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Abstract: Background: Heart rate (HR) during physical activity is strongly affected by the level of
physical fitness. Therefore, to assess the effects of fitness, we developed predictive equations to
estimate the metabolic equivalent (MET) of daily activities, which includes low intensity activities, by
% HR reserve (%HRR), resting HR, and multiple physical characteristics. Methods: Forty volunteers
between the ages of 21 and 55 performed 20 types of daily activities while recording HR and
sampling expired gas to evaluate METs values. Multiple regression analysis was performed to
develop prediction models of METs with seven potential predictors, such as %HRR, resting HR,
and sex. The contributing parameters were selected based on the brute force method. Additionally,
leave-one-out method was performed to validate the prediction models. Results: %HRR, resting HR,
sex, and height were selected as the independent variables. %HRR showed the highest contribution in
the model, while the other variables exhibited small variances. METs were estimated within a 17.3%
difference for each activity, with large differences in document arrangement while sitting (+17%),
ascending stairs (−8%), and descending stairs (+8%). Conclusions: The results showed that %HRR is
a strong predictor for estimating the METs of daily activities. Resting HR and other variables were
mild contributors. (201 words)

Keywords: physical activity intensity; physical fitness; %heart rate reserve; resting heart rate;
leave-one-out method

1. Introduction

Obesity and lifestyle diseases are worldwide problems [1]. Physical inactivity and/or low fitness
levels have an adverse effect on one’s health status, and contribute to chronic diseases such as diabetes
and cardiovascular diseases [2]. In modern society, daily activities such as commuting and housework
account for the majority of total energy expenditure (EE), far more than exercise [3,4]. Therefore, an
accurate measure of daily activities, especially its duration and metabolic intensity, would be crucial
both in assessing individual activity levels and in evaluating the independent effects of the daily
activities on health status in an epidemiological study.
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Recently, accelerometers and other devices with a variety of algorithms for estimating EE have
been expanded in the market. However, tri-accelerometers and other devices are still expensive, and
an accelerometer cannot measure specific activities, like ascending the stairs and carrying packages, at
present [5]. On the other hand, a heart rate (HR) monitor is a reasonable device and many products
with HR monitors are being developed. HR during physical activity has a strong correlation with the
level of physical fitness [6,7]. Therefore, HR monitors can predict EE during exercise if the prediction
equation is established for each individual. However, this method utilizing the prediction equation is
not useful for a large-scale study because it has to be calibrated by measuring EE with HR for each
individual. Furthermore, the accuracy of the model is decreased for low levels of activity [8], and HR
differs depending on age, sex, and the level of physical fitness [9]. Therefore, these characteristics are
key obstacles that prevent us from accurately estimating EE. To overcome this shortcoming, Keytel
et al. developed an equation using multiple-regression analyses, which included age, weight, and
sex as independent variables to estimate EE without the need of calibration for each individual [10].
Charlot et al. later improved Keytel’s equation and established a more accurate assessment by adding
the measured maximal HR (HRmax) and real running speed [11]. However, these models can only
be applied for exercises such as walking and running, and cannot be applied to daily activities.
Furthermore, HR in low activities under 95 bpm cannot be used to predict EE accurately [12], and it is
easily affected by mental stress especially in this range [13]. However, some variables related to HR
may contribute to improve the prediction of EE by being added to the multiple regression equation.

Percent HR reserve (%HRR) has been reported to be a major predictor for estimating EE. It is
a relative value, assuming that HRmax is 100% and resting HR is 0%; thus, it reflects one’s exercise
intensity, minimizing individual differences. However, most studies using %HRR were conducted
during specific activities such as walking, slope walking using a treadmill, and jogging. Few reports
have assessed the contribution of %HRR to EE regarding daily activities such as vacuuming, ascending
stairs, and walking with a load [14,15]. Therefore, assessing the relationship between %HRR and EE
in daily activities is critical. Additionally, since the slope of %HRR would be influenced by age and
fitness levels [16], these variables should be considered. Resting HR is known to reflect one’s level of
fitness and age [17]. Thus, predictions accounting for those two parameters may have the potential to
improve the accuracy of the equations. However, %HRR and resting HR may have a slight correlation.
Therefore, statistical analysis should be conducted carefully while accounting for multicollinearity.

EE is an absolute scale expressed in the unit of kcal or kJ per minute as physically induced energy
expenditure. On the other hand, metabolic equivalent (MET) is an index of physical activity intensity,
calculated as a ratio of metabolic rate during an activity to metabolic rate at rest, and serves as a
normalized index of physical activity intensity in each individual. Therefore, it would be convenient if
METs could be calculated directly from measured values, without the need for recalculation utilizing EE.
Furthermore, it would be feasible to apply MET to the recommendation of daily physical activities [18].

The aim of this study was to develop simple multiple-regression models for estimating METs of
daily activities by including parameters such as %HRR and resting HR in adults. We also validated
our model utilizing previous studies by comparing the differences.

2. Materials and Methods

2.1. Participants

Forty-two volunteers participated in this study, which was conducted at the National Institute of
Health and Nutrition in Japan. They were physically healthy to complete the tests, without having any
movement disorders and suffering from any cardiac disorders. Four to six male and female volunteers
were recruited from each of the four 10-year age groups (20–29, 30–39, 40–49, 50–59). The protocol
was approved by the Ethical Committee of the National Institute of Health and Nutrition and written
informed consent was obtained from the participants (No. 20140226-01).
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2.2. Protocol

