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Abstract: The paper presents the Rr matrix form of Kedem–Katchalsky–Peusner equations for
membrane transport of the non-homogeneous ternary non-electrolyte solutions. Peusner’s coefficients
Rr

i j and det [Rr] (i, j ∈ {1, 2, 3}, r = A, B) occurring in these equations, were calculated for Nephrophan
biomembrane, glucose in aqueous ethanol solutions and two different settings of the solutions relative
to the horizontally oriented membrane for concentration polarization conditions or homogeneity
of solutions. Kedem–Katchalsky coefficients, measured for homogeneous and non-homogeneous
solutions, were used for the calculations. The calculated Peusner’s coefficients for homogeneous
solutions depend linearly, and for non-homogeneous solutions non-linearly on the concentrations of
solutes. The concentration dependences of the coefficients Rr

i j and det [Rr] indicate a characteristic

glucose concentration of 9.24 mol/m3 (at a fixed ethanol concentration) in which the obtained curves
for Configurations A and B intersect. At this point, the density of solutions in the upper and lower
membrane chamber are the same. Peusner’s coefficients were used to assess the effect of concentration
polarization and free convection on membrane transport (the ξij coefficient), determine the degree
of coupling (the rr

i j coefficient) and coupling parameter (the Qr
R coefficient) and energy conversion

efficiency (the
(
er

i j

)
r

coefficient).

Keywords: membrane transport; non-electrolyte solutions; Peusner’s network thermodynamics;
Kedem–Katchalsky equations; concentration polarization

1. Introduction

Membrane transport belongs to the group of processes described by thermodynamics of irreversible
processes, now called modern thermodynamics. This theory was created and described by Lars Onsager,
Theophile De Donder, Ilya Prigogine and others [1]. This field of knowledge has provided many
research tools for transport mechanisms, including membrane transport, which is used in many areas
of science (physics, biology, chemistry) and technology (biotechnology, biomedical engineering, water
and sewage engineering, bioenergetics) [2–9]. One of the basic research tools for membrane transport
are the Kedem–Katchalsky Equations (K–K Equations) derived from Onsager thermodynamics. The
K–K Equations show the relationship between volume (Jv), solute (Js) fluxes and thermodynamic forces
(osmotic ∆π and/or hydrostatic ∆P) [10,11]. Currently, several versions of these equations classical
form [12] and forms presented by Kargol and Kargol [13,14], Peusner [15], Elmoazzen et al. [16], Cheng
and Pinsky [17] and Cardoso and Cartwright [18].
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The starting point of Onsager thermodynamics is the scattering function: Φ = T(diS/dt), where T
is the absolute temperature, and diS/dt − the production of internal entropy [8,11]. For isothermal
processes: Φ =

∑
i JiXi. If the forces (Xi) and flows (Ji) are related by linear equations in the form

Xi =
∑

j Ri j J j, then the matrix of coefficients R is symmetrical, i.e., Rij = Rji. The degree of coupling
rij results from the relationship between forces and fluxes [19,20] and for diluted and homogeneous
solutions is determined by the relations rij = –Rij(RiiRjj)−0.5 and rij = rji = r. The second law of
thermodynamics imposes the condition RiiRjj ≥ (Rij)2, which means that rij is limited by the relation
−1 ≤ r ≤ +1. When r = ± 1, the system is completely coupled, the processes become a single process.
When r = 0, the two processes are completely unrelated and there are no energy conversion interactions.
Considering the r factor, Kedem and Caplan presented the expression of the maximum energy
conversion efficiency: emax = r2[1 + (1 – r2)0.5]−2 [16]. In turn, Peusner proposed a coupling parameter
called “super QR”: QR = r2(2 – r2)−1 [15,21].

The network form of K–K Equations was presented by Leonardo Peusner [21,22]. He obtained
these equations as a result of symmetrical and/or hybrid transformation of classic Kedem–Katchalsky
equations with the use of network thermodynamics, which he developed (Peusner NT) [23]. It should
be noted that network thermodynamics developed by Oster, Perelson and Katchalsky (Oster, Perelson,
Katchalsky NT) also occurs in science [24]. For homogeneous and non-homogeneous binary
solutions of nonelectrolytes, there are two symmetrical and two hybrid forms of K–K Equations.
Symmetrical forms of these equations contain Peusner matrix coefficients: Rij and Lij (for homogeneous
solutions) and Rr

i j and Lr
i j (for non-homogeneous solutions), while hybrid forms include Peusner

coefficients: Pij and Hij (for homogeneous solutions) and Pr
i j and Hr

i j (for non-homogeneous solutions)
(i, j ∈ {1, 2}) [25–28]. It should be noted that solutions which are vigorously mechanically stirred are
considered as homogeneous solutions [29,30]. In turn, for heterogeneous solutions (solutions in
which concentration polarization occurs), consisting in the formation of concentration boundary
layers (CBLs) on both sides of the membrane separating solutions [31–38]. These layers serve as
additional kinetic barriers for rapidly penetrating substances through membranes in artificial and
biological systems [37–41]. For multicomponent solutions, the number of Peusner matrix coefficients
increases: for ternary solutions, there are eight Peusner coefficients: Rij, Lij, Hij, Nij, Kij, Pij, Sij and
Wij—for homogeneous solutions and Rr

i j, Lr
i j, Hr

i j, Nr
i j, Kr

i j, Pr
i j, Sr

i j or Wr
i j—for nonhomogeneous solutions

(i, j ∈ {1, 2, 3}, r = A or B) [42]. It should be noted that the symmetrical forms of these K–K Equations,
as in the case of binary solutions, include Peusner coefficients Rr

i j or Lr
i j, while hybrid forms—other

Peusner coefficients. It should be noted that the coefficients Rr
i j or Lr

i j, come directly from Onsager
thermodynamics, and the remaining coefficients are a consequence of the application of network
thermodynamics techniques [25–28,42,43].

In the previous papers [42,43] the case of two directional port of Peusner’s network thermodynamics
with single inputs for volume flux Jr

v coupled with thermodynamic force ∆P− ∆π1 − ∆π2 and solute
fluxes: Jr

1 coupled with thermodynamic force ∆π1/C1 and Jr
2 coupled with thermodynamic force ∆π2/C2

was considered. The network K–K Equations for non-homogeneous ternary non-electrolyte solutions
containing Peusner’s coefficients Hr

ij and Lr
ij (i, j ∈ {1, 2, 3}, r = A, B) were obtained by means of hybrid

network transformations of Peusner’s network thermodynamic. The coefficients Hr
ij and Lr

ij (i, j ∈ {1, 2, 3},
r = A, B) occurring in the matrix [Hr] and [Lr] we call Peusner’s coefficients and matrix [Hr] or [Lr]—matrix
of Peusner’s coefficients Hr

ij or Lr
ij respectively. According to the principles of network thermodynamic,

for non-diagonal coefficients we have Hr
12 ,Hr

21, Hr
13 ,Hr

31, Hr
23 ,Hr

32, Lr
12 , Lr

21, Lr
13 , Lr

31 and Lr
23 , Lr

32.
The aim of this paper is to develop the form of Rr of the K–K Equations, containing the Peusner

coefficients Rr
i j (i, j ∈ {1, 2, 3}, r = A, B). We will present the results of calculations of coefficients Rr

i j

and Ri j matrix coefficients Rr
det = det [Rr] and Rdet = det [R] and the quotients ξij = (RA

ij − RB
ij)/Ri j and

ξdet = (RA
det − RB

det)/Rdet which were obtained on the basis of experimentally determined coefficients (Lp,
σ1, σ2, ω11, ω22, ω21, ω12, ζr

1 and ζr
2 ) for glucose in aqueous ethanol solutions and Configurations A and

B of the membrane system. These coefficients were calculated on the basis of experimentally measured
volume (Jr

v) and solute fluxes (Jr
k) (k = 1, 2 and r = A, B) using the procedure described in [11,30,34].
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Besides, we will present the results of calculations of the degree of coupling ri j = −Ri j
(
RiiR j j

)−0.5

(for homogeneous ternary nonelectrolyte solutions), rr
i j = Rr

i j

(
Rr

iiR
r
j j

)−0.5
(for non-homogeneous

ternary nonelectrolyte solutions), coupling parameter QR = ri jr ji
(
2− ri jr ji

)−1
(for homogeneous

ternary nonelectrolyte solutions), Qr
R = rr

i jr
r
ji

(
2− rr

i jr
r
ji

)−1
(for non-homogeneous ternary nonelectrolyte

solutions) and energy conversion coefficients
(
ei j

)
r
=

(
r ji

)2
[
1 +

(
1− ri jr ji

)0.5
]−2

(for homogeneous

ternary nonelectrolyte solutions) and
(
er

i j

)
r
=

(
rr

ji

)2
[
1 +

(
1− rr

i jr
r
ji

)0.5
]−2

(for non-homogeneous ternary

nonelectrolyte solutions) in which (i, j ∈ {1, 2, 3}, r = A, B).

