. The component
features data structure is ideal for the application of a decision tree classifier because each
feature strongly represents some known characteristics in the milk composition. Since
the combination of several classifiers may reduce the risk of an unfortunate selection of
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a poorly performing classifier [21], ensemble tree learners were chosen for this task. On
the other hand, the spectral data are composed by the full spectral coordinates, which
can be interpreted as “images” for neural network recognition. For the latter, we used
CNNs that are capable of detecting specific features from spectra without any required
preprocessing. In Fig. 1 we show some spectra and some extracted component features.
For the purpose of estimating the quality of our classifiers, the hold-out cross-validation

technique [3] was performedwith three pairs of training/testing subsets with proportions:
90/10%, 75/25%, and 50/50%. This was the preferred split strategy since the same subsets
needed to be tested with different classifiers, including deep learning, that usually splits
datasets into training/validation/test sets. Each subset was obtained randomly from the
original dataset (4846 samples) and the class distribution remained: ≈50% for raw milk
and≈10% for each of the five adulterant classes. Dataset samples distribution is described
in Table 1. Detailed class distributions for each training and test dataset split are presented
in Table 2.

Analysis of component features using ensemble learners

During the process of reading the infrared spectrum, the FTIR equipment performs a
series of calculations that determines numerical values for different milk components.
According to the equipment documentation, calculations are based on a Multiple Lin-
ear Regression (MLR) model that considers the absorbance of light energy by the sample
for specific wavelength regions. The extracted information depends on the equipment

(a)

(b)

Fig. 1 a Plot of the infrared spectra for three randomly selected samples of the classes pure, formaldehyde
and peroxide, acquired by the FTIR equipment. The raw spectra were analyzed directly by the proposed
Convolutional Neural Network. Each spectrum was plotted with subtle shifts for viewing purpose. b
Component features for the same samples, generated by the FTIR equipment and stored in CSV format. Each
column quantifies an important milk composition information. The columns for fat, protein, lactose, solids,
solids non-fat (SNF), casein and milk urea nitrogen (MUN) represent each component concentration in the
sample. The Cells column represents the somatic cells counting, FrzPoint represents the freezing point of the
sample, with values given in degrees Hortvet (°H), and QValue is a calculation of the sample quality by the
equipment. These numerical features were analyzed by ensemble methods
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Table 1 Sample distribution for the binary and multiclass versions of the collected dataset

Multiclass # Samples Binary # Samples

Raw 2470 Raw 2470

Sucrose 486 Adulterated 2376

Formaldehyde 485

Starch 480

Peroxide 465

Bicarbonate 460

The full dataset has 4846 samples. The raw class is ≈50% of the dataset. Each adulterant class is ≈10% on multiclass, while the
binary considers these samples as one class (≈50%)

calibrations for milk components concentration (fat, protein, lactose, total solids, solids
non-fat/SNF, casein and milk urea nitrogen/MUN). Other three extra values are also
included: the somatic cells counting, the freezing point value and a quality control value
(Q-Value).
Pairwise correlations were calculated on standardized variables from the dataset. The

relationship among these variables demonstrated that protein and casein are highly
correlated (0.96). Since casein is a specific milk protein, the correlation makes sense. Cor-
relations were also found with solids and fat (0.85), lactose with freezing point (0.77), and
lactose with SNF (0.81). Other variables were found to be not expressively correlated. The
complete feature correlation is presented in Additional file 1: Figure S1. All variables were
read from equipment generated CSV file and were used as features in ensemble decision
tree learners. The adulterants added to each sample were considered class labels for the
samples and were used for training the classifiers. Figure 2 shows a boxplot considering
scale and variation of all component features.
The component features were analyzed with Random Forest and Gradient Boosting

Machine ensemble learners using the default implementations available in Scikit-learn
[20]. The number of learners is controlled by the parameter n_estimators and it was

Table 2 Class distribution for samples in each split of training and test set in multiclass version

