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To generate a force at the hand in a given spatial direction and with a given magnitude
the central nervous system (CNS) has to coordinate the recruitment of many muscles.
Because of the redundancy in the musculoskeletal system, the CNS can choose one
of infinitely many possible muscle activation patterns which generate the same force.
What strategies and constraints underlie such selection is an open issue. The CNS
might optimize a performance criterion, such as accuracy or effort. Moreover, the CNS
might simplify the solution by constraining it to be a combination of a few muscle
synergies, coordinated recruitment of groups of muscles. We tested whether the CNS
generates forces by minimum effort recruitment of either individual muscles or muscle
synergies. We compared the activation of arm muscles observed during the generation
of isometric forces at the hand across multiple three-dimensional force targets with the
activation predicted by either minimizing the sum of squared muscle activations or the
sum of squared synergy activations. Muscle synergies were identified from the recorded
muscle pattern using non-negative matrix factorization. To perform both optimizations we
assumed a linear relationship between rectified and filtered electromyographic (EMG)
signal which we estimated using multiple linear regressions. We found that the minimum
effort recruitment of synergies predicted the observed muscle patterns better than the
minimum effort recruitment of individual muscles. However, both predictions had errors
much larger than the reconstruction error obtained by the synergies, suggesting that the
CNS generates three-dimensional forces by sub-optimal recruitment of muscle synergies.

Keywords: muscle synergies, isometric force, directional tuning, effort minimization, non-negative matrix

factorization

INTRODUCTION
Object manipulation and tool use require accurate control of the
three-dimensional force generated at the hand by the contrac-
tion of arm muscles. To generate a force at the hand in a given
spatial direction and with a given magnitude, the central ner-
vous system (CNS) has to coordinate the recruitment of many
muscles. A desired force vector must results from the sum of
the force vectors generated by the contraction of each individual
muscle. Thus, the control policy implemented by the CNS must
select an appropriate muscle activation pattern for each desired
force vector output. Such a mapping from force targets to mus-
cle patterns is the inverse of the biomechanical transformation
of muscle contraction into output force. However, because of the
redundancy of the muscular apparatus, the solution is not unique
and infinitely many muscle patterns can generate the same force
output. These patterns only differ with respect to the amount
of muscle co-contraction, i.e., the part of the muscle contrac-
tion which generates force components that cancel each other
(Valero-Cuevas, 2009).

How the CNS coordinates many redundant muscles is a long
standing question in motor neuroscience (Bernstein, 1967). One
possibility is that CNS selects the muscle pattern for a specific
goal by minimizing some cost, such as effort or inaccuracy (Harris

and Wolpert, 1998; Fagg et al., 2002; Todorov and Jordan, 2002;
Franklin et al., 2008; Kutch et al., 2008). Such minimization may
be performed searching among all possible muscle patterns and
potentially achieving the global minimum of the cost function.
As optimization becomes computationally challenging when it
involves a large number of variables, the CNS might search for a
solution only within the subset of all possible patterns generated
by the combination of a small number of muscle synergies, coor-
dinated recruitment of groups of muscles with specific activation
balances or profiles (Tresch et al., 1999; Saltiel et al., 2001; d’Avella
et al., 2003; Ting and McKay, 2007; Bizzi et al., 2008; Lacquaniti
et al., 2012; d’Avella and Lacquaniti, 2013). However, by reduc-
ing the number of variables, i.e., constraining the solution to
combinations of muscle synergies, only a value of the cost func-
tion generally larger than the global minimum can be achieved.
Thus, there is a trade-off between optimality and computational
complexity in the solution of the coordination problem.

Whether muscle synergies are a simplifying control strategy
actually implemented by the CNS or they represent a parsi-
monious description of the regularities in the motor output
generated by a non-synergistic controller and due to specific task
constraints is a debated issue (Kutch et al., 2008; Tresch and Jarc,
2009; Valero-Cuevas et al., 2009; d’Avella and Pai, 2010; Kutch
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and Valero-Cuevas, 2012; Berger et al., 2013; Bizzi and Cheung,
2013). Evidence for muscle synergies as neural control strate-
gies has come from the observation of low-dimensionality in the
muscle patterns. In many species and behaviors the muscle pat-
terns recorded in a variety of conditions can be reconstructed
by a combination of a small number of muscle synergies (Tresch
et al., 1999; d’Avella et al., 2003, 2006; Ivanenko et al., 2004; Ting
and Macpherson, 2005; Torres-Oviedo and Ting, 2007; Overduin
et al., 2008; Dominici et al., 2011; Delis et al., 2013). Moreover,
neural recordings and stimulation responses suggest that mus-
cle synergies are encoded in the CNS (Saltiel et al., 2001; Ethier
et al., 2006; Gentner and Classen, 2006; Hart and Giszter, 2010;
Overduin et al., 2012). However, recent simulation studies have
argued that the low-dimensionality that might be observed in the
muscle patterns during isometric force generation could derive
from biomechanical constraints (Kutch and Valero-Cuevas, 2012)
and that the shape of the covariance of the force fluctuations
recorded during static isometric force production is not compat-
ible with muscle synergies (Kutch et al., 2008).

The aim of this study is to test whether the control pol-
icy employed by the CNS for the generation of force minimize
effort by either independent recruitment of individual muscles
or by synergistic recruitment. We have performed a comparison
between the activation of several muscles acting on the shoulder
and elbow joints observed during the generation of static iso-
metric force at the hand across multiple three-dimensional force
targets and the muscle activation predicted by minimizing effort
either over the set of all possible muscle patterns or within the
subset of muscle patterns generated by combinations of mus-
cle synergies. To derive these predictions, we have estimated
the isometric force generated by each muscle, assuming a lin-
ear relationship between rectified and filtered electromyographic
(EMG) signal and force, and we have identified time-invariant
muscle synergies by non-negative matrix factorization (NMF)
(Lee and Seung, 2001; Tresch et al., 2006). While the observed
muscle patterns could be reconstructed accurately by the com-
bination of a small number of muscle synergies, they were not
well predicted by either minimum effort recruitment of individ-
ual muscles or synergies. However, the synergistic prediction had
a significantly lower error than the prediction based on individual
muscles.