The procedure for measuring HR and exhalation gas was as follows: participants came to the
institution in the morning following an overnight fast. Height was measured to the nearest 0.1 cm
without shoes and socks. Body weight was measured by a weight scale with a digital bioelectrical
impedance analyzer (HBF-362, Omron, Kyoto, Japan) with light clothes. Body mass index (BMI)
was calculated as body weight (kg) divided by height in meters squared (m2). After collecting
anthropological measurements, a HR monitor called Health Patch MD Sensor (VitalConnect,
San Jose, CA, USA) and a facemask connected to a Douglas bag were placed on the participants.
The MD sensor consists of two electrocardiographic (ECG) electrodes, and it detects QRS waves.
The R-R intervals are computed from the time interval between QRSs. More details of the protocol are
described in our previous study [19]. The sensor was validated by Chan et al. [20]. Resting HR was
measured over 7 min while the test subjects were seated. The resting HR and HR during each activity
were converted from the recorded R-R interval. Empty data or outliers (±4 SD in radio calisthenics, ±3
SD in other activities) of the epoch (0.4 s) were eliminated [21,22]. Calculated HR was the average of
every minute for each activity. The O2 and CO2 concentrations of expired gas were measured by a
mass spectrometer (ARCO-2000, Arco System, Chiba, Japan) and gas volume was measured by a dry
gas meter (DC-5, Shinagawa, Tokyo, Japan). The EE was calculated using Weir’s equation and was
used as a reference value [23]. Measuring real HRmax is not feasible for elderly and sedentary subjects.
Therefore, we predicted HRmax using Tanaka’s equation [24].

The resting metabolic rate (=1 MET) was measured at least twice while the subjects were seated
for each 7-min interval to check for stability while measuring resting HR. The stability state was
determined when the values of respiratory gas were comparable both times. Each value of METs
was calculated by dividing by the EE value recorded at rest. Table 1 shows measurement parameters
and their methods. All participants performed 20 daily activities as shown in Table 2. At least four
5-min breaks were set during the test to prevent the influence of previous activities. Participants were
allowed to drink bottled water, which was provided during the breaks.

Table 1. Measurement parameters and measurement methods.

Measurement Parameter Unit Method

Resting HR bpm Seated state for 7 min and averaged per minute
Predicted HRmax bpm 208 − 0.7 × age

%HRR bpm (HR activity − resting HR)/(predicted HRmax − resting HR) × 100
METs - EE of activity/EE of rest in the sitting position

2.3. Model Development

Before developing statistical models, we calculated correlation coefficients between HR and METs,
and between %HRR and METs for all subjects, and compared the two r values. This was necessary
because there is a strong correlation between HR and %HRR (0.931), and only one of them should be
used in the model. The r value with METs for %HRR was 0.938 and higher than that of HR (0.854).
Thus, we chose %HRR as the variable for developing models. We also added six potential parameters
based on the evidence obtained so far [9–11,25,26]. Candidate independent variables and the process
of choosing them are shown in Figure 1. The correlation coefficients between METs and each variable
are also shown in Figure 1. We developed two types of models, one with BMI and the other with
weight and height, because BMI has a strong correlation with weight (r = 0.887) and height (r = 0.241).
We computed all possible combinations of variables using the brute force method. After that, we
applied Akaike’s information criterion (AIC); the model with the minimum value of AIC gives the
best fit of all models, deleting redundant variables [27]. The models selected by AIC also showed the
highest adjusted R2 in our case. The criteria for checking multi-collinearity was that the sign of the
coefficients of variables did not change from the correlation coefficient of the dependent variable. We
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also calculated the variance inflation factor (VIF) of each model and ensured that those values were all
less than 1.1. Thus, there was no possibility of having multi-collinearities in the models [28].

Table 2. Measured METs and %HRR of 20 activities.

Classification Activities N
Minutes of Activity

(Minutes of
Measurement)

METs %HRR

Exercise

radio calisthenics 25 8 (3.0) 3.1 ± 0.4 21.6 ± 5.3
walking (55 m/min) 33 5 (2.0) 3.3 ± 0.5 21.8 ± 8.0
walking (70 m/min) 29 5 (2.0) 3.7 ± 0.5 26.0 ± 8.0

walking (100 m/min) 30 5 (2.0) 5.1 ± 0.9 36.5 ± 10.8
jogging (130 m/min) 21 4 (1.0) 9.5 ± 1.5 73.4 ± 12.6

Household
work and daily

activities

operating a mobile phone 36 7 (5.0) 1.1 ± 0.1 1.1 ± 3.7
PC work 38 7 (5.0) 1.1 ± 0.1 2.3 ± 3.4

document arrangement while sitting 39 5 (3.0) 1.5 ± 0.3 6.5 ± 3.4
stretch exercising 30 12 (5.0) 2.1 ± 0.3 8.0 ± 4.5

document arrangement while standing 40 5 (3.0) 2.1 ± 0.4 10.2 ± 4.6
washing dishes 37 5 (3.0) 2.1 ± 0.4 11.7 ± 5.5

hanging and bringing in clothes 38 5 (2.0) 2.4 ± 0.4 14.5 ± 5.7
repeated sitting and standing 38 4 (2.0) 2.5 ± 0.3 12.9 ± 5.1

wiping tables 39 5 (2.0) 2.6 ± 0.5 15.0 ± 5.8
descending stairs 36 5 (1.5) 2.7 ± 0.4 17.8 ± 6.3

vacuuming the room 35 3 (2.0) 2.9 ± 0.6 17.7 ± 6.4
moving load (5 kg bag of rice) 37 5 (2.0) 3.7 ± 0.6 25.4 ± 8.2

walking with load (5 kg for 55 m/min) 33 5 (2.0) 4.0 ± 0.5 29.7 ± 8.3
walking with load (3 kg for 70 m/min) 29 5 (2.0) 4.2 ± 0.6 30.1 ± 9.5

ascending stairs 30 5 (1.0) 7.4 ± 0.9 54.0 ± 7.7

Figure 1. Selection of independent variables (n = 40). Dependent variable was METs. All possible
combinations of variables were computed by using the brute force method. After that, the model
with the minimum value of Akaike’s Information Criterion (AIC), which gives the best fit of all
models, deleting redundant variables was selected. * r is the correlation coefficient between METs and
each variable.
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2.4. Validation Test and Statistical Analysis