2. Theory

Similarly, as in previous papers (e.g., [42,43]), let us consider the membrane system presented in
Figure 1. In this system the membrane (M) is located in horizontal plane and separates compartments (l)
and (h) filled with non-homogeneous ternary non-electrolyte solutions with concentrations at the initial
moment (t = 0) Ckh and Ckl (Ckh > Ckl, k = 1, 2). This membrane treated as a “black box” type is isotropic,
symmetrical, electroneutral and selective for solvent and non-ionized dissolved substances. For a
membrane located in a horizontal plane that is perpendicular to the gravity vector, two configurations
of the membrane system are possible. These configurations are denoted by A and B. In Configuration
A, the Ckl solution is in the chamber above the membrane, and the Ckh solution is in the chamber
under the membrane. In Configuration B, the arrangement of the solutions relative to the membrane
is reversed.
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Figure 1. The model of single-membrane system: M—membrane, g—gravitational acceleration, lAl and
lAh —the concentration boundary layers in Configuration A, lBl and lBh —the concentration boundary
layers in Configuration B, Ph and Pl—mechanical pressures, Ckh and Ckl—global solution concentrations,
CA

kl, CA
kh, CB

kl and CB
kh —local (at boundaries between membrane and CBLs) solution concentrations, JA

k
and JA

v —solute and volume fluxes in Configuration A, JB
k and JB

v —solute and volume fluxes in
Configuration B.

We will consider only isothermal and stationary processes of membrane transport, for which the
measure is the volume fluxes (Jr

v) and solutes fluxes (Jr
k) (k = 1, 2 and r = A, B). These fluxes can be

described by the K–K Equations for ternary non-electrolyte solutions [42,43]. Under such conditions
water and solutes which diffuse through the membrane create concentration boundary layers (CBLs),
lrh and lrl on both sides of the membrane [35–37]. The thicknesses of lrh and lrl are equal suitably to δr

h
and δr

l . The mean concentrations of solutes „1” and „2” in membrane (C1, C2) can be calculated using

expressions Ck = (Ckh – Ckl)[ln(CkhCkl
−1)]−1 (k = 1, 2). Appearance of CBLs causes that concentrations

at the interfaces of the membrane and solutions respectively decreases from Ckh to Cr
kh and increases

from Ckl to Cr
kl (Cr

kh > Cr
kl , Cr

kl > Ckl, Ckh > Cr
kh. k = 1, 2).
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Let us denote by ρr
l and ρr

h the densities of solutions in the interfaces lrl /M and M/lrh while by ρl
and ρh (ρl < ρh or ρl > ρh) the density of solutions outside the CBLs. The following conditions can be
saved for these densities: ρr

l > ρl or ρr
l < ρr

h, ρr
l > ρr

h or ρr
l < ρr

h and ρr
h > ρh or ρr

h < ρh. If the solution
with lower density is under the membrane, the system lrh/M/lrl loses its hydrodynamic stability and
convective instabilities in near membrane area are observed [35–37]. The measure of the concentration
polarization (CP) is the CP coefficient (ζr

k). Using this coefficient, we can write the relation: Cr
kh −Cr

kl =

ζr
k (Ckh − Ckl). The value of coefficient ζr

k depends on both the concentration of solutions separated by

the membrane
(
Ck

)
and the configuration of the membrane system (r = A, B). More specifically for

this case, the thicknesses of CBLs δr
h and δr

l exceed values (δr
h)crit and (δr

l )crit and CP coefficient (ζr
k)

exceed its critical value (ζr
k) crit suitably [42,43]. The dependency between the CP coefficient (ζr

k) and
the thickness of CBLs (δr

h and δr
l ) can be described by the following expression [37].

ζr
k =

1 + RTωi j

 δr
l(

Dr
i j

)
l

+
δr

h(
Dr

i j

)
h



−1

(1)

where (i, j ∈ {1, 2} and r = A, B). In diluted non-electrolyte solutions, the diffusion coefficients
(
Dr

ks

)
l

and
(
Dr

ks

)
h

are independent both of gravitational direction and solution concentration. Therefore, we

can assume that
(
Dr

ks

)
l
=

(
Dr

ks

)
h

= Dks. Besides, we can also assume that δr
h = δr

l = δr.
According to the Kedem–Katchalsky formalism [11] transport properties of the membrane are

determined for solutions containing a solvent and two dissolved substances (ternary solution) by
practical coefficients: hydraulic permeability (Lp), reflection (σk, k = 1, 2) and permeability of solute
(ωkf, k, f ∈ {1, 2}). In turn, the transport properties of the complex lrh/M/lrl are characterized by coefficients
of hydraulic permeability (Lr

p), reflection (σr
sk, σr

ak) and permeability of solute (ωr
k f ). The coefficients

of hydraulic, osmotic, advective and diffusive concentration polarization are defined by expressions:
ζr

p = Lr
p/Lp, ζr

v = σr
sk/σk, ζr

a = σr
ak/σk and ζr

k = ωr
k f /ωkf [26]. For osmotic volume and diffusive fluxes

of homogeneous (evenly stirred) solutions, the values of volume (Jv) and solute (Jk) fluxes does not
depend on the configuration of the membrane system. Besides, the dependencies Jv = f (Ckh − Ckl)
and Jk = f (Ckh − Ckl) are linear, while Jr

v = f (Ckh − Ckl) and Jr
k = f (Ckh − Ckl) are nonlinear [33,43].

The formation of the layers lrl and lrh reduce the value of volume and solute fluxes from Jv and Jk (in
conditions of homogeneous solutions) to Jr

v and Jr
k (in condition of CP), respectively.

The Kedem–Katchalsky Equations for CP conditions can be written as:

Jr
v = ζr

pLp
(
∆P− ζr

v1σ1∆π1 − ζ
r
v2σ2∆π2

)
(2)

Jr
1 = ζr

s11ω11∆π1 + ζr
s12ω12∆π2 + C1

(
1− ζr

a1σ1
)
Jr
v (3)

Jr
2 = ζr

s21ω21∆π1 + ζr
s22ω22∆π2 + C1

(
1− ζr

a2σ2
)
Jr
v (4)

where Jr
v, Jr

1 and Jr
2—volume and solutes „1” and „2” fluxes respectively, Lp—hydraulic permeability

coefficient, σ1 and σ2—reflection coefficients suitably for solutes „1” or „2”, ω11 and ω22—solute
permeability coefficients for solutes „1” or „2” generated by forces with indexes „1” or „2” and ω12 and
ω21—cross coefficients of permeability for substances „1” or „2” generated by forces with indexes „2” or
„1” respectively. ∆P = Ph − Pl is the hydrostatic pressure difference (Ph, Pl are higher and lower values of
hydrostatic pressure suitably). ∆πk = RT (Ckh− Ckl) is the difference of osmotic pressure (RT is the product
of gas constant and thermodynamic temperature whereas Ckh and Ckl are solutes concentrations, k = 1, 2).
Ck is the mean solute concentration in membrane and is expressed by Ck = (Ckh − Ckl)[ln(CkhCkl

−1)]−1

(k = 1, 2). By means of this expression one can show that ∆πk/Ck = ln (CkhCkl
−1). Equations (2)–(4) are

modified Kedem–Katchalsky Equations for ternary solutions [33].
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The Equations (2)–(4) can be transformed by simple algebraic transformations to the matrix form
of the Kedem–Katchalsky–Peusner equations for non-homogenous non-electrolyte ternary solutions:

∆P− ∆π1 − ∆π2
∆π1

C1
∆π2

C2

 =


Rr
11 Rr

12 Rr
13

Rr
21 Rr

22 Rr
23

Rr
31 Rr

32 Rr
33




Jr
v

Jr
1

Jr
2

 = [Rr]


Jr
v

Jr
1

Jr
2

 (5)

where Rr
11 =

(
ζr

pLp
)−1
−

[(
1− ζr

v1σ1
)
(α1 − α2) +

(
1− ζr

v2σ2
)
(α3 − α4)