MATERIALS AND METHODS
PARTICIPANTS
Nine right handed subjects (5 males and 4 females, mean age
29.6 ± 4.4 years, age range 24–39) participated in the exper-
iment after giving written informed consent. All procedures
were approved by the Ethical Review Board of the Santa Lucia
Foundation.

EXPERIMENTAL APPARATUS AND DATA ACQUISITION
Subjects sat on a racing car seat with their torso immobilized
by safety belts anchored behind their shoulders and hips. They
inserted their right hand and forearm in a splint that immobi-
lized hand, wrist, and forearm positioned on a desktop in front
of them. The splint was attached to a steel bar and mechanically
connected via a steel rod to a 6-axis force transducer (Delta F/T

Sensor, ATI Industrial Automation, Apex, NC, USA) mounted
below the desktop. In this posture the center of the palm was
aligned with the body midline at the height of the sternum and the
elbow was flexed approximately by 90◦. The height of the desktop
and the distance of the chair from the desktop could be adjusted
according to the subject’s size. The subject view of his right hand
was occluded by a mirror (29.7 × 21 cm), parallel to the desk-
top, that reflect the image displayed by a 21-inch LCD monitor
(Syncmaster 2233, Samsung Electronics Italia S.p.A., Cernusco
sul Naviglio, MI, Italy), also parallel to the desktop (Figure 1A).
The height of the monitor was adjusted at the height of the sub-
jects’ eyes and the mirror was positioned halfway between the
subjects’ hand and the monitor. During the experiments subjects
wore 3D shutter glasses (3D Vision P854, NVIDIA Corporation,
Santa Clara, CA, USA) and viewed stereoscopically a virtual desk-
top matching the real desktop and a spherical cursor positioned,
at rest, approximately at the center of the palm. The virtual
scene was rendered by a 3D graphics card (Quadro Fx 3800,
NVIDIA) on a PC workstation using custom software. Force tar-
gets were shown as transparent gray spheres and force feedback
was provided by the displacement of the spherical blue cursor
(Figure 1B). The scene was updated at 60 Hz with the cursor
position processed by a second dedicated data-acquisition PC
workstation running a real-time operating system and transmit-
ted to the first workstation through an Ethernet link using the
UDP protocol. Cursor motion was simulated in real time as a
mass accelerated by the force applied by the subject on the splint,
a viscous force, and an elastic force proportional to the distance
from the rest position. The spring constant was set such that the
force applied to maintain the cursor stationary at the target, dis-
tant 5 cm from the center of the palm, had a magnitude equal
to 20% of the subject’s mean maximum voluntary force (MVF)
across force directions (see below). To maintain fast responses to
changes in force while reducing the effect transducer noise when
the force was stationary, the mass was adjusted adaptively in the
range 15–140 g as a sigmoidal function of the rate of change in
the magnitude of the recorded force. The damping constant was
set to make the system critically damped.

Electromyographic activity from 17 muscles acting on the
right shoulder and elbow was recorded with active bipolar elec-
trodes (DE 2.1, Delsys Inc., Boston, MA), after band-pass fil-
tering (20–450 Hz) and amplification (gain 1000, Bagnoli-16,
Delsys Inc.). The following muscles were recorded: teres major
(TeresMaj), infraspinatus (InfraSp), latissimus dorsi (LatDors),
inferior trapezius (TrapInf), middle trapezius (TrapMid), supe-
rior trapezius (TrapSup), brachioradialis (BracRad), biceps
brachii, long head (BicLong), biceps brachii, short head
(BicShort), triceps brachii, lateral head (TriLat), triceps brachii,
long head (TriLong), triceps brachii, medial head (TriMed), ante-
rior deltoid (DeltA), middle deltoid (DeltM), posterior deltoid
(DeltP), pectoralis major clavicular (PectClav), pectoralis major
sternal (PectStern). Correct electrode placement was verified by
observing the activation of each muscle during specific maneu-
vers. Force and EMG data were digitalized at 1 kHz using an A/D
PCI board (PCI-6229, National Instrument, Austin, TX, USA).
Only the forces (Fx lateral direction on the horizontal plane, pos-
itive to the right; Fy frontal direction on the horizontal plane,

Frontiers in Computational Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 186 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Borzelli et al. Muscle synergies for isometric force generation

Time

Go to 
start

Remain 
3 s

Go to 
target

Remain 
3 s

14

6

21

13
7

22

15

2

28

12

27

20

3

29

1

32

8

23

5

31

16

11

26

4

30

19

9

24

10

25

17

18 Fx
Fy

Fz
Fz

Fy

Fx

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

-90

-60

0

60

90

Target

E
le

va
tio

n 
(°

)

5 10 15 20 25 30
0

90

180

270

360

A
zi

m
ut

 (°
)30

-30

A

D

B

C

FIGURE 1 | Experimental apparatus and protocol for measuring

isometric force and electromyographic signal. (A) Subjects sat in front of a
desktop with their right arm, wrist, and forearm immobilized in a splint rigidly
coupled to a force transducer mounted below the desktop. A mirror occluded
subjects’ view of their hand and reflected a virtual scene displayed by a flat
horizontal monitor placed at subjects’ eyes height and matching the real
desktop view. A spherical cursor was displayed at the center of the palm
when no forces were applied on the splint. Cursor motion was simulated in
real time as a mass accelerated by the force applied by the subject on the

splint, a viscous force, and an elastic force proportional to the distance for the
rest position. (B) Subjects were instructed to perform center-out reaching
trials in which they had to maintain the cursor in a central start location for 3 s,
reach a target, and maintain the cursor at the target location for 3 s. After this
time the subject relaxes to return to the starting position and be ready to start
a new trial. (C,D) Force targets were distributed on the surface of a sphere of
radius of 20% MVF, arranged on horizontal planes at different heights. The
elevation and the azimuth angles of each one of the 32 targets were chosen
to distribute the targets approximately uniformly on the sphere surface.

positive away from the chest; Fz vertical direction, positive up)
were used during the experiment.