The leave-one-out method was performed to validate the prediction models. In the present study,
we developed models using all subjects except one subject, and tested for validation by applying this left
out subject, and repeated it as many times as the number of subjects. Comparisons between measured
METs (indirect calorimetry) and estimated METs from the model were performed by Wilcoxon signed
rank test. Mean percent error (MPE) and root mean square error (RMSE) were also calculated for each
activity by averaging the errors for each leave-out run as below:

MPE (%) = (Estimated METs −Measured METs)/Measured METs × 100 (1)

RMSE =

√√
1
n

n∑
i=1

(ŷi − yi)
2 (2)

where:
ŷi = estimated METs

yi = measured METs

The modified Bland and Altman plots were used to depict the agreement between measured
METs and estimated METs by leave-one-out [29]. We validated our models by comparing them with
other previous studies. The methods for developing a model and for calculating the error of each
model were different. Thus, we recalculated RMSE using the hold-out method. We divided all subjects
into two parts in a ratio of two to one for the model development group and the validation group,
and calculated RMSE of each activity. This was repeated 10,000 times, and the average values of
RMSE of each activity among the tests were used for comparison with previous studies. The statistical
analyses were performed using SPSS version 25 for Windows (IBM, Armonk, NY, USA) and Excel
add-in software “Multi Tahenryo” (Istat, Tokyo, Japan).

3. Results

3.1. Subject Characteristics

The characteristics of the participants are shown in Table 3. The average height and weight
were almost equivalent to those of the Japanese general population. Two participants were excluded
because they could not conduct any activities. Some blank HR values appeared in each activity due to
measurement failures.

Table 3. Physical characteristics of the participants.

Age Groups
(Yr) N Age (Years) Height (cm) Weight (kg) BMI (kg/m2)

Resting HR
in the Sitting

Position (bpm)

Male 20 39.5 ± 10.6 171.2 ± 5.4 68.7 ± 12.3 23.3 ± 3.4 67.7 ± 6.6

20–29 6 26.2 ± 3.1 169.0 ± 7.2 66.3 ± 10.6 23.1 ± 2.0 67.0 ± 5.9
30–39 3 37.3 ± 2.1 171.2 ± 3.8 65.1 ±18.6 22.1 ± 5.3 61.4 ± 5.4
40–49 6 43.2 ± 3.9 173.1 ± 6.2 73.1 ± 12.1 24.4 ± 3.6 72.8 ± 6.1
50–59 5 52.2 ± 1.8 171.5 ± 2.3 68.4 ± 13.1 23.2 ± 3.9 67.3 ± 5.9

Female 20 38.0 ± 11.7 159.2 ± 7.1 55.9 ± 12.3 22.0 ± 4.2 67.3 ± 10.3

20–29 5 23.0 ± 2.3 157.3 ± 4.5 49.1 ± 5.1 19.8 ± 1.5 64.0 ± 12.8
30–39 5 33.0 ± 3.5 165.3 ± 10.6 62.2 ± 14.1 22.7 ± 4.3 70.8 ± 5.8
40–49 5 43.0 ± 4.2 155.9 ± 5.7 52.8 ± 17.1 21.6 ± 6.4 66.8 ± 13.7
50–59 5 52.8 ± 1.3 158.1 ± 2.2 59.4 ± 8.0 23.8 ± 3.2 67.6 ± 12.1

Mean ± SD.
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3.2. Coefficients of Independent Variables

Tables 4 and 5 show the results of multiple regression analyses with HR and %HRR, respectively.
When comparing models with one variable, HR or %HRR, the r value of the model with %HRR was
0.938 and showed a higher value than the one with HR (0.852). In Table 5, %HRR was the highest
contributor to the model (standardized β = 0.944) among all variables. The standardized β of resting HR
in the model with %HRR was −0.078 and it showed a smaller contribution to the model. The correlation
coefficients (r) of the model with %HRR, resting HR, and height had the highest values, which were
close to 1 in all models, at 0.943.

Table 4. Results of multiple regression analyses for estimating METs; model with HR (n = 40).

Independent
Variables Intercept HR Resting HR r R2 SEE *1

(MET)

HR
Unstandardized β

Standard error
p

−4.030
0.175

<0.001

0.080
0.002

<0.001
0.852 0.725 0.983

Standardized β 0.852

HR,
Resting HR

Unstandardized β
Standard error

p

0.679
0.206
0.001

0.095
0.001

<0.001

−0.089
0.003

<0.001
0.934 0.873 0.669

Standardized β 1.009 −0.415

Dependent variable is METs. *1 SEE: standard errors of the estimate.

Table 5. Results of multiple regression analyses for estimating METs; model with %HRR (n = 40).

Independent
Variables Intercept %HRR Resting

HR

Sex
(M = 1,
F = 0)

Height r R2 SEE *1

(MET)

%HRR
Unstandardized β

Standard error
p

1.053
0.039

<0.001

0.105
0.001

<0.001
0.938 0.880 0.648

Standardized β 0.938

%HRR,
Resting HR

Unstandardized β
Standard error

p

2.123
0.192

<0.001

0.105
0.001

<0.001

−0.016
0.003

<0.001
0.941 0.886 0.634

Standardized β 0.942 −0.074

%HRR,
Resting HR,

Sex

Unstandardized β
Standard error

p

2.046
0.192

<0.001

0.106
0.001

<0.001

−0.016
0.003

<0.001

0.184
0.048

<0.001
0.942 0.888 0.628

Standardized β 0.944 −0.075 0.049

%HRR,
Resting HR,

Height

Unstandardized β
Standard error

p

−0.176
0.494
0.721

0.106
0.001

<0.001

−0.017
0.003

<0.001

0.014
0.003

<0.001
0.943 0.890 0.623

Standardized β 0.944 −0.078 0.065

Dependent variable is METs. *1 SEE: standard errors of the estimate.