]
γ−1, α1 = ζr

s12ω12
(
1− ζr

a2σ2
)
C2,

α2 = ζr
s22ω22

(
1− ζr

a1σ1
)
C1, α3 = ζr

s21ω21
(
1− ζr

a1σ1
)
C1, α4 = ζr

s11ω11
(
1− ζr

a2σ2
)
C2, γ =

ζr
s11ω11ζr

s22ω22 − ζr
s12ω12ζr

s21ω21, Rr
12 =

[
ζr

s21ω21
(
1− ζr

v2σ2
)
− ζr

s22ω22
(
1− ζr

v1σ1
)]
γ−1, Rr

13 =[
ζr

s12ω12
(
1− ζr

v1σ1
)
− ζr

s11ω11
(
1− ζr

v2σ2
)]
γ−1, Rr

21 =
[
ζr

s12ω12
(
1− ζr

a2σ2
)
C2 − ζr

s22ω22
(
1− ζr

a1σ1
)
C1

]
γ−1,

Rr
22 = ζr

s22ω22γ−1C1
−1 Rr

23 = −ζr
s12ω12γ−1C1

−1, Rr
31 =

[
ζr

s21

(
1− ζr

a1σ1
)
C1 − ζr

s11ω11
(
1− ζr

a2σ2
)
C2

]
γ−1,

Rr
32 = −ζr

s21ω21γ−1C2
−1, Rr

33 = ζr
s11ω11γ−1C2

−1, [Rr] is the matrix of the Peusner’s coefficients
Rr

i j (i, j∈{1, 2, 3}) for ternary non-electrolyte solutions in conditions of concentration polarization.
Results from Equation (5) are the non-diagonal coefficients Rr

12 , Rr
21, Rr

13 , Rr
31 and Rr

23 , Rr
32.

Besides, the determinant of the matrix [Rr] is equal to:

det [Rr] =
1

ζr
pLpC1C2

(
ω11ζr

s11ω22ζr
s22 −ω12ζr

s12ω21ζr
s21

) ≡ Rr
det (6)

Index „r” in Equations (2)–(6) indicate that the fluxes Jr
v, Jr

1, Jr
2, Coefficients Rr

i j (i, j ∈ {1, 2, 3}
and matrix [Rr] of these coefficients (Rr form of the matrix of Peusner’s coefficients), depend on
configuration of the membrane system (r = A, B). From a formal point of view, the case of Rr

det = 0 is
excluded, because in order for the denominator of Equation (6) to be different from zero, the condition
ω11ζr

s11ω22ζr
s22 , ω12ζr

s12ω21ζr
s21 must be satisfied. If ω11ζr

s11ω22ζr
s22 > ω12ζr

s12ω21ζr
s21 then Rr

det > 0, and
if ω11ζr

s11ω22ζr
s22 < ω12ζr

s12ω21ζr
s21 then Rr

det < 0.
In order to write Equations (5) and (6) for the conditions of homogeneity of solutions, the

superscript “r” should be removed and assumption that the condition ζr
p = ζr

v1 = ζr
v2 = ζr

a1 = ζr
a2 = ζr

s11
= ζr

s12 = ζr
s22 = ζr

s21 = 1 is fulfilled. Then Equations (5) and (6) are taking the following form:
∆P− ∆π1 − ∆π2

∆π1

C1
∆π2

C2

 =


R11 R12 R13

R21 R22 R23

R31 R32 R33




Jv

J1

J2

 = [R]


Jv

J1

J2

 (7)

where Rr
11 =

(
ζr

pLp
)−1
−

[(
1− ζr

v1σ1
)
(α1 − α2) +

(
1− ζr

v2σ2
)
(α3 − α4)

]
γ−1, α1 = ω12(1− σ2)C2,

α2 = ω22(1− σ1)C1, α3 = ω21(1− σ1)C1, α4 = ω11(1− σ2)C2, γ = ω11ω22 −

ω12ω21, R12 = [ω21(1− σ2) −ω22(1− σ1)]γ−1, R13 = [ω12(1− σ1) −ω11(1− σ2)]γ−1, R21 =[
ω12(1− σ2)C2 −ω22(1− σ1)C1

]
γ−1, R22 = ω22γ−1C1

−1, R23 = −ω12γ−1C1
−1, R31 =[

ω21(1− σ1)C1 −ω11(1− σ2)C2
]
γ−1, R32 = −ω21γ−1C2

−1, R33 = ω11γ−1C2
−1.

Besides the determinant of matrix [R] is given by the relationship:

det [R] =
1

LpC1C2(ω11ω22 −ω12ω21)
Rdet (8)

As in the case of Equation (6), the case of Rdet = 0 is excluded, because in order for the
denominator of Equation (8) to be different from zero, the condition ω11ω22 , ω12ω21 must be
fulfilled. If ω11ω22 > ω12ω21 then Rr

det > 0, and if ω11ω22 < ω12ω21 then Rdet < 0.
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The coefficients R11, R12, R13, R21, R22, R23, R31, R32 and R33 occurring in the matrix [R] we call
Peusner’s coefficients and matrix [R]—R form of the matrix of Peusner’s coefficients. According
to the principles of network thermodynamic [15] in the above equation, symmetry of non-diagonal
coefficients (Rij = Rji i , j) is not required. In the case considered above for non-diagonal coefficients,
we have R12 = R21, R13 = R31 only when ω12 = ω21. Besides, from Equation (7) it results that R23 = R32

only when ω12C1 = ω21 C2.
In order to show the relations between coefficients Rr

i j and Rij and between determinants of
matrixes [Rr] and [R] for A and B configurations of the membrane system (r = A, B) we calculate using
Equations (4)–(7) the expressions:

ξi j =
RA

ij − RB
ij

Ri j
(9)

ξdet =
RA

det −RB
det

Rdet
(10)

The values of coefficients ξij and ξdet show the influence of CP and natural convection (NC) on
the membrane transport. These coefficients are a measure of the distance of convective processes from
the critical state (non-convection). Assuming that the coefficients RA

ij , RB
ij, Ri j, RA

det, RB
det, ξi j and ξdet

have the same sign, on the basis of Equations (9) and (10), we can write the criteria listed in Table 1.

Table 1. Criteria for coefficients, RA
ij , RB

ij, Ri j, RA
det, RB

det, ξi j and ξdet.

RA
ij > 0, RB

ij > 0, Rij > 0
RA

ij > Rij, RB
ij > Rij

RA
ij < Rij, RB

ij < Rij

RA
ij > RB

ij

RA
ij < RB

ij

RA
ij = RB

ij

ξij > 0
ξij < 0
ξij = 0

RA
ij < 0, RB

ij < 0, Rij < 0
RA

ij > Rij, RB
ij > Rij

RA
ij < Rij, RB

ij < Rij

RA
ij > RB

ij

RA
ij < RB

ij

RA
ij = RB

ij

ξij < 0
ξij > 0
ξij = 0

RA
det > 0, RB

det > 0, Rdet > 0
RA

det > Rdet, RB
det > Rdet

RA
det < Rdet, RB

det < Rdet

RA
det > RB

det
RA

det < RB
det

RA
det = RB

det

ξdet > 0
ξdet < 0
ξdet = 0

RA
det < 0, RB

det < 0, Rdet < 0
RA

det > Rdet, RB
det > Rdet

RA
det < Rdet, RB

det < Rdet

RA
det > RB

det
RA

det < RB
det

RA
det = RB

det

ξdet < 0
ξdet > 0
ξdet = 0

In order to show the relationship between coefficients Ri j, R ji, Rii and R j j and coefficients Rr
i j, Rr

ji, Rr
ii

and Rr
j j for A and B configurations of membrane system we will calculate the Kedem–Caplan–Peusner

(KCP) degree of coupling ri j and rr
i j in which i, j ∈ {1, 2, 3}, superscript r = A, B, using Equations (5), (7),

(11) and (12) [19,20]. The expressions for these coefficients take the following forms:

rr
i j = −

Rr
i j√

Rr
iiR

r
j j

(11)

ri j = −
Ri j√
RiiR j j

(12)

The second law of thermodynamics imposes the conditions Rr
iiR

r
j j ≥

(
Rr

i j

)2
and Rr

iiR
r
j j ≥

(
Rr

ji

)2

which means that rr
i j and rr

ji is limited by the relation −1 ≤ rr
i j, rr

ji ≤ +1. For ternary solutions, taking into
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consideration Equations (5) and (11) and (7) and (12) we get: rr
12 , rr

21, rr
13 , rr

31, r23 , r32 and rr
23 , rr

32.
This shows that for conditions of CP, Onsager’s reciprocal relations are not satisfied.

The
(
ei j

)
r

and
(
er

i j

)
r

coefficients can be used to evaluate of energy conversion efficiency by means

of the Kedem–Caplan–Peusner coefficient, which can be written in the form:

(
er

i j

)
r
=

(
rr

ji

)2

(
1 +

√
1− rr

i jr
r
ji

)2 =

(
Rr

ji

)2

Rr
iiR

r
j j

(
1 + Rr

iiR
r
j j

√
Rr

iiR
r
j j −Rr

i jR
r
ji

)2 (13)

(
ei j

)
r
=

(
r ji

)2(
1 +

√
1− ri jr ji

)2 =

(
R ji

)2

RiiR j j
(
1 + RiiR j j

√
RiiR j j −Ri jR ji

)2 (14)

Peusner proposed the “super QR”—coupling parameter, defined by the following expression [15,21,22]:

Qr
R =

Rr
i jR

r
ji

2Rr
iiR

r
j j −Rr

i jR
r
ji
=

rr
i jr

r
ji

2− rr
i jr

r
ji

(15)

QR =
Ri jR ji

2RiiR j j −Ri jR ji
=

ri jr ji

2− ri jr ji
(16)

3. Results and Discussion

For ternary solutions, the coefficients Rr
ij, Rij, (i, j ∈ {1, 2, 3}, r = A, B) and determinant of matrix

of these coefficients det [Rr] were calculated for polymer membrane Nephrophan (VEB Filmfabrik,
Wolfen, Germany) and glucose solutions in aqueous solution of ethanol using Equations (2)–(16).
Nephrophan is a microporous, highly hydrophilic membrane made of cellulose acetate (cello- triacetate
(OCO-CH3)n). The glucose concentration was marked by Index “1” and the ethanol concentration by
Index “2”. The concentration of Substance “1” in Chamber (h) take values from C1h = 1 mol/m3 to
C1h = 101 mol/m3. In turn, concentration of a Substance “2” in Chamber (h) was constant and amounted
to C2h = 201 mol/m3. The concentrations of both components in the chamber (l) were established and
amounted to C1l = C2l = 1 mol m−3. In expressions under Equation (2) which describe the matrix
coefficients Rr

11, Rr
12, Rr

13, Rr
21, Rr

22, Rr
23, Rr

31, Rr
32 and Rr

33 which are the coefficients that describe transport
properties of membrane (Lp, σ1, σ2, ω11, ω22, ω21 and ω12), average concentrations of Solutions “1”
and “2” in the membrane (C1, C2) and CP coefficients (ζr

p, ζr
a1, ζr

a2, ζr
v1, ζr

s11, ζr
s12, ζr

v2, ζr
s22 and ζr

s21).
For Nephrophan membrane and aqueous solutions of glucose and ethanol the following conditions
are fulfilled: ζr

p = ζr
a1 = ζr

a2 = 1, ζr
v1 = ζr

s11 = ζr
s12 = ζr

1 and ζr
v2 = ζr

s22 = ζr
s21 = ζr

2 [42]. The coefficients
describing transport properties of membrane, e.g., hydraulic permeability (Lp), reflection (σ1, σ2) and
diffusive permeability (ω11,ω22,ω21,ω12) were appointed in the conditions of uniform stirring of solutions
separated by membrane in series of independent experiments according with the procedure described in
the paper [11]. For Nephrophan, membrane values of these coefficients are independent on solution
concentration and amount to Lp = 4.9 × 10−12 m3/Ns, σ1 = 0.068, σ2 = 0.025, ω11 = 0.8 × 10−9 mol/Ns,
ω12 = 0.81 × 10−13 mol/Ns, ω22 = 1.43 × 10−9 mol/Ns and ω21 = 1.63 × 10−12 mol/Ns [33].

3.1. Concentration Dependencies of Coefficients ζr
i and ρr

In Figure 2, the experimental dependencies ζr
i = f (C1, C2 = 37.71 mol/m3), (i = 1 or 2 and

r = A or B) were presented for glucose solutions in 201 mol m−3 aqueous solution of ethanol taken
from our previous paper [42]. The dependences ρr = f (C1, C2 = 37.71 mol/m3), (i = 1 or 2 and
r = A or B) presented in Figure 3 were calculated on the basis of Equation (1) and the results shown in
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Figure 2. The points (#,4) were obtained for Configuration A and points (�,5) for Configuration B of
single-membrane system.

Figure 2 shows that in the case of Configuration A for 0 < C1 ≤ 4 mol/m3, ζA
1 = ζA

2 = 0.5 = constant
and for 4 mol/m3 < C1 ≤ 12.72 mol/m3 the values of coefficients ζA

1 and ζA
2 decrease nonlinearly

and for C1 > 12.72 mol/m3 reach constant value equal respectively to ζA
1 = ζA

2 = 0.03. In the case of
Configuration B for 0 < C1 ≤ 5.41 mol/m3, ζB

1 = ζB
2 = 0.03 = constant, and for 5.41 mol/m3 < C1 ≤ 12.72

mol/m3 the values of coefficients ζA
1 and ζA

2 increase and for C1 > 12.72 mol/m3 reach constant value
equal respectively to ζA

1 = ζA
2 = 0.5. The results presented in this figure show that 0.5 ≥ ζA

1 ≥ 0.03 and
0.03 ≤ ζB

1 ≤ 0.5. This notation indicates that for the same values C1 and C2 the value of coefficient ζA
1

decreases from 0.5 to 0.03 and coefficient ζB
1 increases from 0.03 to 0.5.

1 
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Figure 3. Dependencies of the thickness of concentration boundary layers (δr) in Configurations
A (r = A) and B (r = B) of the membrane system on density difference (ρh–ρl) of glucose concentration
in 201 mol/m3 aqueous ethanol solutions.

Figure 3 shows that in Configuration A for −30 kg/m−3 < ∆ρ = ρh − ρl ≤ −8.5 kg/m−3,
δA = 3.95× 10−3 m = constant and for−8.5 kg/m−3 < ∆ρ ≤ 7.9 kg/m−3 the values of coefficients δA decrease
nonlinearly and for ∆ρ > 7.9 kg/m−3 reach constant value equal respectively to δA = 0.52 × 10−3 m
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= constant. For −30 kg/m−3 < ∆ρ ≤ −8.5 kg/m−3, δB = 0.52 × 10−3 m = constant and for –8.5 kg/m–3

< ∆ρ ≤ 7.9 kg/m−3 the values of coefficients δB decrease nonlinearly and for ∆ρ > 7.9 kg/m−3 reach
constant value equal respectively to δB = 3.95 × 10−3 m = const. The results presented in Figure 3 show
that 3.95 × 10−3 m ≥ δA

≥ 0.52 × 10−3 m and 0.52 × 10−3 m ≤ δB
≤ 3.95 × 10−3 m. This notation indicates

that for the same values ∆ρ the value of coefficient δA decreases from 3.95 × 10−3 m to 0.52 × 10−3 m
and coefficient δB increases from 0.52 × 10−3 m to 3.95 × 10−3 m.

In addition, it can be seen from the Figures 2 and 3 that for C1 < 9.24 mol/m3 and ∆ρ ≤ 0.046 kg/m−3

in Configuration A, the complex of CBLs is hydrodynamically unstable and in Configuration
B—hydrodynamically stable, because the solutions of ethanol prevailing over glucose are under
the membrane, and for that case the solution density under the membrane is lower than the solution
density over the membrane. In Configuration B, the complex of CBLs is stable because density of
the solution under the membrane is greater than the solution above the membrane. In turn for
C1 > 9.24 mol/m3 and ∆ρ > 0.046 kg/m−3 in Configuration A, the complex of CBLs is hydrodynamically
stable, and in Configuration B—hydrodynamically unstable due to the fact that in solutions separated
by the membrane, glucose concentration is greater than ethanol and density of solution under the
membrane is greater than the solution over the membrane. In Configuration B, the complex of CBLs
is unstable because density of the solution under the membrane is smaller than the solution above
the membrane. This causes the convection movements vertically downward. For C1 = 9.24 mol/m3

and ∆ρ = 0.046 kg/m−3 the CBLS complex is independent of the membrane system configuration and
therefore ζA

1 = ζB
1 = 0.234 and δA = δB = 1.3 × 10−3 m. In Configuration A, a non-convective state occurs,

when the density of the solution in the compartment above the membrane is higher than density
of the solution in the compartment under the membrane. In Configuration A natural convection
occurs when ρl > ρA

e , ρA
i > ρh and ρA

e > ρA
i and is directed vertically upwards. On the other hand,

in Configuration B, a natural convection occurs when ρl < ρB
e , ρB

i < ρh and ρB
e < ρB

ei and is directed
vertically downwards [38]. Natural convection allows it to increase the value fluxes of Jr

vk and Jr
k.

