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Ensifer (Sinorhizobium) meliloti is a nitrogen-fixing α-proteobacterium able to biosynthesize the osmo-
protectant glycine betaine from choline sulfate through a metabolic pathway that starts with the enzyme
choline-O-sulfatase. This protein seems to be widely distributed in microorganisms and thought to play
an important role in their sulfur metabolism. However, only crude extracts with choline sulfatase activity
have been studied. In this work, Ensifer (Sinorhizobium) meliloti choline-O-sulfatase was obtained in a
high degree of purity after expression in Escherichia coli. Gel filtration and dynamic light scattering ex-
periments showed that the recombinant enzyme exists as a dimer in solution. Using calorimetry, its
catalytic activity against its natural substrate, choline-O-sulfate, gave a kcat¼2.7�10�1 s�1 and a
KM¼11.1 mM. For the synthetic substrates p-nitrophenyl sulfate and methylumbelliferyl sulfate, the kcat
values were 3.5�10�2 s�1 and 4.3�10�2 s�1, with KM values of 75.8 and 11.8 mM respectively. The low
catalytic activity of the recombinant sulfatase was due to the absence of the formylglycine post-trans-
lational modification in its active-site cysteine 54. Nevertheless, unmodified Ensifer (Sinorhizobium)
meliloti choline-O-sulfatase is a multiple-turnover enzyme with remarkable catalytic efficiency.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Ensifer meliloti (formerly Sinorhizobium meliloti) is a nitrogen-
fixing α-proteobacterium that establishes root nodule symbiosis
with legume plants, providing ammonia to their hosts and re-
ceiving nutrients from them [1]. In free life or in symbiosis, these
bacteria have to deal with adverse environmental conditions such
as droughts, rain or floods, which cause severe changes in their
extracellular osmolality. An immediate response to cope with
these situations is to accumulate or release ions and selected low-
molecular-weight organic molecules called osmolytes that coun-
teract the osmotic gradient [2–5]. Glycine betaine is a potent and
well-characterized osmoprotectant widespread in nature [5,6],
and E. meliloti can efficiently transport it to its interior through
high-affinity uptake protein systems [4,7]. Alternatively, it can
synthesize glycine betaine from choline-O-sulfate by a three-step
r B.V. This is an open access article
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pathway with choline and betaine aldehyde as intermediates
(Fig. 1) [8]. The genes involved in this metabolic pathway con-
stitute the operon betICBA, which is composed of a regulatory gene
(betI) and three structural genes: betC (choline-O-sulfatase, or
COS), betB (betaine aldehyde dehydrogenase) and betA (choline
dehydrogenase) [8].

The metabolic pathway is controlled by BetI, a repressor that
regulates the expression of bet genes in response to the inducer
choline [9]. Transcription of the operon can also be initiated to a
lesser extent by the presence of choline-O-sulfate or acetylcholine,
but not by the presence of high salt concentration alone [9].
However, as the product of the route, glycine betaine, is a potent
osmolyte that accumulates in E. meliloti under salt stress [10,11],
choline-O-sulfate or choline can allow the proliferation of E. me-
liloti under high salt concentration through their transformation to
glycine betaine [8,9]. Under no salt stress, E. meliloti can import
choline or choline-O-sulfate from its surroundings and transform
them to glycine betaine, which can be further metabolized to cope
entirely with the carbon and nitrogen cell demands in the absence
of other nutrients [8,11]. The inorganic sulfate produced by the
hydrolysis of choline-O-sulfate can also be used as the only source
of sulfur by E. meliloti [8]. Choline-O-sulfate, has been shown to be
biosynthesized and accumulated by a variety of plants, marine and
soil fungi and red algae where it serves as an osmoprotector and
sulfur reservoir [12–18]. In contrast, certain bacteria, as Bacillus
subtilis, Escherichia coli and Salmonella typhimurium, accumulate
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Synthesis of glycine betaine from choline sulfate in E. meliloti.
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choline-O-sulfate as osmoprotector without further metaboliza-
tion [19,20]. Choline-O-sulfate can be released to the environment
through root exudation or microbial cell decay [4,21] and once in
the soil, it can be taken by other microorganisms as an important
source of sulfur, carbon and nitrogen [22,23]. The extent of cho-
line-O-sulfate in soil or other environments is not well character-
ized, however, its direct or indirect role as osmolyte and the
widespread presence of choline sulfatase genes in microbes [24]
suggest an important role of this compound and these enzymes in
the biological sulfur cycle.