Tables 6 and 7 show the mean percent error (MPE) and root mean square error (RMSE) between
measured METs and estimated METs. Figure 2 is a graphical depiction of MPE.
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Table 6. Mean percent error of the predictive equations with leave-one-out method.

Variables in Equation %HRR %HRR
+Resting HR

%HRR
+ RestingHR
+ Sex

%HRR +
RestingHR
+ Height

Activities MPE (%) MPE (%) MPE (%) MPE (%)

operating a mobile phone 1.9 ± 32.2 0.9 ± 34.5 0.4 ± 36.9 0.2 ± 36.2
PC work 13.7 * ± 30.2 12.6 * ± 32.5 12.7 * ± 33.7 12.0 * ± 33.3

document arrangement while sitting 17.1 ** ± 25.6 17.3 ** ± 28.1 16.9 ** ± 29.8 16.6 ** ± 29.6
stretch exercising −7.6 ± 23.4 −7.7 ± 24.0 −8.4 ± 24.9 −8.3 ± 24.4

document arrangement while standing 2.0 ± 18.7 2.3 ± 19.7 2.1 ± 20.4 1.6 ± 20.3
washing dishes 8.9 ± 24.2 8.6 ± 22.2 8.3 ± 22.5 8.2 ± 22.4

repeated sitting and standing −2.1 ± 19.9 −2.9 ± 19.5 −3.1 ± 19.8 −3.4 ± 20.4
hanging and bringing in clothes 6.5 ± 22.4 6.2 ± 21.6 6.1 ± 21.9 5.9 ± 23.2

wiping tables 3.3 ± 19.7 3.5 ± 19.9 3.3 ± 20.5 2.9 ± 19.9
descending stairs 8.2 ± 25.6 8.1 ± 24.8 8.0 ± 24.9 7.8 ± 24.9

vacuuming the room 1.4 ± 22.0 1.1 ± 21.4 1.2 ± 22.8 0.8 ± 22.7
radio calisthenics 9.4 ± 20.7 9.5 ± 20.9 9.8 ± 20.9 10.0 ± 21.0

walking (55 m/min) −0.8 ± 16.9 −0.4 ± 17.3 −0.7 ± 17.2 −0.7 ± 17.4
walking (70 m/min) 0.9 ± 17.7 1.3 ± 17.6 1.0 ± 17.3 1.0 ± 17.4

walking (100 m/min) −4.9 ± 12.2 −4.7 ± 12.3 −4.6 ± 11.9 −4.6 ± 11.9
moving load (5 kg bag of rice) 0.8 ± 17.9 0.7 ± 17.2 0.6 ± 17.3 0.7 ± 17.5

walking with load (3 kg for 70 m/min) −0.6 ± 18.0 −0.3 ± 18.2 −0.5 ± 17.6 −0.4 ± 17.5
walking with load (5 kg for 55 m/min) 3.4 ± 17.0 3.9 ± 17.2 3.8 ± 17.0 3.8 ± 16.7

ascending stairs −8.5 ** ± 12.3 −8.2 ** ± 11.9 −8.0 ** ± 11.6 −8.0 ** ± 11.7
jogging (130 m/min) −6.3 ± 15.3 −6.0 ± 15.3 −5.9 ± 15.1 −6.0 ± 14.9

Total activities 2.8 ± 22.3 2.8 ± 22.6 2.6 ± 23.2 2.4 ± 23.1

MPE (%): Mean Percent Error = (Estimated METs −Measured METs)/Measured METs × 100; Mean values were
significantly different between measured and estimated METs (Wilcoxon signed rank test): * p < 0.05, ** p < 0.01.

Table 7. Root mean square error (RMSE) of the predictive equations with leave-one-out method.

Variables in Equation %HRR %HRR
+ Resting HR

%HRR
+ RestingHR
+Sex

%HRR
+ RestingHR
+Height

Activities RMSE RMSE RMSE RMSE

operating a mobile phone 0.36 0.39 0.42 0.41
PC work 0.38 0.40 0.41 0.40
document arrangement while sitting 0.44 0.46 0.48 0.47
stretch exercising 0.49 0.51 0.53 0.53
document arrangement while standing 0.39 0.40 0.42 0.41
washing dishes 0.52 0.48 0.49 0.49
repeated sitting and standing 0.46 0.45 0.46 0.47
hanging and bringing in clothes 0.54 0.52 0.53 0.55
wiping tables 0.51 0.51 0.52 0.50
descending stairs 0.66 0.64 0.65 0.64
vacuuming the room 0.59 0.56 0.59 0.58
radio calisthenics 0.66 0.66 0.67 0.67
walking (55 m/min) 0.56 0.57 0.57 0.57
walking (70 m/min) 0.64 0.63 0.62 0.63
walking (100 m/min) 0.67 0.66 0.65 0.64
moving load (5 kg bag of rice) 0.69 0.65 0.65 0.65
walking with load (3 kg for 70 m/min) 0.76 0.76 0.74 0.73
walking with load (5 kg for 55 m/min) 0.71 0.72 0.71 0.70
ascending stairs 1.20 1.16 1.14 1.14
jogging (130 m/min) 1.67 1.65 1.63 1.62

Total activities 0.66 0.66 0.66 0.65
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Figure 2. Mean percent error of each equation validated by leave-one-out (n = 40).

The total MPE of all activities was 2.8% (SD 22.3%) in the model including only %HRR and
2.4% (SD 23.1%) in the model including %HRR, resting HR, and height. METs were estimated within
17.3% of average differences in all activities. METs of the exercise activities of walking and jogging
were estimated within ±7% of average differences, and they were estimated more accurately than
non-exercise activities. The largest difference in MPE was observed during document arrangement
while sitting (16.6–17.3%, p < 0.01), and its MET value was overestimated. Ascending and descending
stairs also showed large differences of approximately −8% (p < 0.01) and 8% (no significant difference),
respectively. When comparing measured METs and estimated METs in all activities, there were no
significant differences in all models. The model with %HRR, resting HR, and height showed an
approximate 2% decrease in MPE during low intensity activities such as operating a mobile phone and
PC work, compared to the model with only %HRR.

