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Abstract

Background: Tactile imaging provides biomechanical mapping of soft tissues. Objective 

biomechanical and anatomical assessment of critical structures within the vagina and pelvis may 

allow development and validation of a clinical tool that could assist with clinical decisions 

regarding obstetrical procedures and mode of delivery. Objective: To assess intraobserver 

reproducibility of measurements of perineal elasticity and pubic bone-perineal critical distance 

with a novel tactile probe in pregnant women.

Methods: An Antepartum Tactile Imager (ATI) was designed with a vaginal probe resembling a 

fetal skull. The probe comprises 128 tactile sensors on a double curved surface and measures 46 

mm in width and 72 mm in length. The probe has a motion tracking sensor that allows acquisition 

of 3D tactile images. There were two arms of the study. In the first arm, biomechanical mapping of 

the perineum and pelvic bone location was performed in 10 non-pregnant women for purposes of 

demonstrating safety and feasibility. In the second arm, biomechanical mapping was performed in 

10 pregnant women to explore intraobserver reproducibility. Each subject had two standardized 

examinations over 3 – 5 minutes by the same observer. Examination comfort and pain levels were 

assessed by post-procedure survey. Reproducibility was analyzed by intraclass correlation 

coefficients (ICC) with 95% confidence intervals and Bland-Altman plots. Bias and the 95% limits 

of agreement were also calculated.

Results: The safety and feasibility arm of the study demonstrated high degree of safety and 

tolerability and reliable acquisition of tactile signals. In the reproducibility arm, 10 pregnant 

women were recruited at mean gestational age of 34.2 ± 6.5 weeks. The mean perineum elasticity 

(Young’s modulus, E) was 9.8 ± 5.9 kPa, and the mean pubic bone-perineal critical distance (D) at 

20 kPa load was 34.6 ± 6.2 mm. The ICC was 0.97 [95% confidence interval (CI) 0.91, 0.99] and 
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0.82 [CI 0.44, 0.95] for E and D respectively, consistent with excellent intrarater agreement. The 

bias and the 95% limits of agreement of E were −6.3% and −29.4% to +16.7%, respectively. The 

bias and the 95% limits of agreement of D were −2.6% and −25.3% to +20.2%, respectively.

Conclusions: The tactile imaging data obtained in the study reproducibly characterized perineal 

elasticity and pubic bone-perineal critical distance. Further evaluation of this tool in clinical 

settings is warranted.
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1. Introduction

Dramatic changes in the mechanical properties of pelvic tissues take place antepartum to 

facilitate fetal delivery [1] [2] [3] [4]. Despite this, over 85% of women suffer obstetric 

trauma to one or several components of the pelvic floor, including the vagina, perineal body, 

levator ani muscles, and the anal sphincter complex [5]. Birth injury to these integral 

structural components leads to pelvic pain and dyspareunia and serves as a potentially 

modifiable risk factor for subsequent pelvic floor disorders [6] [7]. Unfortunately, there are 

no effective strategies to prevent perineal damage at the time of delivery beyond elective 

cesarean delivery, which is associated with potential short-term risks and long-term 

consequences [8] [9] [10] [11].

Human and animal studies show that several adaptations during pregnancy may reduce 

potential injury, including increased laxity of pelvic connective tissues and ligaments, 

increase in genital hiatal area, and alterations in the pelvic floor muscles [1] [2] [3]. 

Computational models of human parturition demonstrate that mechanical changes in one 

pelvic component may impact the susceptibility to injury of other pelvic structures [12]. 

However, the protective effect of pregnancy-induced alterations is variable. Therefore, 

quantification and knowledge of biomechanical tissue properties of critical pelvic 

components may allow practical prediction of behavior under applied stress during delivery 

and obstetrical procedures.

A new device, the Antepartum Tactile Imager (ATI), was designed to characterize perineal 

elasticity and pubic bone-perineal critical distance. The objective of this study was to assess 

safety, feasibility, and reproducibility of tactile measurements using this device. In this two-

armed study, the feasibility and safety of the ATI was assessed with a cohort of non-pregnant 

women. Subsequently, an intraobserver reproducibility study was performed in 10 pregnant 

women.