Amino acid sequence analysis of COS revealed that this enzyme
belongs to the type I sulfatases family (previously named ar-
ylsulfatases) [8,24]. These enzymes share high degree of con-
servation in sequence, structure and enzymatic mechanism among
all life kingdoms and hydrolyze many diverse sulfate esters pre-
sent in mono- oligo- and polysaccharides, proteoglycans, amino
acids, steroids and glycolipids [25]. Recent genetic analyzes iden-
tified a few peptide signatures that seem to be specific for choline
sulfatases [24]. In E. meliloti and other members of the Rhizobia-
ceae family, the gene betC, is in the operon betICBA mentioned
above, but in the rest of microbes betC has a different genetic
environment and is mainly found associated to an ABC-type be-
taine periplasmic binding protein and to an ATP-binding protein
with a putative sulfate permease activity [22,24]. All type I sulfa-
tases, including COS, have a highly conserved amino acid sequence
in their active site: (C/S)-X-(P/A)-X-R [25–27]. This sequence is
critical, since it is the recognition site for a post-translational
modification of an active site cysteine or serine residue, to the
catalytically functional residue α-formylglycine (FGly). This mod-
ification is catalyzed by a formylglycine-generating enzyme (FGE),
or by an anaerobic sulfatase maturing enzyme (anSME) depending
on the organism [27]. E. coli is only able to modify cysteine re-
sidues and the identification of the enzymatic machinery re-
sponsible for this modification in this bacterium has been elusive
[28].

Given the apparent ubiquity of choline-O-sulfatases in micro-
organisms [24], their study is important in understanding sulfur
metabolism in microorganisms and soil, and in some contexts the
osmoprotection capacity of their substrate. To our knowledge,
there are only three reports of biochemical characterization of
choline-O-sulfatases, but in all of them only crude extract or par-
tially purified proteins were studied [14,29,30]. In this work the
heterologous expression of COS was performed in E. coli BL21
(DE3), followed by complete purification and biochemical
characterization.
2. Materials and methods

2.1. Molecular cloning and recombinant expression

COS gene (betC) sequence [AAC13371.1] was codon optimized
for E. coli expression (Supplementary material Fig. S1), synthe-
sized, and sequenced by GenScript USA Inc. Then, it was subcloned
in pET26bþ with a C-terminus His6-tag sequence. Overexpression
of COS was performed in E. coli BL21 (DE3) using IPTG (1.0 mM) at
30 °C for 7 h.

2.2. Enzyme purification

Cells were centrifuged and resuspended in 1/25 of their origi-
nal volume in Tris–HCl buffer (200 mM) with imidazole (20 mM)
pH 7.5. They were treated with lysozyme (1 mg/ml final con-
centration) for 30 min at 4 °C and lysed by sonication. The crude
extract obtained after centrifugation was loaded into a His-Trap FF
column (GE-Healthcare) and eluted with a linear gradient of 20–
250 mM imidazole in 10-column volumes. Fractions were ana-
lyzed by 10% SDS-PAGE and those containing the enzyme were
pooled and further purified by size exclusion chromatography
(HiLoadSuperdex 200 16/600 GL; GE-Healthcare) using Tris–HCl
(20 mM) buffer pH 7.5. Fractions containing the pure enzyme were
mixed and its concentration calculated spectrophotometrically at
280 nm using a theoretical molar extinction coefficient of
97,750 M�1 cm�1 [31]. The enzyme was aliquoted and stored at
�20 °C. Typical yields of purified protein were in the range 30–
35 mg of protein/L of culture.