In contrast to the results of MPE, the values of RMSE increased with the intensity of activities.
Ascending stairs and jogging showed high values from 1.14 to 1.67. On the other hand, other activities
showed low values of less than 0.76.

Figure 3 depicts the results of modified Bland–Altman analyses between measured and estimated
METs. There was no difference between the two models. Jogging of a participant was largely
overestimated by 3 METs, while jogging of another participant was underestimated by 4 METs.
The confidence interval was ±1.3 in both models and r of the model with %HRR, resting HR, and
height (B) was −0.32 (p < 0.001).
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Figure 3. Differences between measured and estimated METs by Bland–Altman analysis (N = 40,
673 dots).

4. Discussion

In this study, we developed models for the brief prediction of METs utilizing a new combination of
predictors. We predicted METs directly and selected three independent variables, which were %HRR,
resting HR, and sex or height. These values of METs can be recalculated to determine EE. Therefore,
we assume that the %error of METs and r coefficient of METs are similar to those of EE, which have
been demonstrated by other studies predicting EE.

Charlot et al. used five predictors to predict EE, including HR, weight, resting HR, real HRmax,
and maximal oxygen uptake, and the r coefficient of their study was 0.94 [11]. Similarly, the r value of
our model was 0.943. The reason for this similarity might be because METs is divided by EE at rest
while seated, and that could have attenuated individual differences.

The results of our study showed that %HRR was the strongest predictor of a variety of daily
activities from low to high intensity, and that resting HR was not a major contributor, though the
MPE of low activities slightly improved by 2%. Therefore, the model with only %HRR was enough
to estimate METs with relatively small prediction errors. Hiilloskorpi et al. also showed that %HRR
was the highest contributor compared to HR or HRnet (HR activity–resting HR) [14]. The results of
the present study assured that %HRR is a principle factor for estimating METs during daily activities.
From a physiological aspect, METs is obtained by dividing by the respiratory gas values during
the sitting state, and that reflects individual resting metabolic rate. Similarly, %HRR is divided by
(HRmax–resting HR), which reflects individual levels of fitness. Therefore, it seems suitable to use
%HRR for estimating METs. From a mathematical aspect, %HRR contains predicted HRmax and
resting HR. The predicted HRmax was calculated utilizing the regression equation based on age, and it
accounts for the biggest value of the numerator in the fraction of %HRR. On the other hand, resting HR
in the fraction of %HRR was subtracted from both the numerator and denominator. This mathematical
variation might explain the high contribution of METs.

Resting HR was hypothesized to reflect individual levels of physical fitness. Only one study
investigated resting HR as an independent variable in a multiple regression equation [11]. However,
the degree of the contribution of resting HR in the study was not clear. Therefore, in the present study,
we calculated standardized β to assess the degree of contribution of each variable. In our results,
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standardized β values of resting HR were the second highest among all variables in both models with
HR and %HRR, and these β values especially demonstrated a high contribution in the model with
HR (−0.415). On the other hand, standardized β of resting HR in the model with %HRR suggest that
resting HR was a minor contributor (−0.074). A possible explanation for this low contribution is that
%HRR already contains resting HR in the equation.

Other variables such as sex and height were selected in the present study, as they are known
to affect the HR. Sex was selected as a predictor for estimating EE; although more specifically, our
estimation was for METs [10,11,26]. As for height, other studies predicting EE showed that weight
was a stronger predictor than height because EE is strongly influenced by weight [9,11]. However,
in our study, weight was not selected in any of the models in the prediction of METs. Currently, no
previous studies that predicted METs using multiple regression analysis included weight as one of their
variables. According to the previous study on the influence of body weight, height, age, and sex on
total energy expenditure (TEE) [30], TEE, basal metabolic rate (BMR), and activity energy expenditure
(AEE) were related to weight and height. However, the influence of weight disappeared when TEE
was expressed as physical activity level (PAL, derived as TEE/basal metabolic rate (BMR)), while height
and age remained highly significant predictors. As MET has a similar structure to PAL, the influence
of weight may disappear as in the case of PAL. Additionally, the characteristics of the participants
in the present study were the same as those of the average Japanese population, which means that
the percentage of overweight or obese people was low compared to in other countries, and this small
deviation might attenuate the influence of weight. Further analysis will be needed in this aspect.
Nevertheless, our data showed that standardized β values of sex and height were small: 0.049 and
0.065, respectively, and those values were less than one 14th to one 19th that of the standardized β of
%HRR (0.944).

Figure 4 shows the comparison of prediction errors expressed as RMSE between our study and
some previous studies with only a HR algorithm [11,14,31]. RMSEs of previous studies were calculated
from measured and estimated METs by substituting values of our study into their original equations.
HRmax values by Charlot’s study and %HRR values by Hiilloskorpi’s study were calculated by using
their own method. These three prediction methods were selected because they could be regarded as a
representative calibration study using HR. We developed one equation that encompassed low to high
intensity activities. The equation showed steady accuracy similar to that of Crouter’s in almost all
activities, especially in low intensity activities, even though the maximum errors were large. Crouter’s
study showed small RMSE values, which may be because they developed two kinds of equations for
low and high intensity activities.

Figure 5 depicts estimated METs of validation groups using an equation developed by the hold-out
method similar to that of Figure 4, and estimated METs from previous studies. Estimated METs from
the present study had a similar trend as measured METs from other studies. However, ascending
stairs and jogging were underestimated to the same degree as Crouter’s equation. Additionally, large
values of maximum error were observed in ascending stairs and jogging. The other two equations
developed by Hiilloskorpi and Charlot overestimated METs for all ranges. In addition to that, Charlot
recommended to use his model only for activities with from 25 %HRR to 75 %HRR. It is difficult to
clarify the reason for the overestimation, various factors including technical errors can be considered.
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Figure 4. Comparison of prediction errors expressed as RMSE with those of previous studies.