2. Materials and Methods

Study Design

This study was performed from March 2019 to January 2020. The safety arm was performed 

in non-pregnant women from March to June 2019, and the reproducibility arm was 
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performed in pregnant women from December 2019 to January 2020. This observational 

study (clinical trials identifiers NCT03883867) was approved by the Western Institutional 

Review Board (#20183400) and the Institutional Review Board of Rutgers Robert Wood 

Johnson Medical School (#Pro2018002747). Written informed consent was obtained for 

each patient prior to study enrollment.

Safety and Feasibility Arm

The study arm was performed in non-pregnant women as required by the Code of Federal 

Regulations, Title 45, §46.204(a). The arm included 10 non-pregnant women who were 

recruited at a private urogynecology office. Inclusion criteria were adult women, age 21+ 

years, with negative urine pregnancy tests and at least one prior vaginal delivery. Exclusion 

criteria were prior perineal surgery; HIV or hepatitis B positive serology; warty lesions on 

the vulva; extensive varicose veins on the vulva; active skin infection or ulceration within the 

vagina/vulva (e.g. Herpes infection); presence of a vaginal septum; and severe hemorrhoids.

During the examination, patients were placed in the dorsal lithotomy position. The ATI 

probe was covered by a disposable plastic sheath with a water based lubricant. The probe 

was inserted in the vagina until the sensing surface was internalized, approximately 55 mm. 

The probe was pushed downward to a maximum pressure load up to 20 kPa. Three 

orthogonal projections of the 3D vaginal pressure map with real-time ATI probe location 

was observed by the operator. The complete examination lasted 3 – 5 minutes.

Patients were queried about pain and comfort after the examination. Subjects were assessed 

about pain using a 4-point Likert scale with 1 = no pain, 2 = mild pain, 3 = moderate pain, 

and 4 = severe pain. The comfort level was assessed using a second 3-point Likert scale with 

1 = more comfortable than manual palpation, 2 = as comfortable as manual palpation, and 3 

= less comfortable than manual palpation.

Reproducibility Arm

The reproducibility arm included 10 pregnant women who were approached at a regional 

perinatal center. Inclusion criteria were adult women, age 21+ years, who completed 35+ 

weeks’ gestation, had at least one vaginal delivery, and were planned for a trial of labor. 

Exclusion criteria were the same in the safety arm of the study. In addition, subjects were 

excluded in cases of a fetal demise or congenital abnormalities of the fetus.

The tactile examination and the pain and comfort assessments were the same as described 

above. Demographic data, including participants’ age, parity, weight, and gestational age 

were collected. Delivery data, including mode of delivery, perineal laceration, and neonatal 

birth weight were also collected.

Antepartum Tactile Imager (ATI)

The ATI was designed as a cart-based device with a medical grade touchscreen computer 

(Tangent, CA) and a detachable vaginal probe (Figure 1). The ATI probe contains a tactile 

array with 128 sensors on a double curved surface resembling a fetal skull. The probe’s 

dimensions are 46 mm in width and 72 mm in length, curvature radius of 60 mm in 
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transverse and 102 mm in sagittal cross-sections, a rectangular sensing area of 26 mm by 55 

mm. The probe has a 6 degree-of-freedom electromagnetic motion tracking sensor 

(Polhemus, Inc., VT), which allows acquisition of 3D tactile images. The referenced motion 

sensor was placed under the seat of a custom designed examination chair to eliminate 

interference for electromagnetic tracking. Biomechanical mapping of the pelvic tissues/

structures was performed with attention to the perineum and pubic symphysis location.

Proprietary data processing software was used to calculate perineal elasticity and anatomical 

distance from the pubic bone and perineal surface, termed the pubic bone-perineal critical 

distance, at 20 kPa load by the ATI probe. The ATI has quantified perineal elasticity using 

Young’s modulus, which is calculated from spatial gradients in the resulting 3D tactile 

images with the use of a non-linear model for the tissue [13]. This approach was validated 

with multiple pelvic floor models built with two-component silicone (GE Silicones, NY) 

[14].

Statistical Analysis

Descriptive statistical calculations were performed to ascertain the mean and standard 

deviations for perineum elasticity (E) and pubic bone-perineal critical distance (D). 