Dataset split Classes # Training samples # Test samples

90/10% Raw 2213 257

Bicarbonate 419 41

Formaldehyde 442 43

Peroxide 417 48

Starch 439 41

Sucrose 431 55

75/25% Raw 1846 624

Bicarbonate 338 122

Formaldehyde 347 138

Peroxide 364 101

Starch 359 121

Sucrose 380 106

50/50% Raw 1239 1231

Bicarbonate 219 241

Formaldehyde 223 262

Peroxide 242 223

Starch 253 227

Sucrose 247 239

In binary version, the five classes of adulterant substances are summed up as one “adulterated” class
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Fig. 2 Boxplot of the component features from the dataset, analyzed by ensemble learners. The plots show
scales and variation of each feature. Cells, QValue and MUN have significantly different scales and were
plotted separately from the other variables. The Cells plot show that most samples has somatic cells counting
from ≈150 to ≈450. The QValue plot shows that most samples on the dataset were considered of high
quality (≈87 to ≈93). The FrzPoint plot shows that all samples has a freezing point at just above zero. All the
other plots consider specific component concentrations and they show low variation

set as 200 for each classifier. Models from both methods were evaluated for each avail-
able training and test sets using component features present in the samples. Binary and
multiclass classifications were performed considering the same datasets.

Analysis of infrared spectra using deep learning

The infrared spectra used as input to the CNN classifier were produced by the FTIR tech-
nique. They are formed by 518 points measured in wavenumbers ranging from 3000 cm-1

to 1000 cm-1. In the dataset, each spectrum is followed by the class label (adulteration
substance), which allows the network to be trained. During the training process, the con-
volutional layers are used as filters that recognize specific features within spectral regions.
For that reason, CNNs are able to receive raw spectral data as input, without the need of
any preprocessing step, and they can handle important feature extraction from the data
with no manual interaction [23].
We propose a CNN architecture that has one 1-dimensional convolutional layer that

learns 32 filters of kernel size 5, which are capable of extracting features directly
from the infrared spectra. Filters are concatenated and followed by one dense (fully
connected) layer of 1024 neurons. At each layer, LeakyReLU [18] activation is used to
add non-linearity to the model. Batch normalization [11] and dropout operations [25]
are also performed at each layer so that the model avoids overfitting to the training
data. The proposed network structure was based on the work from [17] but our struc-
ture is much simpler, with fewer layers and filters. In Fig. 3 we show the proposed
CNN architecture.
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Fig. 3 The proposed Convolutional Neural Network for multiclass classification of whole infrared spectra. The
architecture consists of one convolutional layer that learns 32 filters of kernel size 5, which is capable of
recognizing features directly from the raw infrared spectra. The output of the convolutional layer is
concatenated then passed as input to a dense (fully-connected) layer, consisting of 1024 neurons.
BatchNormalization, LeakyReLU and Dropout operations are performed in both convolutional and dense
layers. Finally, the output layer of size 6 (the number of classes in multiclass problem) is activated by the
Softmax function

For binary and multiclass classifications, we trained a CNN that differed only at the
number of neurons in the output layer. Since this layer outputs the classification, the num-
ber of neurons must be exactly the number of classes we want to classify our data. So,
the CNN for the binary classification has an output layer of one neuron with binary out-
put, activated by the sigmoid function and the CNN for the multiclass classification has
an output layer of six neurons, activated by the softmax function [26]. The binary model
classifies the samples with the presence or absence of an adulterant and the multiclass
classification classifies samples as raw milk or one of five known adulterant substances.
The CNN training was made using Adam optimizer [13] for 100 epochs for both binary

and multiclass problems. Every CNN execution considered 20% of the training set as the
validation set. Figure 4 shows plots for the model’s accuracy and loss of training and val-
idation sets. The plots show that validation of the network achieved better results in the
binary problem when compared to the multiclass problem, which is expected because
the binary is considered a simpler problem. The CNN architecture was implemented in
Keras [5] and TensorFlow [1] in Python. All CNN processing was made on a personal
laptop computer. The model training takes up to 16 min, while the classification for all
samples in the test dataset takes at most 270 ms.