Figure 5. Measured and estimated METs of previous studies and present study.
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Many algorithms using accelerometers and other devices such as combined monitors with an
accelerometer, HR monitor, and patch-type sensor module have been developing rapidly [32–35].
However, those devices cannot measure specific activities like cycling, ascending stairs, and carrying
packages. For example, the MPEs of ascending and descending stairs ranged from −61.4% to 40.7%
in Ohkawara’s study [35]. In our study, using HR, averaged MPE of ascending/descending was
0.6% in the leave-one-out method. Even if they were separated into two distinct activities, ascending
and descending stairs still showed relatively small MPEs (−8% and +8%, respectively). Strath et
al. estimated METs by combining an accelerometer and an HR sensor (simultaneous use of HR and
motion sensor technique) [36]. However, they did not conduct low intensity activities such as PC
work and slow walking. Furthermore, their model only included leg and arm activity, and they used
this model for predicting daily activities, which makes it impossible to compare our MPE values to
those obtained in their study. However, if we are allowed to compare moderate to vigorous activities
in their model to those of the present study, including slow walking, vacuuming, fast walking, and
ascending/descending stairs, the MPE values were similar, within 10% difference. Therefore, the fit of
our model was as good as a combined model that utilized an accelerometer and a HR monitor. MPEs
of our study varied up to 17.3% based on the activity type. The largest MPE in the present study, 17.3%,
was observed in participants during document arrangement while sitting. Calculated as EE, it would
be 117.0 kcal of overestimation if the average person in this study arranges documents while sitting
for eight hours (data not shown in table). It may be an unignorable difference for inactive people.
However, our findings showed that the differences were still small compared to other similar studies
that used HR and tri-accelerometer, and that our findings were just as accurate as the combined model
of HR and accelerometer [10,35,36].

Although MPE was small in total activities, the SD of MPE was large in all models (22.3–23.2%).
When comparing SDs for each activity, it ranged from 11.6% to 36.9%. Other studies estimating EE from
HR had smaller SDs, from 4.4% to 13.1%; however, the method and predicting unit in those studies
were different [10,11]. One possible reason is that our models included a variety of daily activities,
compared to models of other studies that were mainly developed from locomotive activities such as
walking, jogging, and cycling. Nevertheless, in our study, the 95% prediction interval was from −1.3 to
1.3 METs. This range was as small as the prediction interval obtained by Strath’s study, which used a
simultaneous HR-motion sensor technique (within ± 1.5 METs) [36].

We have some limitations in our study. First, each subject performed all 20 activities and the
same values of the variables (resting HR, height, and sex) were repeatedly used for the multiple
regression models. This might cause an overfitting of the data set, leading to the deformation of
models. Second, some activity data, especially jogging data, were missing. Furthermore, there were
some outliers for jogging, which might be caused by measurement error. However, almost the same
results were obtained even when these outliers were included in the analyses (data not shown in
table). Those outliers could slightly contribute to the overestimation or underestimation of METs
during jogging activities. To avoid these technical errors, a more accurate HR monitoring system is
still needed.

Despite its limitations, the present study showed small RMSEs of METs, at the same level as
Crouter’s study using two equations, as well as previous reports that used tri-accelerometer and/or
HR. Moreover, ascending and descending stairs showed relatively small MPEs compared to methods
using accelerometers. This result might be mainly because METs was predicted directly, instead of
EE. Although only %HRR was a large contributor, one should be cautious to conclude that %HRR
can simply predict one’s METs accurately, because there are few studies predicting METs that include
potential predictors and utilize multiple regression analysis. Overall, this study provides an insight
into the degree of contribution of %HRR and other variables for estimating one’s METs. Further
studies in free-living conditions are required to accumulate more evidence and assure the accuracy of
the models.
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5. Conclusions

Multiple regression analyses were performed to develop prediction models of METs. %HRR
showed the highest contribution in the model. Additionally, resting HR mildly contributed to the
present model, contrary to our expectations. When comparing each activity, METs were estimated
within a 17.3% difference. The largest average difference was observed for document arrangement
while sitting (16.6–17.3% overestimation). The average %difference of METs in total activities was
2.4% (SD 23.1) in the model with %HRR, resting HR, and height. RMSE was also shown to be as
small as those of previous studies with HR algorithm. The results showed that METs in daily life can
be accurately predicted from %HRR to the same extent as previous reports using tri-accelerometer
and/or HR.

Author Contributions: Conceptualization: S.T. and Y.C.; methodology: S.T., Y.C., T.J.A., S.N. (Satoshi Nakae),
C.U., T.A., and S.N. (Sho Nagayoshi); validation: Y.C. and S.T.; formal analysis: Y.C. and S.N. (Satoshi Nakae);
investigation: S.T., T.J.A., S.N. (Satoshi Nakae), C.U., T.A., and S.N. (Sho Nagayoshi); resources: S.T. and S.N. (Sho
Nagayoshi); data curation: M.N.; writing—original draft preparation: Y.C.; writing—review and editing: S.T.,
T.J.A., S.N. (Satoshi Nakae), C.U., T.A., M.N., S.N. (Sho Nagayoshi), and Y.F.; visualization: Y.C.; supervision: S.T.
and Y.F; project administration: S.T.; funding acquisition: S.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by OMRON Healthcare Co., Ltd.

Acknowledgments: We thank all of the participants for their cooperation. The authors wish to thank Tamio Kan
for his advice on data analysis.

Conflicts of Interest: Nakanishi M and Nagayoshi S are employees of OMRON Healthcare Co., Ltd. (funder) and
these two authors had a role in the design of the study, in the collection, analyses, and interpretation of data, in the
writing of the manuscript, and in the decision to publish the results. Tanaka S received a research grant from
OMRON Healthcare Co., Ltd. The other authors declare that there are no conflicts of interest.