3.2. Concentration Dependencies of Coefficients Rr
i j, Ri j, Rr

det and Rdet

To calculate Rr
ij, Rij, Rr

det and Rdet, (i, j ∈ {1, 2, 3}, r = A, B), based on Equations (5)–(8) respectively, the

characteristics ζr
1 = f (C1, C2 = 37.71 mol/m3) and ζr

2 = f (C1, C2 = 37.71 mol/m3) presented in Figure 2
and following data: Lp = 4.9 × 10–12 m3/Ns, σ1 = 0.068, σ2 = 0.025, ω11 = 0.8 × 10−9 mol/Ns, ω12 = 0.81
× 10−13 mol/Ns, ω22 = 1.43 × 10−9 mol/Ns, ω21 = 1.63 × 10−12 mol/Ns, C1 = 2.79 ÷ 21.67 mol/m3 and
C2 = 37.71 mol/m3 were used. The results of calculating these coefficients are presented in Figures 4–10.

The Graphs 1A and 1B in Figure 4 illustrating the dependencies RA
11 = f (C1, C2 = 37.71 mol/m3) and

RB
11 = f (C1, C2 = 37.71 mol/m3) were obtained for the Configurations A and B of the membrane system. The

value of coefficient RA
11 increases initially nonlinearly from RA

11 = 2.57× 1011 Ns/m3 (for C1 = 1.44 mol/m3) to
RA

11 = 2.89× 1011 Ns/m3 (for C1 = 7.56 mol/m3) and next increases nonlinearly to RA
11 = 16.45× 1011 Ns/m3 (for

C1 = 14.59 mol/m3). For C1 > 16.45 mol/m3 RA
11 increases approximately linearly and for C1 = 21.67 mol/m3

and C2 = 37.71 mol/m3 achieves the value RA
11 = 19.2 × 1011 Ns/m3. The value of coefficient RB

11 initially
increases linearly from RB

11 = 11.47 × 1011 Ns/m3 (for C1 = 1.44 mol/m3) to RA
11 = 13.22 × 1011 Ns/m3

(for C1 = 5.41 mol/m3) and next decreases almost linearly from RB
11 = 12.86×1011 Ns/m3 (for C1 = 6.57 mol/m3)

to RB
11 = 4.14 × 1011 Ns/m3 (for C1 = 8.74 mol/m3). Besides R11

A = RB
11 = 3.67 × 1011 Ns/m3 (for

C1 = 9.24 mol/m3). For C1 > 12.72 mol/m3 RA
11 increases approximately linearly and for C1 = 21.67 mol/m3

achieves the value RA
11 = 3.04 × 1011 Ns/m3. For homogeneous solutions RA

11 = RB
11 = R11 increase linearly

from R11 = 2.3 × 1011 Ns/m3 (for C1 = 1.44 mol/m3) to R11 = 2.53 × 1011 Ns/m3 (for C1 = 21.67 mol/m3).
Besides, it follows from this figure that for C1 < 9.24 mol/m3 RA

11 < RB
11 and for C1 > 9.24 mol/m3 RA

11 > RB
11.
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B) for the glucose in aqueous ethanol solution in conditions of concentration polarization for Configurations
A and B of the membrane system: Curve 1A—for RA

11, Curve 1B—for RB
11 and Line 1—for R11.
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Figure 5. The graphic illustration of the dependences: Rr
i j = f (C1, C2 = 37.71 mol/m3), (i, j ∈ {1, 2, 3}

and r = A, B) for the glucose in aqueous ethanol solution in conditions of concentration polarization
for Configurations A and B of the membrane system: Curve 1A—for RA

12, Curve 2A—for RA
13, Curve

1B—for RB
12, Curve 2B—for RB

13, Line 1—for R12 and Line 2—for R13.

The Graphs 1A, 1B, 2A and 2B illustrating dependencies RA
12 = f (C1, C2 = 37.71 mol/m3), RB

12
= f (C1, C2 = 37.71 mol/m3), RA

21 = f (C1, C2 = 37.71 mol/m3) and RB
21 = f (C1, C2 = 37.71 mol/m3)

presented in Figure 5, were obtained suitably for Configurations A and B of the membrane system,
respectively. In the case of Configuration A, the value of coefficients RA

12 and RA
13 decreases nonlinearly

from RA
12 = −2.41 × 109 Ns/mol and RA

13 = −1.41 × 109 Ns/mol (for C1 = 5.41 mol/m3) to RA
12 = −39.95 ×

10−9 Ns/mol (for C1 = 14.59 mol/m3) and to RA
13 = −24.76 × 109 Ns/mol (for C1 = 13.66 mol/m3). RA

12
(for C1 ≥ 15.51 mol/m3) and RA

13 (for C1 ≥ 12.72 mol/m3) are constant and amounts to RA
12 = −40.15 ×

109 Ns/mol and RA
13 = −24.95 × 109 Ns/mol, respectively. The value of coefficients RB

12 and RB
13 increases

nonlinearly from RB
12 = −40.15 × 109 Ns/mol and RB

13 = −24.34 × 10−9 Ns/mol (for C1 = 0.69 mol/m3) to
RB

12 = −2.46 × 109 Ns/mol and RB
13 = RB

21 = −1.43 × 109 Ns/mol (for C1 = 12.72 mol/m3). For C1 > 13.66
mol/m3, RB

12 and RB
21 are constant and amounts to RB

12 = −2.41 × 10−9 Ns/mol and RB
13 = −1.39 × 109
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Ns/mol. For C1 = 9.24 mol/m3 and C2 = 37.71 mol/m3 RA
12 = RB

12 = −6.0 × 109 Ns/mol and RA
13 = RB

13 =

−3.0 × 109 Ns/mol. Besides, for C1 < 9.24 mol/m3 RA
12 > RB

12 and RA
13 > RB

13. For C1 > 9.24 mol/m3 RA
12 <

RB
12 and RA

13 < RB
13. For homogeneous solutions RA

12 = RB
12 = R12 = −1.16 × 109 Ns/mol < RA

13 = RB
13 =

R13 = −0.68 × 109 Ns/mol in whole range of studied C1 (Lines 1 and 2).
The Graphs 1A, 1B, 2A and 2B present dependencies RA

12 = f (C1, C2 = 37.71 mol/m3), RB
12 = f (C1,

C2 = 37.71 mol/m3), RA
21 = f (C1, C2 = 37.71 mol/m3) and RB

21 = f (C1, C2 = 37.71 mol/m3) presented in
Figure 5, were obtained suitably for Configurations A and B of the membrane system, respectively.
In the case of Configuration A, the value of coefficients RA

12 and RA
13 decreases nonlinearly from RA

12
= −2.41 × 109 Ns/mol and RA

13 = −1.41 × 109 Ns/mol (for C1 = 5.41 mol/m3) to RA
12 = −39.95 × 10−9

Ns/mol (for C1 = 14.59 mol/m3) and to RA
13 = −24.76 × 109 Ns/mol (for C1 = 13.66 mol/m3). RA

12 (for
C1 ≥ 15.51 mol/m3) and RA

13 (for C1 ≥ 12.72 mol/m3) are constant and amounts to RA
12 = −40.15 × 109

Ns/mol and RA
13 = −24.95 × 109 Ns/mol, respectively. The value of coefficients RB

12 and RB
13 increases

nonlinearly from RB
12 = −40.15 × 109 Ns/mol and RB

13 = −24.34 × 10−9 Ns/mol (for C1 = 0.69 mol/m3) to
RB

12 = −2.46 × 109 Ns/mol and RB
13 = RB

21 = −1.43 × 109 Ns/mol (for C1 = 12.72 mol/m3). For C1 > 13.66
mol/m3, RB

12 and RB
21 are constant and amounts to RB

12 = −2.41 × 10−9 Ns/mol and RB
13 = −1.39 × 109

Ns/mol. For C1 = 9.24 mol/m3 and C2 = 37.71 mol/m3 RA
12 = RB

12 = −6.0 × 109 Ns/mol and RA
13 = RB

13 =

−3.0 × 109 Ns/mol. Besides, for C1 < 9.24 mol/m3 RA
12 > RB

12 and RA
13 > RB

13. For C1 > 9.24 mol/m3 RA
12 <

RB
12 and RA

13 < RB
13. For homogeneous solutions RA

12 = RB
12 = R12 = −1.16 × 109 Ns/mol < RA

13 = RB
13 =

R13 = −0.68 × 109 Ns/mol in whole range of studied C1 (Lines 1 and 2).
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= f(�̅� ,  �̅�  = 37.71 mol/m3) are hyperbolas. In turn, Curve 1A, illustrating the dependence 𝑅  = 
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Figure 6. The graphic illustration of the dependences: Rr
i j = f (C1, C2 = 37.71 mol/m3), (i, j ∈ {1, 2, 3}

and r = A, B) for the glucose in aqueous ethanol solution in conditions of concentration polarization
for Configurations A and B of the membrane system: Curve 1A—for RA

21, Curve 2A—for RA
31, Curve

1B—for RB
21, Curve 2B—for RB

31, Line 1—for R21 and Line 2—for R31.