Results and discussion
In order to determine that the chosen techniques and machine learning models were
adequate for our experiments, we conducted a test that compared the performance of
methods that are simpler andmore commonly used in the dairy industry: Logistic Regres-
sion, Linear Regression and PLS [6, 7]. Classification versions of these methods were
evaluated for each dataset split with whole spectra using the default implementations
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(a) (b)

(c) (d)

Fig. 4 Plot of the CNN model’s accuracy and loss on training and validation steps considering the dataset
split 80%/20%. The model was trained for 100 epochs. a Accuracy of training and validation considering the
binary problem. b Loss of training and validation considering the binary problem. c Accuracy of training and
validation considering the multiclass problem. d Loss of training and validation considering the multiclass
problem. Each plotted curve is obtained from the history of the Keras model, which calculates both accuracy
and loss for each epoch performed by the network. Accuracy is calculated by comparing the predicted class to
the actual class. Loss is calculated by the cross entropy value between the predicted class and the actual class

available in Scikit-learn. Accuracies for Logistic Regression ranged from 55.92% to 58.76%
in multiclass and from 71.40% to 76.49% in binary classification. For Linear Regression,
accuracies ranged from 31.55% to 33.50% in multiclass and 79.20% to 79.62% in binary
classification. Finally, for PLS, accuracies ranged from 32.56% to 35.26% in multiclass
and 76.91% to 77.39% in the binary problem. Although all methods had relatively good
performances in the binary problem, accuracies were not satisfactory in multiclass classi-
fications. Therefore, these values serve as a comparative basis for our ensemble and deep
learners. Table 3 shows all accuracy values from Linear Regression, Logistic Regression,
and PLS models.

Table 3 Accuracy from simpler classifiers (Logistic Regression, Linear Regression, and Partial Least
Squares) for binary and multiclass classifications that serve as baseline for our deep and ensemble
learners

Dataset Classification Logistic Regression Linear Regression Partial Least Squares

90/10% Multiclass 0.5876 0.3155 0.3526

Binary 0.7649 0.7959 0.7691

75/25% Multiclass 0.5693 0.3350 0.3267

Binary 0.7583 0.7962 0.7739

50/50% Multiclass 0.5592 0.3281 0.3256

Binary 0.7140 0.7920 0.7714

All classifiers were evaluated with 3 pairs of training and test datasets randomly selected from our milk samples, identified by their
proportion of training and test samples
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Both ensemble and deep learners were evaluated for adulterant detection on milk sam-
ples. The dataset has 4846 samples labeled as one of six possible classes: raw, sucrose,
starch, bicarbonate, peroxide, and formaldehyde. For the multiclass version of the prob-
lem, all six classes were used. For the binary version, classes for each adulterant were
considered as one class: adulterant present, while class raw was considered as the sec-
ond class. Binary and multiclass classifications were evaluated with the selected subsets
of training and testing described earlier for GBM, RF, and CNN classifiers. For the ensem-
ble methods, classification accuracies ranged from 86.09% to 98.56%. The proposed CNN
produced accuracies up to 98.76%. The mean accuracies for RF, GBM and CNN were
93.23%, 92.25% and 96.76%, respectively. Accuracy values show that all classifiers have
better performance on binary classifications. However, CNN has shown to be a more
robust classifier, since it has very close accuracy levels with both binary and multiclass
problems. All accuracy results from our models are shown in Table 4. We also detail the
accuracy results per class in multiclass classifications for RF, GBM and CNN in Table 5.
These values show that all classifiers have better performance on ‘raw’ classification, and
that CNN has a best overall performance with every class. Values also show that increas-
ing the training set (i.e., 90%) not always leads to better predictive performance in all
classes. Finally, the CNN classifier is generally more robust when there is a decrease in
training test size (50%).
The area under the ROC (Receiver Operating Characteristic) curve was evaluated for

five repetitions in all classifiers, which yielded the AUC score. We then performed a pair-
wise t-test (t-value) comparing the difference in average AUC score across classifiers for
binary and multiclass classifications. The greater the magnitude of t, the greater the evi-
dence against the null hypothesis. This means there is greater evidence that there is a
significant difference. The closer t is to 0, the more likely there isn’t a significant differ-
ence. The larger the absolute value of the t-value, the smaller the p-value, and the greater
the evidence against the null hypothesis. Statistical significance tests show that the CNN
classifiers are more robust, having significant differences in performance when compared
to ensemble ones, as shown in Fig. 5. The ROC curves are presented in Fig. 6, where it is
shown that all ROC curves from binary classification (continuous lines) show good per-
formance and predictive power, while the multiclass ROC curves (dotted lines) show that
the CNN model has better predictive performance.
Intuitively, the binary classification tends to be a simpler problem and can lead to bet-

ter results, which is observed on the RF and GBM results, where binary classifications
accuracies are at most 10% higher than multiclass accuracies. However, the CNN results