EXPERIMENTAL PROTOCOL
For each subject, the MVF along the direction of the 20 ver-
tices of a dodecahedron was estimated at the beginning of the
experiment and used to scale the magnitude of the force tar-
gets. For each direction the maximum force magnitude was
recorded in two trials in which subjects were instructed to gen-
erate maximum force in a spatial direction indicated by an
arrow. Subjects then performed a series of 160 trials generat-
ing forces in 32 directions (5 series of trials in all directions).
The target directions were chosen to be approximately uni-
formly distributed on the surface of a sphere with radius of
0.2 MVF. Targets were arranged on horizontal planes at dif-
ferent heights. On the Fz = 0 plane, 8 targets were equally
distributed on a circumference. The height of the other hor-
izontal force planes was calculated such that the difference

in elevation angle (ϕ = tan−1(Fz/(F2
x+ F2

y)1/2)) of two adja-
cent planes was approximately equal to the angle between
two adjacent targets of the Fz = 0 plane. The number of tar-
gets on each plane was chosen such that the azimuth angle
(ϑ = tan−1(Fy/Fx)) difference between two adjacent targets on
the plane was as close as possible to the angle between two targets
on the Fz = 0 plane (45◦ for 8 targets, see Figures 1C,D). At the
beginning of each trial subjects were instructed not to apply any
force and to maintain the cursor for 3 s (rest phase) within a trans-
parent yellow sphere with a radius larger than the cursor sphere
radius by 2% MVF and aligned with the center of the palm. A tar-
get, indicated by a gray transparent sphere with a radius larger
than the cursor sphere radius by 2% MVF was then displayed
in one of the 32 locations and subjects were instructed to move
the cursor to the target by applying force (Figure 1B). The target
sphere turned yellow when the cursor was inside it. Finally, sub-
jects were required to maintain the cursor within the target for 3 s
(hold phase) to successfully end the trial.
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DATA ANALYSIS
EMG data were used to characterize the directional tuning of
muscle activations, to identify time-invariant muscle synergies,
and, together with force data, to estimate an EMG-to-force
matrix. One subject was excluded from the analysis after realiz-
ing that during the experiment the position of the cursor when
the subject was not applying any force to the splint (at the begin-
ning of each trial) had drifted, likely due to a lack of proper
immobilization of the hand and forearm in the splint. A few tri-
als in which the remaining eight subjects were not able to reach
or remain in the target (3.4 ± 4.5 over 160 total trials, mean ±
SD, range 0–13) as well as a few additional trials with EMG arti-
facts (6.0 ± 4.2, range 1–13) were excluded from the analysis.
Finally, a few trials of the MVF block with EMG artifacts were also
excluded from the analysis. The total number of excluded trials
was 15.7 ± 12.3, range 1–33.

Directional tuning of muscle activations
EMG data were rectified and digitally low-pass filtered (2nd order
Butterworth, 5 Hz cutoff) and re-sampled at 100 Hz to reduce
data size. In each trial, mean EMG activity of each muscle dur-
ing the last 0.6 s of the rest phase was used to estimate the baseline
noise level of each muscle which was then subtracted from the rest
of the data. Filtered EMG waveforms for each muscle were aligned
to the beginning of the hold phase and then averaged across rep-
etitions of the same target to construct directional tuning curves.
Averaged EMG for each muscle were normalized to the maximum
voluntary contraction across direction (MVC) recorded during
MVF.

The directional tuning of each muscle activation was also fitted
by a spatial cosine function:

m(f ; fPD) = f T fPD + moffset = fPD[cos ϕ cos ϕPD

+ sin ϕ sin ϕPD sin(ϑ − ϑPD)] + moffset,

where f in the unit vector pointing in the direction of the force
target, fPD is a preferred direction vector with length fPD, azimuth
angle ϑPD, and elevation angle ϕPD, and moffset is an offset level.
The parameters of the preferred direction vector and offset were
estimated by multiple linear regressions (Matlab function regress)
and the significance of the tuning assessed by an F-test.

Muscle synergies
Muscle synergies were identified by a NMF algorithm (Lee and
Seung, 1999, 2001). Muscle activation vectors (mk) constructed
with the rectified, filtered, and averaged EMG waveforms of each
muscle during the hold phase of k-th trial, normalized to MVF
after baseline noise level subtraction. Each vector (matrix col-
umn) was reconstructed as the combination of a unique set of
N time-invariant synergies (wi) scaled by time-varying synergy
activation coefficients (ck

i )

mk =
∑N

i = 1
ck

i wi

or, equivalently, in matrix notation, M = W C. For each N
from 1 to the number of muscles, the extraction algorithm was

repeated 10 times and the repetition with highest reconstruction
R2 was retained. R2, the fraction of total variation explained by
the synergy model, was defined as 1 - SSE/SST, where SSE is the
sum of the squared residuals and SST is the sum of the squared
differences between the recorded muscle patterns and their mean.

The number of synergies N is a free parameter that we chose as
the smallest number that reconstructed accurately the data varia-
tion taking noise and the directional tuning of synergy activation
coefficient into account. In previous studies using decomposition
algorithms to identify muscle synergies, N was selected to capture
the structured data variation not due to noise either according
to a threshold in R2 (Tresch et al., 1999; Ting and Macpherson,
2005; Torres-Oviedo et al., 2006) or by identifying a change in
slope in the R2 curve (Cheung et al., 2005; d’Avella et al., 2006;
Tresch et al., 2006). We considered both criteria, and we com-
puted (i) the smallest N for which the R2 was larger than 0.9
and (ii) as the point at which the R2 vs. N curve had a change
in slope (MSE error of linear fit from N to 17, the number of
muscles, below 10−4). In case of mismatch between the number
of synergies selected according to the two criteria, we chose the
one set of synergies with a more uniform directional distribution
of preferred directions of the synergy activation coefficients (the
direction of the maximum of the cosine function best fitting the
directional tuning). To do so, for each one of the two synergy sets,
we arranged their preferred direction vectors on a unit sphere, we
considered all pairs, and we selected the set of synergies with the
smallest number of pairs with an angular difference below 20◦.
Finally, the elements of each synergy vector (wi) in the selected
set were normalized to their maximum value.