2.3. Biochemical characterization and enzymatic activity

The molecular weight of the native enzyme was determined
with a gel filtration analytical column (Superdex 200 10/300 GL;
GE-Healthcare) using as standards: thyroglobulin (670 kDa),
gamma globulin (158 kDa), ovoalbumin (44 kDa), myoglobin
(17 kDa) and vitamin B12 (1.35 kDa) (Gel Filtration Standard; Bio-
Rad).

Masses were determined with a Bruker Microflex matrix as-
sisted laser desorption ionization time-of-flight (MALDI TOF) in-
strument (Bruker Daltonics GmbH) equipped with a 20-Hz nitro-
gen laser at λ¼337 nm. Spectra were recorded in reflector and/or
linear positive mode for the mass range of 25,000–250,000 Da.
1.0 μL of sample solution was mixed with 5 μL of 30% acetonitrile,
70% water, 0.1% trifluoroacetic acid, and saturated with sinapinic
acid. Then, 1.0 μL of this solution was deposited onto the MALDI
target and allowed to dry at room temperature.

Dynamic light scattering (DLS) measurements were performed
at 25.0 °C using a Malvern Nano S (Malvern, Ltd.) instrument
equipped with laser NIBS (Non Invasive Back Scattering) technol-
ogy and a Peltier temperature controller. The hydrodynamic radius
was calculated using the Zeta Sizer software provided with the
equipment.

Enzyme-catalyzed hydrolysis of choline-O-sulfate (Cambridge
Isotope Laboratories) was measured by Isothermal Titration Ca-
lorimetry (ITC) using a VP-ITC microcalorimeter (Microcal Inc.) at
25 °C in the Reaction Buffer (200 mM Tris–HCl pH 7.5 and 500 mM
NaCl). The kinetic parameters were obtained following the pro-
cedure of multiple injections [32] in which a COS solution
(2.46 mM) was incubated in the calorimetric cell and a solution of
choline-O-sulfate (300 mM) was injected multiple times (2�5 mL
and then 18�10 mL) to acquire a calorimetric thermogram. The
calorimetric data were transformed to initial rate vs substrate
concentration plots using the ITC Data Analysis in Origin 7.0 (Mi-
crocal Inc.) [32]. The enthalpy of the reaction was determined by
triplicate using the single injection method in which a COS
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solution (21.4 mM) was incubated in the calorimetric cell and a
single injection (1�10 mL) of choline-O-sulfate (300 mM) was
done. The kinetic constants kcat, Km and Ki were calculated from
nonlinear least square fitting of the initial rate vs substrate con-
centration plots using the GraphPad Prism 6 software. Fundaments
of the calorimetry technique to obtain kinetic parameters have
been fully illustrated [32–34].

COS enzymatic activity against p-nitrophenyl sulfate (pNPS,
Sigma-Aldrich) or 4-methylumbelliferyl sulfate (MUS, Sigma-Al-
drich) was measured in the Reaction Buffer at 25 °C. Substrate
concentrations were varied between 1 and 80 mM or 1 and 20 mM
respectively, using a constant enzyme concentration of 1.7 mM. The
amount of p-nitrophenol or methylumbelliferone released by COS
activity was determined by measuring the absorbance changes at
400 nm or 370 nm respectively with a Cary-Bio50 (Varian/Agilent)
spectrophotometer.