Intraclass correlation coefficients (ICC) were calculated for these measurements with 95% 

confidence intervals (CI) [15]. In addition, the following parameters were calculated as 

described by Bland and Altman [16]: 1) bias [i.e., the mean of the proportionate difference 

(the difference between two elasticity measurements divided by the average value of two 

measurements)]; and 2) 95% limits of agreement (i.e., 1.96 times the standard deviation of 

the mean of the proportionate difference). Statistical analysis was performed with STATA 

version 10.1 (StataCorp LP, TX) and MATLAB version R2018a (MathWorks, MA).

3. Results

Feasibility and Safety Arm

The study with 10 non-pregnant women demonstrated reliable acquisition of tactile signals 

and composition of 3D tactile images. The imaging post-processing allowed calculation of E 

and D for each case. The mean E was 10.4 ± 2.5 kPa, and the mean D was 19.6 ± 6.1 mm. 

The pain and comfort assessments revealed a high degree of tolerability. Patients reported 

that the vaginal tactile imaging was minimally painful (rated 1.7 ± 0.8) and similar to 

manual palpation (rated 2.2 ± 0.8). No adverse events were reported.

Reproducibly Arm

10 pregnant women were recruited for the reproducibility arm. ATI measurements were 

performed at a mean gestational age of 36.8 ± 0.6 weeks. All patients were multiparous and 

met the study’s inclusion criteria. Demographic characteristics and birth outcomes are listed 

in Table 1. No adverse events were reported.

The mean E was 9.8 ± 5.9 kPa, and the mean D was 34.6 ± 6.2 mm. Figure 2 illustrates the 3 

orthogonal projections of the 3D vaginal pressure map with real-time ATI probe location 
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that was captured by the observer in case #6, which was accompanied by a second degree 

perineal laceration at vaginal delivery.

The ICC for E was 0.97 [95% CI 0.91, 0.99], which indicates excellent intrarater agreement. 

The bias and the 95% limits of agreement of E measurement are −6.3% and −29.4% to 

+16.7%. The ICC for D measurement was 0.82 [95% CI 0.44, 0.95], which also indicates 

excellent agreement. The bias and 95% limits of agreement of the D are −2.6% and −25.3% 

to +20.2%. These results are illustrated graphically in Figure 3 and Figure 4.

The pain and comfort assessments revealed a high degree of tolerability. Patients reported 

that the vaginal tactile imaging was minimally painful (rated 1.7 ± 0.7) and similar to 

manual palpation (rated 1.9 ± 0.7).

4. Discussion

Principal Findings

In this study, we assessed the feasibility, safety, and reproducibility of the ATI, a novel 

vaginal tactile imager, in a cohort of 10 non-pregnant women and 10 pregnant women. In the 

feasibility and safety arm, the ATI demonstrated reliable acquisition of tactile signals and 

composition of 3D tactile images and patients reported pain and comfort assessments 

consistent with a high degree of tolerability. In the reproducibility arm, the ATI 

characterized perineum elasticity and pubic bone-perineal critical distance with excellent 

intrarater agreement.

Results of the Study in Related Context

In general, elasticity imaging is based on generating stress in the studied tissue in vivo using 

various static or dynamic means and assessing the resulting strain by ultrasound, MRI [17]–

[27] or measurement through tactile imaging [28] [29] [30]. At present, there is no 

ultrasound probe capable of stress-strain quantitative assessment of the entire birth canal. 

The ultrasound strain, as well as shear wave elastography, can measure the elasticity in only 

specifically defined local regions at a time. The results of the current research demonstrate 

that tactile imaging allows acquisition of 3D stress-strain data and elasticity assessment of 

the perineum.