Graphs 1A, 1B, 2A and 2B illustrating dependencies RA
21 = f (C1, C2 = 37.71 mol/m3), RB

21 = f (C1,
C2 = 37.71 mol/m3), RA

31 = f (C1, C2 = 37.71 mol/m3) and RB
31 = f (C1, C2 = 37.71 mol/m3), presented in

Figure 6, were obtained suitably for Configurations A and B of the membrane system, respectively.
The dependencies shown in this figure are similar to the dependencies shown in Figure 5.
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Figure 7. The graphic illustration of the dependences: Rr
22 = f (C1, C2 = 37.71 mol/m3), (r = A, B) for

the glucose in aqueous ethanol solution in conditions of concentration polarization for Configurations
A and B of the membrane system: Curve 1A—for RA

22, Curve 1B—for RB
22 and Line 1—for R22.

The Graphs 1A and 1B, illustrating the dependencies RA
22 = f (C1, C2 = 37.71 mol/m3) and RB

22 =

f (C1, C2 = 37.71 mol/m3), presented in Figure 7, were obtained for the Configurations A and B of the
membrane system. Curves 1 and 1B illustrate the dependencies R22 = f (C1, C2 = 37.71 mol/m3) and
RB

22 = f (C1, C2 = 37.71 mol/m3) are hyperbolas. In turn, Curve 1A, illustrating the dependence RA
22 =

f (C1, C2), is an irregular curve: initially it decreases nonlinearly from RA
22 = 3.62 × 109 m3Ns/mol2 (for

C1 = 1.44 mol/m3) to RA
22 = 0.43 × 109 m3Ns/mol2 (for C1 = 7.68 mol/m3) and then grows nonlinearly to

RA
22 = 2.95 × 109 m3Ns/mol2 (for C1 = 13.66 mol/m3). For C1 > 13.66 mol/m3 RA

22 decreases linearly to
RA

22 = 1.86 × 109 m3Ns/mol2 (for C1 = 21.67 mol/m3). In turn for C1 = 9.24 mol/m3 RA
22 = RB

22 = 0.64 ×
109 m3Ns/mol2, while for C1 < 9.24 mol/m3 RA

22 < RB
22 and for C1 > 9.24 mol/m3 RA

22 > RB
22.

Entropy 2020, 22, 857 12 of 27 

 

to 𝑅  = 2.95 × 109 m3Ns/mol2 (for �̅�  = 13.66 mol/m3). For �̅�  > 13.66 mol/m3 𝑅  decreases linearly 
to 𝑅  = 1.86 × 109 m3Ns/mol2 (for �̅�  = 21.67 mol/m3). In turn for �̅�  = 9.24 mol/m3 𝑅  = 𝑅  = 0.64 
× 109 m3Ns/mol2, while for �̅�  < 9.24 mol/m3 𝑅  < 𝑅 , and for �̅�  > 9.24 mol/m3 𝑅  > 𝑅 . 

 

 
Figure 8. The graphic illustration of the dependences: 𝑅  = f(�̅� , �̅�   = 37.71 mol/m3), (i, j ∈ {1, 2, 3} and 
r = A, B) for the glucose in aqueous ethanol solution in conditions of concentration polarization for 
Configurations A and B of the membrane system: Curve 1A—for 𝑅 , Curve 2A—for 𝑅 , Curve 1B—
for 𝑅 , Curve 2B—for 𝑅 , Line 1—for R23 and Line 2—for R32. 

Graphs 1A, 1B, 2A and 2B illustrate dependencies 𝑅  = f(�̅� , �̅�  = 37.71 mol/m3 = const.), 𝑅  = 
f(�̅� , �̅�  = 37.71 mol/m3 = const.), 𝑅  = f(�̅� , �̅�  = 37.71 mol/m3 = const.) and 𝑅  = f(�̅� , �̅�  = 7.71 mol/m3 
= const.) as presented in Figure 8, were obtained suitably for Configurations A and B of the membrane 
system, respectively. Curves 1, 2 and 1B illustrate dependencies R23 = f(�̅� , �̅�  = 37.71 mol/m3 = const.), 
R32 = f(�̅� , �̅�  = 37.71 mol/m3 = const.) and 𝑅  = f(�̅� , �̅�  = 37.71 mol/m3 = const.) are hyperbolas. In 
turn, Curve 1A illustrating the dependence 𝑅  = f(�̅� , �̅�  = 37.71 mol/m3 = const.) is an irregular 
curve: initially it grows nonlinearly from 𝑅  = −2.05 × 105 m3Ns/mol2 (for �̅�  = 1.44 mol/m3) to 𝑅  
= −0.23 × 105 m3Ns/mol2 (for �̅�  = 7.68 mol/m3) and then decreases nonlinearly to 𝑅  = −1.99 × 105 
m3Ns/mol2 (for �̅�  = 13.66 mol/m3). For �̅�  > 12.71 mol/m3 𝑅  increases linearly to 𝑅  = −1.17 × 105 
m3Ns/mol2 (for �̅�  = 21.67 mol/m3). For �̅�  = 9.24 mol/m3, 𝑅  = 𝑅  = −0.38 × 105 m3Ns/mol2, while 
for �̅�  < 9.24 mol/m3 𝑅  > 𝑅 , and for �̅�  > 9.24 mol/m3 𝑅  < 𝑅 . Curves 2A and 2B illustrating 
respectively the dependence 𝑅  = f(�̅� , �̅� ) and R32B = f(�̅� , �̅� ) intersect at the coordinates �̅�  = 9.24 
mol/m3 and 𝑅  = 𝑅  = −2.66 × 105 m3Ns/mol2. For �̅�  < 9.24 mol/m3 𝑅  > 𝑅 , and for �̅�  > 9.24 
mol/m3 𝑅  < 𝑅 . 

Figure 8. The graphic illustration of the dependences: Rr
i j = f (C1, C2 = 37.71 mol/m3), (i, j ∈ {1, 2, 3}

and r = A, B) for the glucose in aqueous ethanol solution in conditions of concentration polarization
for Configurations A and B of the membrane system: Curve 1A—for RA

23, Curve 2A—for RA
32 Curve

1B—for RB
23 Curve 2B—for RB

32 Line 1—for R23 and Line 2—for R32.
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Figure 2. Dependencies of concentration polarization coefficient (𝜁 ) on glucose concentration in 201 
mol/m3 aqueous ethanol solution for Configurations A and B of the single-membrane system. 

 
Figure 3. Dependencies of the thickness of concentration boundary layers (δr) in Configurations A (r 
= A) and B (r = B) of the membrane system on density difference (ρh–ρl) of glucose concentration in 
201 mol/m3 aqueous ethanol solutions. 

 
Figure 9. The graphic illustration of the dependence Rr

33 = f (C1, C2 = 37.71 mol/m3), (r = A, B) for the
glucose in aqueous ethanol solution in conditions of concentration polarization for Configurations A
and B of the membrane system: Curve 1A—for RA

33, Curve 1B—for RB
33 and Line 1—for R33.Entropy 2020, 22, 857 14 of 27 

 

 
Figure 10. The graphic illustration of the dependence 𝑅  = f(�̅� , �̅�  = 37.71 mol/m3) (r = A, B) for the 
glucose in aqueous ethanol solution in conditions of concentration polarization for Configuration A 
(𝑅 , Curve 1A) and B (𝑅 , Curve 1B) of the membrane system. Line 1 illustrates the dependence 𝑅  = f(�̅� , �̅�  = const.) in conditions of homogeneity of solutions. 