Table 4 Accuracy from evaluated classifiers (RF, GBM, and CNN) for binary and multiclass
classifications

Dataset Classification RF GBM CNN

90/10% Multiclass 0.9093 0.8907 0.9608

Binary 0.9856 0.9711 0.9794

75/25% Multiclass 0.8812 0.8787 0.9695

Binary 0.9744 0.9686 0.9876

50/50% Multiclass 0.8700 0.8609 0.9538

Binary 0.9736 0.9653 0.9546

All classifiers were evaluated with 3 pairs of training and test datasets randomly selected from our milk samples, identified by their
proportion of training and test samples
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Table 5 Accuracies for each individual class (bicarbonate, formaldehyde, peroxide, raw, starch, and
sucrose) for multiclass classifications considering RF, GBM and CNN classifiers, in each of the selected
training and test datasets: 90/10%, 75/25%, and 50/50%

Classifier Dataset Bicarbonate Formaldehyde Peroxide Raw Starch Sucrose

RF 90/10% 0.7804 0.7209 0.7916 0.9883 0.8048 0.9636

75/25% 0.7540 0.6884 0.7524 0.9839 0.8099 0.8773

50/50% 0.7634 0.6259 0.7847 0.9805 0.7444 0.8953

GBM 90/10% 0.7804 0.7441 0.7291 0.9766 0.7560 0.9272

75/25% 0.8032 0.6739 0.7623 0.9759 0.7768 0.8867

50/50% 0.7551 0.6259 0.7309 0.9780 0.7356 0.8870

CNN 90/10% 0.9756 0.9302 0.8958 0.9844 0.9024 0.9636

75/25% 0.9918 0.9057 0.9108 0.9887 0.9421 1.0000

50/50% 0.9958 0.9236 0.8340 0.9861 0.8854 0.9539

show that the method is more robust on the multiclass classifications, with accuracies
slightly lower than binary versions. We conclude that CNNs are particularly better suited
for multiclass classification in this problem.
It is important to notice that the number of adulterated milk samples in our dataset is

roughly half the total samples, which in terms of binary classification leads to balanced
class distribution. On the other hand, when it comes to multiclass classification, we have
six different classes and themajority of samples are of type raw, which leads to imbalanced
class distribution. However, our method showed the capability to handle this situation
without any issues, as shown in Table 4.

Fig. 5 A t-test over pairwise differences in average AUC score for binary (b) and multiclass (m) versions of
GBM, RF and CNN classifiers
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(a)

(c)

(b)

Fig. 6 ROC (Receiver Operating Characteristic) curves for binary and multiclass versions of (a) Random Forest,
(b) Gradient Boosting Machine and (c) Convolutional Neural Network and their AUC (Area Under the ROC
Curve) score. Multiclass ROC was calculated using micro-average strategy, that sums up the individual true
positives, false positives, and false negatives for all classes

Conclusion
In this work, we investigated milk composition and performed adulterant detection on
FTIR spectral data by classifying samples using deep and ensemble tree learners. We
collected 4846 milk samples and manually adulterated 2376 samples, using different clas-
sifiers to train models that are capable of recognizing composition characteristics that
adulterants cause in milk. The classification was performed using two types of data: the
whole infrared spectra analyzed by CNN and the 10 component features extracted from
the spectra analyzed by RF and GBM classifiers.
Both methods, whole infrared spectra analyzed by CNN and the ten component fea-

tures extracted from the spectra analyzed by RF and GBM classifiers achieved high
accuracy, however, the CNN obtained better results, which is intuitive since it uses a
more dense dataset (spectral coordinates). In other words, the extraction of the compo-
nents performed by the FTIR equipment is not as representative as the features recog-
nized by the proposed CNN architecture. Classification accuracies range from 86.09%
to 98.76%.
Nevertheless, some challenges remain as future work, like a more profound study on

the models’ interpretability, such as feature importance analysis and variable interactions.
New analyses with multiple adulterations per sample and their effects on milk composi-
tion are also considered. Finally, we consider as an extension of this work a metaclassifier
application, where the predictions of the deep and ensemble models could be combined,
potentially achieving better performances.
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