Directional tuning curves for the synergy activation coeffi-
cients, as for the muscle activations, were constructed by averag-
ing their values in the hold phase and across trials to the same
target.

EMG-to-force matrix
The isometric end-point force (f) generated at the hand with the
arm in a fixed posture (as both the trunk and the forearm were
immobilized) by a muscle activation pattern (m) was modeled
as linear combination of the end-point force associated to each
muscle, f = H m, where H is a matrix with dimensions [3 × Nm]
(Nm number of muscles). For each subject we estimated such
matrix using multiple linear regressions of each force component,
low-pass filtered (2nd order Butterworth, 5 Hz cutoff) with the
rectified, filtered, re-sampled, baseline subtracted, MVC normal-
ized EMG data recorded during the hold phase in all conditions.
While the relationship between muscle activation and end-point
force is generally not linear, for low muscle activation required
for the force magnitude of the targets used in the experiment (0.2
MVF) linearity provided an adequate approximation (Lawrence
and De Luca, 1983).

Minimum effort predictions
We predicted the observed muscle activation pattern (mobs) for
each force target either by minimizing the sum of squared mus-
cle activation (mmusc) (Buchanan and Shreeve, 1996; van Bolhuis
and Gielen, 1999; Todorov and Jordan, 2002) or by minimiz-
ing the sum of squared synergy activations (msyn), under the
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constraint that the predicted pattern generates the desired force
target according to the linear EMG-to-force mapping (H):

mmusc = arg min(‖m‖2) such that f = Hm

{
msyn = Wcsyn

csyn = arg min(‖c‖2) such that f = HWc

We used the MATLAB function quadprog to find these minima.

Minimum effort prediction with random muscle synergies
We performed a Monte Carlo simulation to assess the significance
of the prediction obtained by minimizing synergy effort. We com-
pared the mean squared residual of the minimum synergy effort
prediction with the distribution of the mean squared residuals
obtained with 200 sets of random synergies. For each subject, after
randomly shuffling over the columns (trials) each row (muscle)
of the muscle activation data matrix (M), random synergies were
generated either selecting a number of columns equal to the num-
ber of synergies identified from the data or by extracting the same
number of synergies from the shuffled data matrix.

Statistical analysis
A Wilcoxon rank-sum test was performed for each subject to
evaluate if the mean over force targets of the squared error
of the prediction obtained minimizing muscle effort (mmusc),
(εmusc)2 = ||mmusc – mobs||2, was statistically different from the
squared error of the prediction obtained minimizing synergy
effort (msyn), (εsyn)2 =||msyn – mobs||2.

RESULTS
All subjects were able to reach the force targets and to maintain
the force within the required 2% MVF tolerance for 3 s. Examples

of the raw EMG and force data recorded for three trials to targets
are shown along the positive Fx, Fy, and Fz axes in Figure 2.

DIRECTIONAL TUNING OF MUSCLE ACTIVATIONS
As in previous studies (Flanders and Soechting, 1990; Roh et al.,
2012), we found that the activation of most muscles was mod-
ulated by force direction. Figure 3 illustrates the modulation of
the activity of 17 arm muscles recorded in subject 8 as a function
of the azimuth of the force target on three different horizontal
planes (elevation angles: −29, 0, 29◦). For each muscle and target
elevation, the directional tuning of the mean activity during the
hold phase is illustrated by a polar plot in which the muscle activ-
ity is indicated by the radial distance of a marker in the direction
of the target azimuth. Most muscles showed a directional tuning
resembling the tuning expected by a spatial cosine function. For
muscles with a preferred direction vector of the best fitting spatial
cosine function lying close to the horizontal plane (e.g., TrapMid
and PectStern), their azimuth directional tuning resembles a circle
tangent to the origin. For muscles with a large vertical compo-
nent in their preferred direction (e.g., BicLong, BicShort, TriLong,
TriLong, and TriMed), the dependence of their activation on ele-
vation is evident in the different radii of the circles. One muscles
(BracRad) had a very narrow and non-significant spatial cosine
tuning (p = 0.14). Other muscles had a significant (p < 0.05) but
poor (R2 value of the cosine fit less than 0.5) spatial cosine tun-
ing (TeresMaj, LatDors, TrapInf, and TrapSup). Across subjects,
0.9 ± 0.3 (mean ± SD) muscles had a non-significant (p > 0.05)
spatial cosine tuning and 3.2 ± 1.8 a poor fit (R2 < 0.5).

MUSCLE SYNERGIES
We decomposed the muscle patterns recorded during the hold
phase as combinations of muscle synergies identified by the NMF
algorithm. Across subjects (Figure 4) the number of synergies
selected according to a threshold either in the fraction of the
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FIGURE 2 | Examples of raw EMG and force data. Data were recorded
during three trials of subject 8 with targets at 20% MVF along the positive Fx

axis (first column, target 16 in Figure 1), the positive Fy axis (second column,

target 18 in Figure 1), and the positive Fz axis (third column, target 32 in
Figure 1). The vertical dashed lines indicate the beginning and the end of the
hold phase.
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and corresponds to the radius of the dashed circle. The direction of each
marker represents the direction of the horizontal force components, its radius
the average EMG activity when holding the target in that direction. Markers
are interpolated by splines in polar coordinates.

total data variation explained by the synergies (R2) or in the
mean squared error of a linear fit of the final portion of the R2

curve (see Materials and Methods) ranged from 6 to 7 (6.4 ± 0.5,
mean ± SD). The corresponding R2 values ranged from 0.90
to 0.95 (0.93 ± 0.01). Thus, a small number of synergies cap-
tured the modulation of activity in many arm muscles across
directions and magnitudes of isometric force generated at the
hand. Figure 5A shows the six synergies identified in the mus-
cle patterns of subject 8. Each synergy has a different balance
of activation across muscles, with some muscles more strongly
active than others (TrapMid, DeltM, and DeltP in W1, TerMaj,
LatDors, TrapInf, TrapMid, TriLong, DeltP, and PectMajStern in

W2, TriLat, TriLong, TriMed, DeltM and DeltP in W3, InfraSp and
TrapSup in W4, BicLong and BicShort in W5, TerMaj, PectStern,
and PectClav in W6) and with many muscles recruited in multiple
synergies.