To calculate coefficients 𝑅  and 𝑅 , the Equations (6) and (8) were used, respectively. The 
Graphs 1A and 1B presented in Figure 10 and illustrating the dependencies 𝑅  = f(�̅� , �̅�  = 37.71 
mol/m3 = const.) and 𝑅  = f(�̅� , �̅�  = 37.71 mol/m3 = const.) were obtained for the Configurations A 
and B of the membrane system. Curve 1B is hyperbolic. In turn, Curve 1A is an irregular curve: 
initially it decreases nonlinearly from 𝑅 = 2.53 × 1027 m3N3s3/mol4 (for �̅�  = 1.44 mol/m3) to 𝑅 = 
0.7 × 1027 m3N3s3/mol4 (for �̅�  = 7.68 mol/m3) and then grows nonlinearly to 𝑅  = 36.86 × 1027 
m3N3s3/mol4 (for �̅�  = 13.66 mol m-3, �̅�  = 37.71 mol/m3). For �̅�  > 13.66 mol/m3 𝑅  decreases 
linearly to the value of 𝑅  = 23.24 × 1027 m3N3s3/mol4 (for �̅�  = 21.67 mol/m3). In turn for �̅�  = 9.24 
mol/m3 𝑅  = 𝑅  = 11.20 × 1027 m3N3s3/mol4, whereas for �̅�  < 9.24 mol/m3 𝑅  < 𝑅 , and for �̅�  
> 9.24 mol/m3 𝑅  > 𝑅 . For homogeneous solutions, 𝑅  = 𝑅  = 𝑅  increase linearly from 𝑅  = 0.63 × 1027 m3N3s3/mol4 (for �̅�  = 1.44 mol/m3) to 𝑅  = 0.02 × 1027 m3N3s3/mol4 (for �̅�  = 21.67 
mol/m3). 

3.3. Concentration Dependencies of 𝜉  and 𝜉  

To calculate coefficients 𝜉  = (𝑅  – 𝑅 )/𝑅  and 𝜉  = (det [𝑅 ] – det [𝑅 ])/det [R] the 
Equations (9) and (10) were used, respectively. The graph presented in Figure 11 illustrating the 
dependencies 𝜉  = f(�̅� , �̅� = 37.71 mol/m3) was calculated on the basis of Equation (9). In that case the 
value of coefficient 𝜉  initially decreases to 𝜉  = −4.8 (for �̅�  = 1.44 mol/m3) and next increases 
nonlinearly to 𝜉  = 5.41 (for �̅� = 13.66 mol/m3) and then increases linearly to 𝜉  = 6.39 (for �̅�  = 
21.67 mol/m3). Besides, it follows from this figure that for �̅�  = 9.24 mol/m3 𝜉  = 0 and that �̅�  < 9.24 
mol/m3 𝜉  < 0 and for �̅�  > 9.24 mol/m3 𝜉  < 0. 

Figure 10. The graphic illustration of the dependence Rr
det = f (C1, C2 = 37.71 mol/m3) (r = A, B) for the

glucose in aqueous ethanol solution in conditions of concentration polarization for Configuration A
(RA

det, Curve 1A) and B (RB
det, Curve 1B) of the membrane system. Line 1 illustrates the dependence Rdet

= f (C1, C2 = const.) in conditions of homogeneity of solutions.

Graphs 1A, 1B, 2A and 2B illustrate dependencies RA
23 = f (C1, C2 = 37.71 mol/m3 = const.), RB

23
= f (C1, C2 = 37.71 mol/m3 = const.), RA

32 = f (C1, C2 = 37.71 mol/m3 = const.) and RB
32 = f (C1, C2 =

7.71 mol/m3 = const.) as presented in Figure 8, were obtained suitably for Configurations A and B
of the membrane system, respectively. Curves 1, 2 and 1B illustrate dependencies R23 = f (C1, C2 =

37.71 mol/m3 = const.), R32 = f (C1, C2 = 37.71 mol/m3 = const.) and RB
23 = f (C1, C2 = 37.71 mol/m3 =

const.) are hyperbolas. In turn, Curve 1A illustrating the dependence RA
23 = f (C1, C2 = 37.71 mol/m3 =

const.) is an irregular curve: initially it grows nonlinearly from RA
23 = −2.05 × 105 m3Ns/mol2 (for C1 =

1.44 mol/m3) to RA
23 = −0.23 × 105 m3Ns/mol2 (for C1 = 7.68 mol/m3) and then decreases nonlinearly to

RA
23 = −1.99 × 105 m3Ns/mol2 (for C1 = 13.66 mol/m3). For C1 > 12.71 mol/m3 RA

23 increases linearly
to RA

23 = −1.17 × 105 m3Ns/mol2 (for C1 = 21.67 mol/m3). For C1 = 9.24 mol/m3, RA
23 = RB

23 = −0.38 ×
105 m3Ns/mol2, while for C1 < 9.24 mol/m3 RA

23 > RB
23 and for C1 > 9.24 mol/m3 RA

23 < RB
23. Curves 2A

and 2B illustrating respectively the dependence RA
32 = f (C1, C2) and R32

B= f (C1, C2) intersect at the
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coordinates C1 = 9.24 mol/m3 and RA
32 = RB

32 = −2.66 × 105 m3Ns/mol2. For C1 < 9.24 mol/m3 RA
32 > RB

32
and for C1 > 9.24 mol/m3 RA

32 < RB
32.

Presented in Figure 9, Graphs 1A and 1B illustrating the dependencies RA
33 = f (C1, C2 = 37.71

mol/m3) and RB
33 = f (C1, C2 = 37.71 mol/m3) were obtained for Configurations A and B of the membrane

system. The value of coefficient RA
33 increases nonlinearly from RA

33 = 0.37 × 109 m3Ns/mol2 (for C1 =

1.44 mol/m3) to RA
33 = 6.51 × 109 m3Ns/mol2 (for C1 = 13.66 mol/m3). For C1 > 13.66 mol/m3 RA

33 = 6.61
× 109 m3Ns/mol2 and is constant. The value of coefficient RB

33 in Configuration B of the membrane
system initially is constant and for C1 > 1.44 mol/m3 increases nonlinearly from RB

33 = 6.61 × 109

m3Ns/mol2 (for C1 = 0.69 mol/m3) to RB
33 = 0.38 × 109 m3Ns/mol2 (for C1 = 13.66 mol/m3) and next

achieves constant value RB
33 = 0.37 × 109 m3Ns/mol2 (for C1 > 13.66 mol/m3). Besides RA

33 = RB
33 = 0.82

× 109 m3Ns/mol2 for C1 = 9.24 mol/m3 and C2 = 37.71 mol/m3. For homogeneous solutions RA
33 = RB

33
= R33, R33 = 0.18 × 109 m3Ns/mol2 (for C1 = 0.69 mol/m3). Besides, it follows from this figure that for
C1 < 9.24 mol/m3 RA

33 < RB
33 and for C1 > 9.24 mol/m3 RA

33 > RB
33.

The curves presented in Figures 2–9, marked with a number and letters A or B, show that there are
transition points from a linear wave to a non-linear wave or vice versa. It is related to the change of the
nature of membrane transport from osmotic-diffusion to osmotic-diffusion-convective, or—inversely.
The mechanism of this process is as follows. As the concentration of glucose increases at a given
concentration of ethanol, the density of the solution, filling the compartment under the membrane
in Configuration B, increases. If the density of this solution is lower than the density of the solution
filling the compartment above the membrane, natural convection occurs in Configuration B, which
causes destruction of CBLs, increasing driving forces and increasing the value of the coefficient. The
addition of glucose stabilizes the layers and finally eliminates natural convection and changes the
nature of transport from osmotic-diffusion-convective to osmotic-diffusion. In Configuration A, the
process of creating gravitational convection is in the reverse order. This means that in Configuration A
we have a transition from non-convective to convective, and in Configuration B—from convective to
non-convective states. These transitions have a pseudo-phase transition character.

To calculate coefficients Rr
det and Rdet the Equations (6) and (8) were used, respectively. The Graphs

1A and 1B presented in Figure 10 and illustrating the dependencies RA
det = f (C1, C2 = 37.71 mol/m3 =

const.) and RB
det = f (C1, C2 = 37.71 mol/m3 = const.) were obtained for the Configurations A and B of

the membrane system. Curve 1B is hyperbolic. In turn, Curve 1A is an irregular curve: initially it
decreases nonlinearly from RA

det = 2.53 × 1027 m3N3s3/mol4 (for C1 = 1.44 mol/m3) to RA
det = 0.7 × 1027

m3N3s3/mol4 (for C1 = 7.68 mol/m3) and then grows nonlinearly to RA
det = 36.86 × 1027 m3N3s3/mol4

(for C1 = 13.66 mol m−3, C2 = 37.71 mol/m3). For C1 > 13.66 mol/m3 RA
det decreases linearly to the value

of RA
det = 23.24 × 1027 m3N3s3/mol4 (for C1 = 21.67 mol/m3). In turn for C1 = 9.24 mol/m3 RA

det = RB
det =

11.20 × 1027 m3N3s3/mol4, whereas for C1 < 9.24 mol/m3 RA
det < RB

det and for C1 > 9.24 mol/m3 RA
det > RB

det.
For homogeneous solutions, RA

det = RB
det = Rdet increase linearly from Rdet = 0.63 × 1027 m3N3s3/mol4

(for C1 = 1.44 mol/m3) to Rdet = 0.02 × 1027 m3N3s3/mol4 (for C1 = 21.67 mol/m3).