The pH dependence of COS enzymatic activity was studied
using pNPS as substrate. Buffer solutions were sodium acetate/
acetic acid (200 mM) and NaCl (500 mM) for pH 5.5 and Tris–HCl
(200 mM) and NaCl (500 mM) for pH 6.5–8.5. The hydrolysis rate
was determined spectrophotometrically at 400 nm and 25 °C. For
pH 5.5, aliquots of the reaction mixture were taken at different
times, adjusted to pH 8.0 with 1 M Tris–HCl and its absorbance
immediately measured at 400 nm.

Product inhibition by choline was measured at 25 °C using as
substrate pNPS in the Reaction Buffer, with 1.7 mM of enzyme and
pNPS in a concentration of 1–80 mM. Choline chloride (Sigma-
Aldrich) was added as an inhibitor at concentration of 20, 50 and
70 mM. The activity was obtained by measuring the absorbance
changes at 400 nm.

2.4. FGly determination

The total number of cysteines present in a sample of COS was
determined by the Ellman's reaction [35,36]. A 2 mM stock solu-
tion of 5,5′-Dithiobis(2-nitrobenzoic acid) (DTNB, Sigma-Aldrich)
in 50 mM sodium acetate was prepared, and 50 mL of this DTNB
stock solution and 100 mL of 1 M Tris–HCl buffer pH 8.0 were
mixed with distilled water up to a volume of 990 mL. Then, 10 mL of
one of the following protein solutions (250 mM) were added: 1)
native protein; 2) protein previously treated with 8 M urea; 3)
protein treated with 8 M urea and 100 mM DL-Dithiothreitol (DTT,
Sigma-Aldrich) and 4) protein treated with 8 M urea and 100 mM
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP, Sigma-Al-
drich). Remaining DTT and TCEP were removed from samples
3 and 4 before mixing themwith the DTNB solution. This was done
by buffer exchange using an ultrafiltration device (Vivaspin 20,
10,000 MWCO, Sartorius) employing an 8 M urea solution. The
Fig. 2. (A) SDS-PAGE of the purification of COS. Lane 1 crude extract; lane 2 fractions elu
filtration column containing COS. (B) Molecular exclusion chromatography of COS on a S
exclusion chromatography.
reaction mixtures with DTNB were incubated at room temperature
for 5 min and the changes in absorbance at 412 nm were mea-
sured. Cysteine concentration was determined by comparison to a
standard curve obtained with acetyl cysteine and DTNB (molar
extinction coefficient of 13,6897122.9 M�1 cm�1).

Additionally, the absence of FGly in a COS sample was in-
vestigated by ultra-performance liquid chromatography coupled to
electrospray ionization tandem quadrupole time-of-flight mass
spectrometry (UPLC-ESI-Q-TOF-MS) based on the procedure de-
scribed by Rabuka et al. [37]. After purification, �200 mg of COS
were denatured in 6.0 M urea and 100 mM Tris pH 8.5 for 15 min.
The sample was then incubated with DTT (50 mM) at 37 °C for
45 min, followed by alkylation with iodoacetamide (30 mM) for
60 min. After purification, the sample was digested with porcine
trypsin for 18 h at 37 °C. It was then desalted and concentrated in a
Ziptip C18 column, using 12 mL of 3% acetonitrile and 0.1% formic
acid in water as the mobile phase. The eluted sample was analyzed
by UPLC-ESI-QTOF-MS (nanoACQUITY-Waters – SYNAPT G2S
Waters).
3. Results

3.1. Expression and biochemical characterization of COS

The choline-O-sulfatase gen from E. meliloti was efficiently
expressed in E. coli BL21 (DE3) after induction with 1.0 mM IPTG
for 7 h at 30 °C (Fig. 2A; lane 1). Its purification was easily achieved
thanks to a His6-Tag at its C-terminus (Fig. 2A; lane 2) and a final
purification step through a gel filtration column (Fig. 2A; lane 3)
was performed to remove several soluble aggregates of protein not
visible in the SDS-PAGE gel (Fig. 2B).