Synergy activation coefficients were in most cases also well
captured by a spatial cosine function. The directional tuning
of the activation coefficients of the six synergies of subject 8
(Figure 5B) was always significant (p < 0.0001) and well recon-
structed by a cosine fit (R2 > 0.5). Across subjects, only subject 6
had 4 out of 7 synergy activation coefficients not well fitted by a
cosine functions (p = 0.40, 0.22, 0.05, 0.05) while all other sub-
jects had a significant (p < 0.05) spatial cosine tuning. Across all
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FIGURE 4 | Selection of number of synergies. The number of synergies (N)
is chosen for each subject as (i) the smallest N for which the R2 value (blue
markers and line) was larger than 0.9 (red dashed line) or (ii) the point at
which the R2 vs. N curve had a change in slope [MSE of linear fit from N to

max(N) below 10−4, green dashed line]. In case of mismatch between the
two criteria, the set of synergies with smallest number of similar preferred
directions was selected (red/green marker, smallest number of synergy pairs
with an angular difference between preferred direction below 20◦).
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FIGURE 5 | Example of muscle synergies and directional tuning of

activation coefficients. (A) Six synergies (W1–W6) identified by NMF
from the filtered and time-averaged EMGs of subject 8 recorded during
the hold phase of all trials. The bar plot in each column (color coded)

shows the components of one synergy vector, normalized to its
maximum. (B) Directional tuning (polar plot as in Figure 3) of the
synergy activation coefficients for force targets on three horizontal
planes.
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subjects, only 1.2 ± 1.7 synergy activation coefficients had a poor
fit (R2 < 0.5).

EMG-TO-FORCE MATRIX AND SYNERGY DIRECTIONAL TUNING
As in previous studies of muscle activation during isometric force
production (Osu and Gomi, 1999; Valero-Cuevas et al., 2009),
we modeled the mapping between EMGs and sub-maximal mag-
nitude (20% MVF) end-point force linearly. An EMG-to-force
matrix (H) was estimated with multiple linear regressions of the
mean EMG and forces recorded in the hold phase for each sub-
ject. Figure 6A illustrates force vectors associated to the activation
of each muscle (columns of H) for subject 8. These force vec-
tors in most cases matched the pulling directions of the muscles
expected from their anatomical configuration. For example, on
the horizontal plane (left), BracRad (elbow flexors) and TeresMaj
(shoulder internal rotator and adductor) were associated to dor-
sally directed (negative Fy) forces, TriMed (elbow extensors) to
a ventrally directed (positive Fy) force, PectClav and PectStern
(shoulder flexors) to medially directed (negative Fx) forces, and
DeltM (shoulder abductor) to a laterally directed (positive Fx)
force. On the sagittal plane (middle), DeltA (shoulder adductor),
InfraSp (shoulder external rotator), and PectClav showed a large
rostral (positive Fz) and ventral force, BracRad a large rostral
and dorsal force, TeresMaj a large caudal (negative Fz) and dorsal

force, and TriMed a large caudal and frontal force. In the frontal
plane (right) the two portions of pectoralis major showed dis-
tinct rostro-caudal (Fz) components. Across subjects, the forces
recorded during the hold phase were reconstructed accurately by
the product of the EMG-to-force matrix times the recorded EMGs
(R2 = 0.89 ± 0.02, mean ± SD, n = 8, for the reconstruction of
the individual force samples in all trials; R2 = 0.97 ± 0.01 for the
reconstruction of the force averaged across time and trials to the
same target by averaged EMGs).

We also estimated the force associated to the activation of indi-
vidual muscle synergies by multiplying the EMG-to-force matrix
with the synergy matrix (columns of the HW matrix, Figure 6B).
Each synergy had a distinct force direction in space. W1 was asso-
ciated to a lateral force, W2 to a dorso-caudal force, W3 to a
ventro-caudal force, W4 to a ventro-rostral-lateral force, W5 to
dorso-rostral force, and W6 to a medial force. However, with
respect to individual muscle forces, there were larger angular
differences between individual synergy force directions.

MUSCLE ACTIVATIONS PREDICTED BY MINIMUM EFFORT CRITERIA
We compared the muscle activation observed in all force direc-
tions with those predicted by minimizing either muscle effort
or synergy effort. Examples of the directional tuning curves on
the horizontal force plane (polar plot, left) and for all directions
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FIGURE 6 | Example of spatial forces associated to muscle and synergies.

(A) The EMG-to-force matrix H (left: projections of the columns of H on the
Fz = 0 plane, middle: projection on the Fx = 0 plane, right: projection on the

Fy = 0 plane) estimated by linear regression of EMG and force data for subject
8. (B) Forces associated to the synergies (columns of the matrix obtained by
multiplying the EMG-to-force matrix H by the synergy matrix W ) of subject 8.
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(right) of three muscles (InfraSp, TrapMid, and DeltM) of sub-
ject 8 are illustrated in Figure 7. In all three cases the predicted
tuning curves peak in same directions as the observed curves
but in some cases they do not fit well the whole curve. For
InfraSp (first row), the minimum muscle effort curve underesti-
mates the observed curve and the minimum synergy effort curve

overestimates it. For TrapMid (second row), muscle effort min-
imization predicts a very weak activation while the minimum
synergy effort prediction closely matches the observed data. For
DeltM (third row), the minimum synergy effort prediction again
matches the observed data while the minimum muscle effort pre-
diction overestimates them. These differences between the two
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FIGURE 7 | Examples of directional tuning of muscle activation observed

and predicted by minimum effort criteria. Muscle activations for three
muscles of subject 8 are illustrated. Left: Polar plots of the directional tuning
on the horizontal force plane (Fz = 0, targets 13–20). EMG activity,
normalized to the MVC value of each muscle, is averaged during the hold
phase. Dashed circles represent the normalized activity indicated by the