Despite the obvious fact that vaginal delivery is a biomechanical process, currently there are 

no tools in clinical practice that can measure the biomechanical properties of pelvic tissue in 

women before delivery [31] [32] [33] [34]. We previously reported our experience with the 

Vaginal Tactile Imager (VTI), which was developed as a biomechanical mapping device to 

assess vaginal and pelvic floor conditions [30]. The VTI vaginal probe has an elongated 

linear design with a 96 linear sensor array on both sides of the probe [35] to allow 

acquisition of pressure patterns along the vaginal walls, but it does not have a 3D motion 

tracking system and has. The ATI has 3D imaging capability and double convex head with 

2D tactile sensor array to provide stress distribution to the perineum during the ATI 

measurement similar to the stress distribution during the delivery.
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Multiple computational models of vaginal birth have been developed [3] [12] [36] [37] [38] 

[39] [40]. While these models provide insight regarding the biomechanics of human 

parturition, they are limited by numerous assumptions, as mechanical tissue properties in 

late-pregnancy remain unknown. These models are often based on the data collected with 

cadaver tissues with the lack of muscle and tissue tone that, as a result, represent a potential 

source of significant inaccuracy in modeling in vivo deformation [41] [42] [43]. Some of 

these models used simplified boundary conditions and did not always consider the 

mechanical interaction between the fetal head and maternal pelvic tissues. Thus, to date, we 

cannot find a validated in vivo biomechanical model of vaginal delivery which could predict 

personalized delivery outcomes. The results of this study (and future planned exploration) 

may provide some of that missing data to be used in these computational models.

Research and Clinical Implications

This study is in the first exploratory stage of the project. A finite element model 

development and a validation study will follow to establish nomograms for perineum 

elasticity and pubic bone-perineal critical distance and to establish clinically significant cut-

points to guide clinical care and decision making. This new system may open a new 

technical capability in women’s health and change the established clinical practice. This 

approach may offer reliable causations between pelvic floor conditions, child size/weight on 

one side and delivery modes/delivery procedures and involved risk of injuries and their 

consequences on the other side.

Strengths and Limitations

The strength of this study lies in the novel approach for perineum characterization. The 

perineal elasticity receives quantification in terms of Young’s modulus from stress-strain 

data. Additionally, pubic bone-perineal critical distance was quantified. This distance 

predicts capability of the delivery canal to pass through the fetus at predefined level of 

strain. Both of these measures may be associated with perineal lacerations, and the results of 

our study justify further prospective evaluation in clinical practice.

The study has some limitations. While the study evaluated the intrarater agreement of ATI 

measurements, interrater reproducibility was not evaluated. This will be performed in future 

studies of the ATI. In addition, the study had a small sample size with limited power to 

evaluate the association between perineum elasticity and pubic bone-perineal critical 

distance on perineal lacerations. The intention of this study, however, was not to assess 

clinical outcomes, but rather to assess safety, feasibility, and reproducibility of the ATI rather 

than efficacy.

5. Conclusion

In this study, the safety, feasibility, and reproducibility of a novel device were evaluated. The 

results of this study demonstrated that the new vaginal probe was well tolerated by study 

participants and produced reproducible characterization of perineum elasticity and pubic 

bone-perineal critical distance, both factors that may be associated with perineal lacerations 

and pelvic floor injury. Further evaluation of the ATI in clinical settings is warranted.
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Figure 1. 
Antepartum tactile imaging probe.
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Figure 2. 
Three-dimensional tactile image of perineum elasticity and pubic bone-perineal critical 

distance. Three-dimensional tactile image acquired for a 34-year-old women at 37 weeks’ 

gestation. Attention was given to perineal elasticity and pubic bone-perineal critical distance 

at a 20 kPa load.
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Figure 3. 
Intraclass correlation coefficients. Intraclass correlation coefficients (ICC) for two 

measurements of perineum elasticity (a) and pubic bone-perineal surface distance (b) by the 

same operator.
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Figure 4. 
Bland-Altman scatter plots of difference between two measurements. Bland-Altman scatter 

plot of the percentage difference between two measurements of perineum elasticity (a) and 

pubic bone-perineal critical distance (b) by the same operator. The solid lines represent the 

proportionate mean difference; the dashed lines represent the 95% limits of agreement.
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Table 1.

Demographic variables and delivery data for 10 pregnant women in the reproducibility arm.

Variable N = 10

Age, years 33.5 ± 5.3

Gravida 3.7 ± 1.3

Para 1.3 ± 0.5

Gestational age at exam, weeks 36.8 ± 0.6

Intact perineum 6 (60)

Laceration

First 3 (30)

Second 1 (10)

Third/Fourth 0

Birthweight, grams 3274 ± 276

Data presented as mean ± standard deviation and N (percent).
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