The apparent molecular mass of COS was �63 kDa as esti-
mated by SDS-PAGE (Fig. 2A), which is in agreement with the
expected 59 kDa value considering the His6-Tag. Subsequently, the
molecular mass was determined in non-denaturing conditions
using a gel filtration analytical column giving a molecular mass of
123 kDa (Fig. 2C), indicating that COS exists in a dimeric form in
solution. DLS tests exhibited a single peak with a hydrodynamic
radius of 5.6 nm consistent with a dimeric form of the protein
(Supplementary material Fig. S2). The sample was also subjected
to MALDI-TOF mass spectrometry giving two peaks at 118 and
59 kDa corresponding to the dimeric and monomeric forms of COS
(Supplementary material Fig. S3).

3.2. Kinetic characterization of COS

COS-catalyzed hydrolysis of choline-O-sulfate was measured by
ted from the His-Trap column containing COS; lane 3 fractions eluted from the gel
uperdex 200 column. (C) Determination of the molecular mass of COS by molecular



Fig. 3. Determination of COS kinetic parameters at pH 7.5 and 25 °C in 200 mM Tris–HCl and 500 mM NaCl. (A) Calorimetric initial rate measurements. The figure shows a
typical thermogram obtained by ITC in which a COS solution (2.46 mM) was titrated with choline-O-sulfate (300 mM) (2�5 mL and then 18�10 mL). Each titration was done
before a significant amount of choline-O-sulfate was hydrolyzed. (B) Michaelis–Menten plot for the choline-O-sulfate hydrolysis. Data was obtained by transforming the
calorimetric data to initial rates using procedures reported in the literature (see Section 2). (C) and (D) Michaelis–Menten plot for the hydrolysis of pNPS and MUS re-
spectively obtained by UV–vis spectrophotometry.

Table 1
Kinetic parameters for COS catalyzed hydrolysis of sulfate esters substrates at 25 °C
and pH 7.5. Reported values represent the average of three independent mea-
surements and error ranges represent one standard deviation.

Substrate kcat (s �1) KM (mM) Ki (mM) a kcat/KM (s �1 M�1)

Choline-O-
sulfate

0.2770.02 11.171.0 11.4 71.1 24.3272.84

pNPS 0.03570.004 75.8715.0 – 0.4670.11
MUS 0.04370.007 11.871.4 – 3.6470.73

a Substrate inhibition constant.
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calorimetry since non-appreciable change in the UV–vis spectra is
observable for this reaction. Multiple injections of the substrate to
a calorimetric cell with the enzyme gave a typical thermogram
(Fig. 3A) that was interpreted and transformed to a usual Mi-
chaelis–Menten plot (Fig. 3B) [32]. The observed peaks in the
thermogram correspond to the dilution heat of the substrate
reaching the calorimetric cell. After each peak the thermal power
returns to a steady-state level that corresponds to the initial rate at
that substrate concentration. Before significant substrate depletion
occurs, a subsequent injection is made to obtain a different initial
rate corresponding to a new higher substrate concentration. This
process is repeated multiple times to obtain the thermogram. The
more negative steady-state level observed after each injection
corresponded to a higher rate. However, at �4000 s the thermal
power started to increase (lower rate) indicating the presence of
substrate inhibition (Fig. 3A and B). To transform the calorimetric
data from the thermogram to enzymatic initial rates it is necessary
to experimentally determine the apparent reaction enthalpy
(ΔHapp). This was obtained by a single injection experiment
(Supplementary material Fig. S4), giving a
ΔHapp¼�73.6373.34 kJ/mol (�17,6007800 cal/mol). Table 1
shows the kinetic parameters for the COS catalyzed choline-O-
sulfate hydrolysis together with those obtained by spectro-
photometry for the synthetic substrates pNPS and MUS. These last
two substrates did not show enzyme saturation at their highest
solubility in the buffer employed (Fig. 3C and D). Despite the low
activity observed for COS, multiple catalytic cycles were observed
for the substrates. For example, for pNPS we measured 73 turn-
overs per hour (Fig. 4A), while for choline-O-sulfate 93 turnovers
were measured in the same period of time in a single injection
experiment (Supplementary material Fig. S4). Additionally, COS
activity against choline phosphate was tested by calorimetry, but
no activity was detected, even though a 20-fold more enzyme than
with choline-O-sulfate was used (Supplementary material Fig. S5).
This contrasts with the reported by Osteras et al. [8], who ob-
served phosphatase activity towards choline phosphate in E. me-
liloti crude extract obtained after COS induction.