label. Right: Average EMG activity for all 32 targets. Blue markers and lines
(interpolating the markers with spline curves in polar coordinates) represent
experimental data, green markers and lines (interpolating the markers with
spline curves with negative values set to zero) represent predictions
according to the linear EMG-to-force model with the minimum muscle effort
criterion, red markers and lines with the minimum synergy effort criterion.
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predictions depend on how the forces associated to the mus-
cles (the columns of the H matrix, Figure 6A) and the synergies
(Figure 6B) can be combined to minimize effort. For example,
the minimum muscle effort criterion predicts an activation of
TrapMid much weaker than the minimum synergy effort crite-
rion because the minimum muscle norm solution is achieved
by recruiting more strongly other muscles with a pulling direc-
tion close to that of TrapMid but with a larger forcer magnitude
(in particular BracRad, see Figure 6A). In contrast, TrapMid has
a stronger activation with the minimum synergy norm solution
because it is recruited within W1 (see Figure 5) and no other
synergies can generate forces in the medial-dorsal direction with
small activations.

Across subjects, we noticed that the mean residual of the min-
imum muscle effort prediction over all muscles and targets was
always negative (sign test, p < 0.0001 for all subjects, see green
bars in Figure 8A) and that the mean residual of the minimum
synergy effort prediction was always positive (p < 0.01 for all
subjects except subject 6, red bars in Figure 8A). Thus, the mini-
mum muscle effort criterion underestimated the observed muscle
activations and the minimum synergy effort criterion overesti-
mated them. The minimum muscle effort underestimation corre-
sponds to a larger than minimal amount of co-contraction in the
observed muscle patterns. Indeed, the amount of co-contraction,
quantified by the mean Euclidian norm of the projection of
the muscle patterns onto the null space of the EMG-to-force
matrix, was significantly higher for the observed data than for the
minimum muscle effort prediction (sign test, p < 0.0001 for all
subjects; mean ± SD across subjects: 0.16 ± 0.04 for the data and
0.09 ± 0.02 for the prediction). The mean null space norm for the
minimum synergy effort criterion (mean ± SD across subjects:
0.19 ± 0.04) was higher than the mean norm for the minimum
muscle effort criterion but also slightly higher than the mean
norm for observed data (sign test, p < 0.05 for subjects 2, 4, 5, 7,
and 8) possibly due to inaccuracies in the estimation of the EMG-
to-force matrix. Finally, we found that the residuals for many
muscles were not normally distributed. Across subjects, the resid-
uals of the minimum muscle effort prediction of the activation
of individual muscles had a distribution over different targets sig-
nificantly different from the normal distribution (Lilliefors test,
p < 0.05) in 62% of cases (84 cases over 17 muscles in 8 subjects)
for the minimum muscle effort model and in 31% of cases for the
minimum synergy effort model. However, we could not discern
any clear pattern in the residuals.

We then compared the prediction error magnitudes. We found
that the mean squared residual of the minimum synergy effort
prediction was lower than the mean squared residual of the
minimum muscle effort prediction (Figure 8B). The difference
of the squared residual, averaged across muscles and targets,
between the two criteria was significant (Wilcoxon rank-sum test,
p < 0.0001, n = 8). To assess the significance of these results
we compared, for each subject, the mean squared residual of
the minimum synergy effort prediction with the distribution
of the mean squared residual obtained applying the minimum
effort criterion on random synergies. We performed a Monte
Carlo simulation, generating, for each subject, random synergies
either randomly shuffling the EMG data or performing NMF on
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FIGURE 8 | Model prediction error. (A) Mean ± SE of the residual, over
muscles and force targets, of the minimum muscle effort prediction (green
bars) and the minimum synergy effort prediction (red bars) for all subjects.
(B) Mean ± SE of the squared residual, over muscles and force targets, of
the minimum muscle effort prediction (green bars) and the minimum
synergy effort prediction (red bars) for all subjects. (C) Comparison of the
R2 values for the synergy reconstruction (black bars) and the model
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randomly shuffled EMG data. We found that the mean squared
residual obtained with the synergies extracted from the data was
much smaller than the residuals obtained with both types of ran-
dom synergies in all subjects (empirical p < 0.005), indicating
that the value of the mean squared residual of the minimum
synergy effort prediction was not simply due to the small num-
ber of synergies but depended on the actual structure of the
synergies.

Finally, we compared the squared prediction error of the two
models with the reconstruction error of the synergies. For all
subjects, the fraction of the variation of the muscle patterns
across force targets, averaged over repetitions to the same tar-
get, explained by the combinations of the synergies (Figure 8B,
black bars, R2 = 0.95 ± 0.01, mean ± SD) was much higher
than the fraction explained by both models. However, the min-
imum muscle effort model had a smaller R2 value (green bars,
0.02 ± 0.20) than the minimum synergy effort model (red bars,
0.65 ± 0.10).

DISCUSSION
We investigated muscle patterns underlying the generation of
isometric force at the hand along 32 uniformly distributed
directions in tri-dimensional space. Across subjects, the direc-
tional tuning of most muscles was well captured by a spatial
cosine function and muscle patterns for all force targets could
be reconstructed by the combinations of 6 or 7 muscle syn-
ergies identified by NMF. We then estimated the force asso-
ciated to muscle activation by multiple linear regressions and
we used such linear mapping to predict the minimum mus-
cle effort and the minimum synergy effort muscle patterns for
each force target. We found that the prediction error with both
minimum effort criteria was larger than the synergy reconstruc-
tion error but the error obtained minimizing the synergy effort
was significantly smaller than the error obtained minimizing
muscular effort. These results suggest that the CNS recruits sub-
optimal combinations of muscle synergies to generate isometric
forces.