References

1. Arena, R.; McNeil, A.; Sagner, M.; Hills, A. The Current Global State of Key Lifestyle Characteristics: Health
and Economic Implications. Prog. Cardiovasc. Dis. 2017, 59, 422–429. [CrossRef] [PubMed]

2. Kruk, J. Physical activity in the prevention of the most frequent chronic diseases: An analysis of the recent
evidence. Asian Pac. J. Cancer Prev. 2007, 8, 325–338. [PubMed]

3. Levine, J.A. Nonexercise activity thermogenesis—Liberating the life-force. J. Intern. Med. 2007, 262, 273–287.
[CrossRef] [PubMed]

4. Westerterp, K. Assessment of physical activity: A critical appraisal. Eur. J. Appl. Physiol. 2009, 105, 823–828.
[CrossRef] [PubMed]

5. Hikihara, Y.; Tanaka, S.; Ohkawara, K.; Ishikawa-Takata, K.; Tabata, I. Validation and comparison of 3
accelerometers for measuring physical activity intensity during nonlocomotive activities and locomotive
movements. J. Phys. Act. Health 2012, 9, 935–943. [CrossRef] [PubMed]

6. Berggren, G.; Hohwu, C.E. Heart rate and body temperature as indices of metabolic rate during work.
Arbeitsphysiologie 1950, 14, 255–260. [CrossRef]

7. Spurr, G.B.; Prentice, A.M.; Murgatroyd, P.R.; Goldberg, G.R.; Reina, J.C.; Christman, N.T. Energy expenditure
from minute-by-minute heart-rate recording: Comparison with indirect calorimetry. Am. J. Clin. Nutr.
1988, 48, 552–559. [CrossRef]

8. Dauncey, M.; James, W. Assessment of the heart-rate method for determining energy expenditure in man,
using a whole-body calorimeter. Br. J. Nutr. 1979, 42, 1–13. [CrossRef]

9. Hiilloskorpi, H.; Fogelholm, M.; Laukkanen, R.; Pasanen, M.; Oja, P.; Mänttäri, A.; Natri, A. Factors affecting
the relation between heart rate and energy expenditure during exercise. Int. J. Sports Med. 1999, 20, 438–443.
[CrossRef]

10. Keytel, L.R.; Goedecke, J.H.; Noakes, T.D.; Hiiloskorpi, H.; Laukkanen, R.; van der Merwe, L.; Lambert, E.V.
Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J. Sports Sci.
2005, 23, 289–297. [CrossRef]

http://dx.doi.org/10.1016/j.pcad.2017.02.002
http://www.ncbi.nlm.nih.gov/pubmed/28216110
http://www.ncbi.nlm.nih.gov/pubmed/18159963
http://dx.doi.org/10.1111/j.1365-2796.2007.01842.x
http://www.ncbi.nlm.nih.gov/pubmed/17697152
http://dx.doi.org/10.1007/s00421-009-1000-2
http://www.ncbi.nlm.nih.gov/pubmed/19205725
http://dx.doi.org/10.1123/jpah.9.7.935
http://www.ncbi.nlm.nih.gov/pubmed/22971884
http://dx.doi.org/10.1007/BF00933843
http://dx.doi.org/10.1093/ajcn/48.3.552
http://dx.doi.org/10.1079/BJN19790084
http://dx.doi.org/10.1055/s-1999-8829
http://dx.doi.org/10.1080/02640410470001730089


Int. J. Environ. Res. Public Health 2020, 17, 216 14 of 15

11. Charlot, K.; Cornolo, J.; Borne, R.; Brugniaux, J.V.; Richalet, J.P.; Chapelot, D.; Pichon, A. Improvement of
energy expenditure prediction from heart rate during running. Physiol. Meas. 2014, 35, 253–266. [CrossRef]
[PubMed]

12. Booyens, J.; Hervey, G. The pulse rate as a means of measuring metabolic rate in man. Can. J. Biochem. Physiol.
1960, 38, 1301–1309. [CrossRef]

13. Taelman, J.; Vandeput, S.; Spaepen, A.; Van Huffel, S. Influence of mental stress on heart rate and heart rate
variability. IFMBE Proc. 2008, 22, 1366–1369.

14. Hiilloskorpi, H.K.; Pasanen, M.E.; Fogelholm, M.G.; Laukkanen, R.M.; Mänttäri, A.T. Use of heart rate to
predict energy expenditure from low to high activity levels. Int. J. Sports Med. 2003, 24, 332–336. [PubMed]

15. Strath, S.J.; Swartz, A.M.; Bassett, J.D.; O’Brien, W.L.; King, G.A.; Ainsworth, B.E. Evaluation of heart rate
as a method for assessing moderate intensity physical activity. Med. Sci. Sports Exerc. 2000, 32, 465–470.
[CrossRef] [PubMed]

16. Choi, B.; Ko, S.; Kojaku, S. Resting heart rate, heart rate reserve, and metabolic syndrome in professional
firefighters: A cross-sectional study. Am. J. Ind. Med. 2017, 60, 900–910. [CrossRef]

17. Cooper, K.; Pollock, M.; Martin, R.; White, S.R.; Linnerud, A.C.; Jackson, A. Physical fitness levels vs selected
coronary risk factors. JAMA 1976, 236, 166–169. [CrossRef]

18. Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.;
Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from
the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc.
2007, 39, 1423–1434. [CrossRef]

19. Nakanishi, M.; Izumi, S.; Nagayoshi, S.; Kawaguchi, H.; Yoshimoto, M.; Shiga, T.; Ando, T.; Nakae, S.;
Usui, C.; Aoyama, T.; et al. Estimating metabolic equivalents for activities in daily life using acceleration and
heart rate in wearable devices. Biomed. Eng. Online 2018, 17, 100. [CrossRef]