3.3. COS activity-pH profiles and product inhibition

The enzymatic activity of COS was tested in the pH range 5.5–
8.5 using pNPS as the substrate. We observed a bell shaped profile
of COS specificity constant (kcat/KM) showing a maximum at pH 6.5
(Fig. 4C). Individual graphs of kcat and KM as a function of pH are
shown in Supplementary material Figs. S6 and S7.

The possible inhibitory effects of the cognate reaction products,
choline and inorganic sulfate, in COS catalyzed hydrolysis were



Fig. 4. (A) Time course of the COS catalyzed hydrolysis of pNPS at pH 7.5 and 25 °C;
[COS]¼1.74�10�6 M and [pNPS]¼70 mM. (B) COS catalyzed hydrolysis of pNPS as
a function of pH at 25 °C. (C) Competitive inhibition of COS by choline at 25 °C and
pH 7.5.

Table 2
Quantification of cysteines present in COS using the Ellman's reaction. Values are
the average of three independent determinations with their corresponding stan-
dard deviations.

Treatment of protein sample Number of detected Cys per mole of protein

None (native protein) 0.3070.01
Urea 8 M 3.9970.03
Urea 8 MþDTT 6.0570.09
Urea 8 MþTCEP 5.9870.01
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examined using pNPS as substrate. Choline inhibited COS com-
petitively with an inhibition constant (Ki) of 57.8 mM (Fig. 4D) but
no inhibition was observed with ammonium sulfate up to a 70 mM
concentration.

3.4. Determination of FGly modification

Due to the low COS catalytic activity, the amount of post-
translational modification of the cysteine 54, which is in the sul-
fatase recognition sequence C-X-P-X-R, was evaluated. First, a
quantification of the total number of cysteines per mole of protein
was performed using the Ellman's reaction. From the six possible
cysteines present in the amino acid sequence, all of them were
detected, suggesting the complete absence of the FGly residue
(Table 2). Two of these cysteines were forming a disulfide bridge
(compare samples treated with urea and ureaþDTT or TCEP in
Table 2).
To confirm the absence of the FGly modification in the cysteine
54, an UPLC-ESI-Q-TOF-MS analysis of a reduced, alkylated and
trypsin-digested sample of COS was carried out using a established
procedure from the literature [37]. The results showed a coverage
of 89.5% of the protein sequence, including all cysteine-containing
peptides. Amongst them was a peptide eluted at 17.71 min with a
m/z¼578.9232 corresponding to the triply protonated state
[Mþ3H]3þ of the peptide containing the Cys54 in the carbami-
domethylated-form (Fig. 5A and B).The FGly residue is an aldehyde
that hydrates in water to give a geminol diol. In MS, both, the
peptide with aldehyde and the one with the diol have been ob-
served with two distinct molecular masses [37]. The expected COS
FGly peptides (aldehyde Mþ3H¼553.9390 m/z or diol
Mþ3H¼559.9425 m/z) with the same or different protonation state
as the Cys containing peptide were extensively searched but were
not detected in the MS analysis (for two independent determina-
tions). These results confirm the absence of the FGly residue when
COS is expressed in the conditions mentioned here.
4. Discussion