The estimation of the mapping between muscle activity and
isometric force at the hand was necessary to predict the minimum
effort muscle patterns for a given force target. We approximated
such mapping during the generation of a static isometric force
(hold phase) as a linear transformation between rectified, low-
pass filtered, MVC-normalized EMGs and low-pass filtered forces.
We could then estimate an EMG-to-force matrix by linear regres-
sion of the force components as a function of the activity of
all recorded muscles. The assumption of linearity is reasonable
when the posture does not change and generated forces are
much smaller than the MVF (Lawrence and De Luca, 1983),
as in our case. Linear models have been used before to pre-
dict isometric forces from EMG recordings (Valero-Cuevas et al.,
2009) and minimum effort muscle patterns (Fagg et al., 2002).
However, our linear approximation of the mapping between
muscle activity and force may have contributed to the model
prediction error. Qualitatively the muscle pulling directions esti-
mated by multiple linear regressions appeared compatible with
the directions expected from the known anatomical arrange-
ment and mechanical action of the muscles. A quantitative

evaluation of the EMG-to-force matrix obtained with our sim-
ple procedure might be possible by comparing such matrix
with one derived using a detailed musculoskeletal model of
the arm (Holzbaur et al., 2005) but such comparison is chal-
lenging because of the many subject-specific anatomical and
physiological parameters that need to be determined in order
to generate reliable predictions with a musculoskeletal model.
Thus, we believe that our simplifying assumptions are adequate
for the purpose of comparing the two minimum effort crite-
ria, since both minimizations rely on the same EMG-to-force
matrix.

A second concern with our approach is the selection of the
number of synergies. We used two criteria frequently used in the
muscle synergy literature (Tresch et al., 2006; Delis et al., 2013):
the total variation accounted by the synergies (synergy recon-
struction R2) (Tresch et al., 1999; Torres-Oviedo et al., 2006) and
the detection of a change in slope in the R2curve (d’Avella et al.,
2003; Cheung et al., 2005). In case of discrepancy between the two
criteria we selected the number of synergies with a more uniform
distribution of the preferred directions of the synergy activation
coefficients. Both criteria depend, however, on ad-hoc thresholds
and thus, while they ensure a meaningful comparison across sub-
jects, they cannot guarantee that the correct number of synergies
is selected. In a recent study of the muscle synergies underlying
force production in a task similar to ours (Roh et al., 2012), a
smaller number of synergies has been reported (3–5). Such dif-
ference may be due to the smaller number of muscles recorded
in that study (8 vs. 17 in ours) and to the different definition of
variance accounted for (VAF). As muscle patterns are multidi-
mensional observations, we referred the synergy reconstruction
error to the total variation (Mardia et al., 1979) of the muscle
patterns, i.e., the multidimensional generalization of the variance
of a scalar observation, and we defined R2 = 1− SSE/SST, with
SSE the sum of the squared residual and SST as the sum of the
squared residual with respect to the mean muscle pattern, pro-
portional to the total variation (d’Avella et al., 2006; Delis et al.,
2013). Roh and colleagues, in contrast, defined VAF = 100 × (1 −
SSE/SST), with SST sum of the squared data, i.e., without sub-
tracting the mean muscle pattern. As a consequence such VAF
value is higher than the R2 value for the same number of syn-
ergies and a smaller number of synergies are selected with the
same threshold (90%). When we performed the same analysis of
Roh and collaborators on our data, using the same 8 muscles,
we found a comparable number of synergies (3–5). Notably, a
minimum number of 4 synergies is required to generate forces
in all spatial directions by non-negative combinations (Davis,
1954).

A number of previous studies have investigated whether the
observed muscle patterns can be the result of effort minimiza-
tion. Buchanan and Shreeve (1996) used models of the mus-
cles about the elbow (11 muscles) and wrist (5 muscles) to
compare the observed directional dependence of muscle activa-
tion with the prediction from the minimization of several cost
functions, including sum of muscle force, stress, and normal-
ized force (Buchanan and Shreeve, 1996). The choice of cost
function had little influence on the results and all cost func-
tions were not able to reliably estimate muscle activation as a
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function of force direction, even if predictions at the wrist were
more favorable than those at the elbow due to the smaller num-
ber of muscles and degrees-of-freedom. A sensitivity analysis
indicated that the discrepancies between predicted and observed
values could not be explained by errors in the physiological
parameters of the models, calling into question the applicabil-
ity of optimization analysis to study such tasks. Our results
are in accordance with those observations and extend them to
the generation of hand forces by a larger number of muscles
acting at the elbow and the shoulder. Moreover, the larger pre-
diction errors that we obtained minimizing muscle effort with
respect to synergy effort suggest that the synergistic recruit-
ment of muscles contributes to the sub-optimal co-activation of
muscles.

Investigating wrist movements, Fagg and colleagues showed
that minimizing effort, defined as we did as the sum of squared
muscle activations, yields muscle activation patterns qualitatively
similar to those observed experimentally, in particular, repro-
ducing the observed cosine-like recruitment of the muscles as a
function of movement direction and also appropriately predicting
that certain muscles will be recruited more strongly in movement
directions that differs significantly from their direction of action
(Fagg et al., 2002). While our model predictions also reproduced
cosine-like recruitments and qualitatively similar directional tun-
ing curves in several muscles, in many cases we did observed
qualitative and substantial discrepancies between predicted and
observed muscle activations. Such poorer model performance
may be due, as observed by Buchanan and Shreeve, by the larger
number of muscles and degrees-of-freedom considered in our
study.

A recent study used a static quadrupedal musculoskeletal
model of the cat to predict limb forces and muscle activity in
response to multidirectional postural perturbations while mini-
mizing different formulations of control effort, including muscle
and synergy effort (McKay and Ting, 2012). Patterns of mus-
cle activity producing forces and moments at the center of mass
necessary to maintain balance and the resulting ground reaction
forces predicted by the models were compared to experimental
data. Limb forces at different stance distances were well pre-
dicted by both minimum-effort solutions. Muscle tuning direc-
tions were found to be invariant across postural configurations,
similar to experimental data, but the quality of the muscle pat-
tern predictions were not quantified and there also appeared
to be discrepancies (see their Figure 8), especially for the mini-
mum muscle effort solution (e.g., no activity predicted in biceps
femoris and gracilis), matching our observations in the human
arm. McKay and Ting concluded that reduced-dimension neu-
ral control mechanisms, such as muscle synergies, can achieve
similar kinetics to optimal solutions, demonstrating the feasi-
bility of muscle synergies as physiological mechanisms for the
implementation of near-optimal motor solutions. In our study
we could not assess kinetics predictions, as the generation of
a specific force target was a constraint in the optimization.
However, our analysis of muscle pattern predictions also sup-
ports the conclusion that three-dimensional forces are gener-
ated as near- or sub-optimal motor solutions by muscle synergy
combinations.