20. Chan, A.; Selvaraj, N.; Ferdosi, N.; Narasimhan, R. Wireless patch sensor for remote monitoring of heart
rate, respiration, activity, and falls. In Proceedings of the 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Osaka, Japan, 3–7 July 2013; IEEE: New York, NY, USA, 2013;
pp. 6115–6118. [CrossRef]

21. Porges, S.; Byrne, E. Research methods for measurement of heart rate and respiration. Biol. Psychol.
1992, 34, 93–130. [CrossRef]

22. Mulder, L. Measurement and analysis methods of heart rate and respiration for use in applied environments.
Biol. Psychol. 1992, 34, 205–236. [CrossRef]

23. Weir, J.B.d.V. New methods for calculating metabolic rate with special reference to protein metabolism.
J. Physiol. 1949, 109, 1–9. [CrossRef] [PubMed]

24. Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol.
2001, 37, 153–156. [CrossRef]

25. Rennie, K.L.; Hennings, S.J.; Mitchell, J.; Wareham, N.J. Estimating energy expenditure by heart-rate
monitoring without individual calibration. Med. Sci. Sports Exerc. 2001, 33, 939–945. [CrossRef] [PubMed]

26. Karhunen, L.; Franssila-Kallunki, A.; Rissanen, A.; Kervinen, K.; Kesäniemi, Y.A.; Uusitupa, M. Determinants
of resting energy expenditure in obese non-diabetic caucasian women. Int. J. Obes. 1997, 21, 197–202.
[CrossRef]

27. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings
of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971;
Petrov, B.N., Csádki, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281.

28. Daoud, J. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [CrossRef]
29. Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical

measurement. Lancet 1986, 1, 307–310. [CrossRef]
30. Black, A.; Coward, W.; Cole, T.; Prentice, A.M. Human energy expenditure in affluent societies: An analysis

of 574 doubly-labelled water measurements. Eur. J. Clin. Nutr. 1996, 50, 72–92.
31. Crouter, S.; Churilla, J.; Bassett, D. Accuracy of the Actiheart for the assessment of energy expenditure in

adults. Eur. J. Clin. Nutr. 2008, 62, 704–711. [CrossRef]
32. Alhassan, S.; Lyden, K.; Howe, C.; Keadle, S.K.; Nwaokelemeh, O.; Freedson, P.S. Accuracy of accelerometer

regression models in predicting energy expenditure and METs in children and youth. Pediatr. Exerc. Sci.
2012, 24, 519–536. [CrossRef]

http://dx.doi.org/10.1088/0967-3334/35/2/253
http://www.ncbi.nlm.nih.gov/pubmed/24434852
http://dx.doi.org/10.1139/y60-162
http://www.ncbi.nlm.nih.gov/pubmed/12868043
http://dx.doi.org/10.1097/00005768-200009001-00005
http://www.ncbi.nlm.nih.gov/pubmed/10993416
http://dx.doi.org/10.1002/ajim.22752
http://dx.doi.org/10.1001/jama.1976.03270020036021
http://dx.doi.org/10.1249/mss.0b013e3180616b27
http://dx.doi.org/10.1186/s12938-018-0532-2
http://dx.doi.org/10.1109/EMBC.2013.6610948
http://dx.doi.org/10.1016/0301-0511(92)90012-J
http://dx.doi.org/10.1016/0301-0511(92)90016-N
http://dx.doi.org/10.1113/jphysiol.1949.sp004363
http://www.ncbi.nlm.nih.gov/pubmed/15394301
http://dx.doi.org/10.1016/S0735-1097(00)01054-8
http://dx.doi.org/10.1097/00005768-200106000-00013
http://www.ncbi.nlm.nih.gov/pubmed/11404659
http://dx.doi.org/10.1038/sj.ijo.0800387
http://dx.doi.org/10.1088/1742-6596/949/1/012009
http://dx.doi.org/10.1016/S0140-6736(86)90837-8
http://dx.doi.org/10.1038/sj.ejcn.1602766
http://dx.doi.org/10.1123/pes.24.4.519


Int. J. Environ. Res. Public Health 2020, 17, 216 15 of 15

33. Hansen, A.L.; Carstensen, B.; Helge, J.W.; Johansen, N.B.; Gram, B.; Christiansen, J.S.; Brage, S.; Lauritzen, T.;
Jørgensen, M.E.; Aadahl, M.; et al. Combined heart rate- and accelerometer-assessed physical activity energy
expenditure and associations with glucose homeostasis markers in a population at high risk of developing
diabetes: The addition-PRO study. Diabetes Care 2013, 36, 3062–3069. [CrossRef] [PubMed]

34. Li, M.; Kwak, K.C.; Kim, Y.T. Estimation of energy expenditure using a patch-type sensor module with an
incremental radial basis function neural network. Sensors 2016, 16, 1566. [CrossRef] [PubMed]

35. Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-time estimation of
daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
Br. J. Nutr. 2011, 105, 1681–1691. [CrossRef] [PubMed]

36. Strath, S.J.; Bassett, D.R., Jr.; Swartz, A.M.; Thompson, D.L. Simultaneous heart rate-motion sensor technique
to estimate energy expenditure. Med. Sci. Sports Exerc. 2001, 33, 2118–2123. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2337/dc12-2671
http://www.ncbi.nlm.nih.gov/pubmed/23757430
http://dx.doi.org/10.3390/s16101566
http://www.ncbi.nlm.nih.gov/pubmed/27669249
http://dx.doi.org/10.1017/S0007114510005441
http://www.ncbi.nlm.nih.gov/pubmed/21262061
http://dx.doi.org/10.1097/00005768-200112000-00022
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participants 
	Protocol 
	Model Development 
	Validation Test and Statistical Analysis 

	Results 
	Subject Characteristics 
	Coefficients of Independent Variables 

	Discussion 
	Conclusions 
	References