Recombinant E. meliloti COS was overexpressed and purified in
high yields from E. coli cultures. However, its catalytic activity was
poor as a result of the complete absence of the FGly post-trans-
lational modification in its active site. This lack of modification
occurs despite COS sequence having the “sulfatase signature” (C-X-
P-X-R) [25–27]. Table 3 shows that this consensus sequence can be
recognized and transformed to FGly in different degrees in E. coli
by its enzymatic machinery, which has not been identified yet
[28]. In some cases, a mixture of unmodified cysteine and FGly has
been observed by qualitative MALDI-TOF analysis, while in others
only the peptide with the FGly has been detected indicating 100%
of modification. Only in three examples the degree of FGly for-
mation has been directly quantified in mixtures with the un-
modified Cys peptides. For about half of all cases, the percentage of
FGly has not been determined. Based on these results, it is clear
that the presence of the minimum five “sulfatase signature” re-
sidues, or even the extended sequence depicted in Table 3, is not a
guarantee of even partially FGly modification in E. coli. Human
iduronate 2-sulfate sulfatase and COS have a serine residue at
position (�13) with respect to the active site cysteine that is dif-
ferent from the consensus glycine residue, but still with glycine at
this position the modification can be low as it was the case with
Mycobacterium tuberculosis sulfatase [38].

To increase the FGly modification in recombinant Clostridium
perfringens sulfatase, coexpression with its corresponding anSME
in E. coli was done [40]. Similarly, phosphonate monoester hy-
drolases (PMHs), which are enzymes with the sulfatase recogni-
tion sequence, had been coexpressed with M. tuberculosis FGE
(MtbFGE) to increase the FGly formation [47,48]. This last method
efficiently (485%) modifies N- or C-terminus FGE recognition
sequences in some proteins [37,40,47], but in PMHs the conver-
sions were lower [47,48]. E. meliloti genome includes a putative
FGE and its coexpression with COS will be tested in the near future



Fig. 5. Results of UPLC-ESI-Q-TOF-MS analysis for COS. The protein was reduced with DTT, alkylated with iodoacetamide, digested with porcine trypsin and analyzed by LC–
MS. (A) Extracted ion currents (XIC) at m/z¼578.9232 corresponding to the peptide FHNNYTSSPLCAPAR [Mþ3H]þ3 with the carbamidomethylated Cys54. (B) Mass spectra
of the same peptide (theoretical weight¼1734.8016 Da and [Mþ3H]þ3¼578.9387).
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in our group. In E. meliloti cells, the presence of the FGE should
ensure that the modification occurs, obtaining a more active COS.
Further studies that elucidate the sequence and/or structural re-
quirements for expression of fully FGly-modified type I sulfatases
in E. coli would be very beneficial for scientific and biotechnolo-
gical purposes.

Despite the absence of the post-translational modification, COS
was a competent enzyme able to perform multiple catalytic cycles.
Another example of an enzyme lacking completely the FGly
modification but still with hydrolytic activity is Burkholderia car-
yophylli phosphonate monoester hydrolase (BCPMH) [48]. Despite
this, it would be expected that the presence of FGly in COS would
increase the enzymatic activity, especially the kcat, by 5 to 2500-
fold as it was observed for BCPMH and other sulfatases [41,47–49].
In those examples, a comparison of the unmodified and modified
enzyme was possible, or a Cys to Ser mutation in their active sites
was done to prevent FGly formation in E. coli. In contrast, the
11.1 mM KM value obtained in this work for COS is likely to be
conserved for the enzyme carrying the FGly, as it was the case in
all partially modified or Cys to Ser mutants [41,47–49]. This rela-
tively high KM value is consistent with other KMs for choline sul-
fatase from natural sources: 40 mM for Pseudomonas nitroreducens
[29]; 35 mM for Aspergillus nidulans [14] and 1.4 mM for Pseudo-
monas aeruginose [30], and could imply that the intracellular
concentrations of choline-O-sulfate are in the millimolar range,
like it is for many other osmoprotectants [2,10]. Also the substrate
inhibition observed for COS, might be used to prevent the fast
depletion of choline-O-sulfate when it is in high concentration



Table 3
Recognition sequences for the modification of the active site cysteine to FGly in enzymes expressed in E. coli, and the percentage of FGly transformation.