The fact that the observed muscle activation patterns did not
minimize muscle or synergy effort does not rule out the possi-
bility that they minimized some other cost. The additional co-
contraction inherent in the non-minimal effort solutions might
be related to an increase in stiffness during the hold phase possi-
bly due to endpoint stability maximization (Franklin and Milner,
2003). Since the task was isometric, in principle there was no need
to increase endpoint stiffness to generate a target output force pre-
cisely. On the contrary, because of signal-dependent noise in force
production by muscle activation, the precision would decrease
with an increase in co-contraction. However, subjects had to con-
trol a moving cursor in a realistic virtual environment and they
might have adopted a control strategy usually employed when
required to generate a force while maintaining a freely mov-
ing endpoint, typically a tool, close to a fixed position. In those
conditions an increase in stiffness associated to an increase in co-
contraction would be an appropriate control strategy to achieve
higher positional stability at the cost of an additional muscu-
lar effort. Thus, as suggested in recent studies, the CNS might
adopt habitual rather than optimal (de Rugy et al., 2012) or locally
rather globally optimal (Ganesh et al., 2010) muscle coordination
strategies.

Whether muscle synergies are organized by the CNS to sim-
plify motor control and motor learning (Giszter et al., 2007;
Bizzi et al., 2008; d’Avella and Pai, 2010; Bizzi and Cheung,
2013; d’Avella and Lacquaniti, 2013) or they are results from
biomechanical and task constraints (Todorov and Jordan, 2002;
Kutch et al., 2008; Kutch and Valero-Cuevas, 2012) is a con-
troversial issue (Tresch and Jarc, 2009). Evidence for muscle
synergies as neural control strategies has come mainly from the
low-dimensionality in the muscle patterns recorded during a
variety of behaviors and task conditions and across different
species (Tresch et al., 1999; d’Avella et al., 2003, 2006, 2008, 2011;
Krishnamoorthy et al., 2003; Hart and Giszter, 2004; Ivanenko
et al., 2004, 2005; Cheung et al., 2005; Ting and Macpherson,
2005; Overduin et al., 2008; Muceli et al., 2010; Dominici et al.,
2011; Chvatal and Ting, 2013; D’Andola et al., 2013; Gentner
et al., 2013), from neural recordings and stimulation (Saltiel et al.,
2001; Ethier et al., 2006; Gentner and Classen, 2006; Gentner
et al., 2010; Hart and Giszter, 2010; Overduin et al., 2012), and,
recently, from the observation that adaptation to a perturbation
of the normal mapping between muscle activity and force, simu-
lated in a virtual environment using myoelectric control, is slower
when the perturbation is not compatible with the synergies than
when it is (Berger et al., 2013).

Two recent studies (Kutch et al., 2008; Kutch and Valero-
Cuevas, 2012) have argued against the neural origin of the muscle
synergies involved in the generation of isometric forces. In a first
study, Kutch and colleagues compared the directional dependence
of the covariance of the force fluctuations observed experimen-
tally during the generation of planar isometric forces with the
index finger with the directional dependence predicted by either
a minimum synergy effort model of a minimum muscle effort
model (Kutch et al., 2008). They argued that, if individual muscles
are activated flexibly and the force they generate is affected by
signal-dependent noise (Harris and Wolpert, 1998), the force gen-
erated in the direction of action of an individual muscle must

Frontiers in Computational Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 186 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Borzelli et al. Muscle synergies for isometric force generation

show a covariance ellipse elongated in the direction of the force.
In contrast, if muscles are recruited within fixed synergies, mul-
tiple muscles are always activated simultaneously and the force
covariance must be on average less elongated in the direction
of the target force. For isometric forces generated by the index
finger on a plane, the observed force covariance directness was
found to be more in agreement with the directedness predicted by
minimum muscle effort than the directedness predicted by min-
imum synergy effort. However, we wonder whether the results
of Kutch and colleagues depended on the fact that the syner-
gies used in their calculation were not extracted from the data
but generated randomly, while the directedness of the synergy
model was evaluated only in three fixed directions correspond-
ing to the peak values of the directedness of the data. We plan to
test the directedness of the force covariance of three-dimensional
forces generated at the hand by several arm muscles in a
future study.

In a more recent study, Kutch and Valero-Cuevas studied the
generation of isometric forces by actuation of the tendons of
a cadaveric index finger and with a model of the human leg
(Kutch and Valero-Cuevas, 2012). They argued that, if the set
of all possible muscle coordination patterns that produce any
single endpoint force vector are themselves a low-dimensional
subset, the observed low-dimensionality of the muscle patterns
could be misinterpreted as neurally-generated muscle syner-
gies. Principal component analysis was performed on the set
of all vertices of the solution set in muscle activation space
for 16 planar force directions, identified with computational
geometry techniques using the linear muscle-to-force mapping
derived experimentally or from the model. The dimensional-
ity of all possible coordination patterns resulted indeed lower
than the number of muscles, thus, providing an assessment of
the upper limit imposed by biomechanics, but, at least for the
leg model, higher than the dimensionality typically observed
in the data. Thus, such biomechanical limit to dimensional-
ity should be directly compared to the dimensionality extracted
from experimentally observed muscle patterns, as we also plan
to do, to draw any conclusion on the neural origin of muscle
synergies.

In conclusion, we have demonstrated that muscle patterns
underlying the generation of three-dimensional forces can be
reconstructed accurately by the combination of a small num-
ber of muscle synergies but they could not be predicted
accurately by either minimization of muscle effort or syn-
ergy effort. However, the minimum synergy effort model fit-
ted the experimental data much better than the minimum
muscle effort model, suggesting that the CNS generates three-
dimensional forces by sub-optimal recruitment of muscle
synergies.
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