Type I sulfatase Sequence FGly
presence

Method for FGly determination Enzyme co-expressed Ref.

F. heparinum (69)GTRFTRAYCAQPLCTPSRSAIFSG 100% MALDI-MS [39]
FH2S
C. perfringens (37)GYNFENAYTAVPSCIASRASILTG Partially MALDI-TOF – [40]
(BAB79937.1) 100% anSME
P. aeruginosa (39)GLRLTDFHTAST-CSPTRSMLLTG 95% DTNB – [41]
(CAA88421.2)
E. meliloti (41)SARFHNNYTSSPLCAPARASFMAG 0% DTNB – This work
(AAC13371.1)
M. tuberculosis (45)GILFTRAHATAPLCTPSRGSLFTG NDa – – [38]
(F70837)
H. sapiens (66)GLLFPNFYSANPLCSPSRAALLTG NDa – – [42]
(NP_000503.1)
H. sapiens (71)SLLFQNAFAQQAVCAPSRVSFLTG NDa – – [43]
(AAC77828.1)
P. sp ATCC19151 (CBI83290.1) (40)GVVFDSAYCNSPLCAPSRFTLVSG ND – – [23]
F. heparinum (67)GMLFNNCFVTNAVCGPSRATILTG ND – – [44]
FH6S
F. heparinum (67)GVRFTNAFCSSPSCTPARAGMLTG ND – – [45]
NSulf
H. pomatia (71)GVRLENYYVQ-PICTPTRSQLMSG b – – [46]
(AAF30402.1)
Phosphonate monoester hydrolase

R.leguminosarum (49)GTLFRRHYAGAAPCSPARATLYTG 25% Fluorophore labeling – [47]
(WP025417352.1) 62% MtbFGE
B. caryophylli (45)GLTFRNHVTTCVPCGPARASLLTG Partially MALDI-TOF – [48]
(AAC44467.1) Partiallyc MtbFGE

ND: Not determined.
a Low activity suggest none or poor FGly modification.
b Expression in E. coli was not successful.
c Partially, but greater than without MtbFGE.
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[50] and preserve its osmoprotectant effect.
Regarding its substrate specificity, COS showed an �8-fold

lower kcat for the aromatic sulfate ester pNPS, compared to the
alkyl choline-O-sulfate ester, despite the first one being �108-fold
more labile [51]. This behavior is contrary to other type I sulfatases
that show higher activities and lower KM values for the aromatic
substrates [25]. This low or null activity towards aromatic sulfates
could be a common characteristic of choline sulfatases as it was
also observed for P. nitroreducens choline sulfatase [29].

Even with the low kcat values obtained for the unmodified COS,
this enzyme has a remarkable catalytic proficiency as it would be
accelerating the reaction 1020-fold compared to the uncatalyzed
reaction (kuncat¼2.25�10�21 s�1 estimated by using the equation
of the Brønsted plot reported [51] and using a pKa¼13.9 for cho-
line sulfate [52]).
5. Conclusions

COS is a dimeric protein that can be expressed in high yields in
E. coli, but under the conditions described here, it lacks completely
the FGly maturation despite having the C-X-P-X-R sulfatase sig-
nature. Regardless of this, COS is able to hydrolyze its natural
substrate choline-O-sulfate through multiple catalytic turnovers
and with remarkable proficiency. Given the apparent ubiquity of
choline sulfatases in microorganisms, further studies on their
mechanism of action, the sequence or structural requirements for
their post-translational modification and their substrate specificity
would be important to understand the role of choline sulfatases in
microbial sulfur metabolism and in the biological sulfur cycle.
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