3.3. Concentration Dependencies of ξi j and ξdet

To calculate coefficients ξi j = (RA
ij − RB

ij)/Ri j and ξdet = (det [RA] – det [RB])/det [R] the Equations
(9) and (10) were used, respectively. The graph presented in Figure 11 illustrating the dependencies
ξ11 = f (C1, C2 = 37.71 mol/m3) was calculated on the basis of Equation (9). In that case the value of
coefficient ξ11 initially decreases to ξ11 = −4.8 (for C1 = 1.44 mol/m3) and next increases nonlinearly to
ξ11 = 5.41 (for C1 = 13.66 mol/m3) and then increases linearly to ξ11 = 6.39 (for C1 = 21.67 mol/m3).
Besides, it follows from this figure that for C1 = 9.24 mol/m3 ξ11 = 0 and that C1 < 9.24 mol/m3 ξ11 < 0
and for C1 > 9.24 mol/m3 ξ11 < 0.
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Figure 11. The graphic illustration of the dependence ξ11 = f (C1, C2 = 37.71 mol/m3) for the glucose
in aqueous ethanol solution.

The graphs presented in Figure 12 which illustrate the dependencies ξ12 = f (C1, C2 = 37.71
mol/m3), ξ13 = f (C1, C2 = 37.71 mol/m3), ξ21 = f (C1, C2 = 37.71 mol/m3), ξ31 = f (C1, C2 = 37.71
mol/m3), ξ22 = f (C1, C2 = 37.71 mol/m3), ξ32 = f (C1, C2 = 37.71 mol/m3), ξ23 = f (C1, C2 = 37.71
mol/m3) and ξ33 = f (C1, C2 = 37.71 mol/m3) were calculated on the basis of Equation (9). For these
graphs, the value of coefficients ξ12, ξ13, ξ21, ξ31, ξ23 and ξ32 decreases nonlinearly (initially slowly
and then faster) from ξ12 > 0 = constant, ξ13 > 0 = constant, ξ21 > 0 = constant, ξ31 > 0 = constant, ξ23 >

0 = constant and ξ32 > 0 = constant (ξ21 < ξ12 < ξ31 < ξ13 < ξ32 < ξ23), next ξ12, ξ13, ξ21, ξ31, ξ23 and ξ32

decreases linearly to ξ12 < 0 = const., ξ13 < 0 = const, ξ21 < 0 = const., ξ31 < 0 = const., ξ23 < 0 = const.
and ξ32 < 0 = constant (ξ21 > ξ32 > ξ12 > ξ23 > ξ31 > ξ13). It results from this figure that ξ12 = ξ13 =

ξ21 = ξ31 = ξ23 = ξ32 = 0 for C1 = 9.24 mol/m3. For these graphs the value of coefficients ξ22 and ξ33

increases nonlinearly (initially slowly and then faster) from ξ22 < 0 = constant and ξ33 < 0 = constant
(ξ22 > ξ33), next ξ22 and ξ33 increases linearly to ξ22 > 0 = const. and ξ33 > 0 = constant. Besides, it
follows from this figure that for C1 = 9.24 mol m−3, ξ22 = ξ33 = 0.Entropy 2020, 22, 857 16 of 27 
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The graph presented in Figure 13 illustrating the dependencies ξdet = f (C1, C2 = 37.71 mol/m3 =

const.) was calculated on the basis of Equation (10). In the case of this curve the value of coefficient ξdet
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initially is constant and amounts ξdet = −0.034 and next increases nonlinearly to ξdet = −1148.94 (for C1 =

1.44 mol/m3), then increases linearly to ξdet = 866.38 (for C1 = 12.73 mol/m3) and next, nonlinearly to ξdet
= 1148.38 (for C1 ≥ 21.67 mol/m3). Besides, it follows from this figure that for C1 = 9.24 mol/m3, ξdet = 0.

In all cases of the dependencies, Rr
i j = f (C1, C2 = 37.71 mol/m3) (i, j ∈ {1, 2, 3}, r = A or B) and

Rr
det = f (C1, C2 = 37.71 mol/m3), (r = A or B) shown in Figures 5–10 show clearly that their values are

determined by the hydrodynamic conditions in solutions near membrane which separates ternary
non-electrolytes with different concentrations. It means that values of these coefficients in concentration
polarization conditions are strongly connected with concentrations C1 and C2 and configuration of the
membrane system. In turn, in the case of mechanical stirring of solutions, the values of these coefficients
depend only on concentrations C1 and C2. Therefore, for interpretation of calculation results, the
combinations of coefficients RA

ij , RB
ij and Rij (i, j ∈ {1, 2, 3) of the same indicators and RA

det, RB
det and Rdet

were used. These combinations are presented by Equations (5)–(10). Concentration dependencies of
new coefficients facilitate the location of areas differentiated by hydrodynamic conditions in adjacent
membrane areas such as diffusion, natural convection-diffusion and natural convection.

Comparison of the results of the tests presented in Figures 4–10 and the results presented in
Figures 11–13 results in the signs of the factors ξi j and ξdet. The results of this comparison are
summarized in Table 2.

From the results presented in Figures 4–10, it also appears that the Rr
i j and Rr

det (i, j ∈ {1, 2, 3},

r = A, B), have different physical significance. The unit of coefficients Rr
11 , Rr

21 and Rr
31 is Ns/m3.

Therefore, they have the character of flow resistance coefficients (hydraulic resistance). In turn, the
unit of coefficients Rr

12 i Rr
13 is Ns/mol, what makes them coefficients of flow resistance of dissolved

substances (diffusion resistance). The unit of coefficients Rr
22, Rr

23, Rr
32 and Rr

33 is m3Ns/mol2. This
unit is a measure of the ratio of diffusion resistance to concentration. The unit of the coefficient
Rr

det is m3N3s3/mol4. It corresponds to the ratio of diffusion resistance raised to the power of third
and concentration.
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3.4. Concentration Dependencies of rr
i j, ri j, er

i j, ei j, Qr
R and QR

Figures 14–16 show the dependences rr
i j = f (C1, C2 = 37.71 mol/m3) and ri j = f (C1, C2 = 37.71

mol/m3), (i, j ∈ {1, 2, 3} and r = A, B) calculated on the basis of Equations (11) and (12) and data
presented in Figures 4–9. Figure 14 shows that Curves 1A and 1B intersect at a point with coordinates:
rA

12 = rB
12 = 0.36 and C1 = 9.15 mol/m3, and the Curves 2A and 2B—at a point with coordinates: rA

21 =

rB
21 = 0.35 and C1 = 9.33 mol/m3. The course of Curves 1A, 1B and 1 shows that for C1 < 9.15 mol/m3,

rB
12 > rA

12 > r12 and for C1 > 9.15 mol/m3, rA
12 > rB

12 >r12. Similarly, Curves 2A, 2B and 2 show that for
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C1 < 9.33 mol/m3
, rB

21 > rA
21 > r21 and for C1 > 9.33 mol/m3, rA

21 > rB
21 > r21. Curves 1B and 2B have

maxima. The coordinates of the maximum of Curve 1B are rB
12 = 0.48 and C1 = 6.53 mol/m3. In turn,

the coordinates of maximum of the 2B curve are rB
21 = 0.46 and C1 = 7.14 mol/m3. This means that

the maximum of Curve 1B is shifted relative to the maximum of Curve 2B vertically by (rB
12 − rB

21) =

0.02 and horizontally by ∆C1 = 0.61 mol/m3. In addition, Curves 1A and 2A and Curves 1B and 2B
are shifted relative to each other, except for the point with coordinates rA

12 = rA
21 = 0.14 and C1 = 2.15

mol/m3. This means that for C1 < 2.15 mol/m3 rA
21 = rA

12 while for C1 > 2.15 mol/m3 rA
12 = rA

21. Curves
1B and 2B coincide on the section with coordinates rB

12 = rB
21 = 0.48 and C1 = 8.03 mol/m3 and rB

12 = rB
21

= 0.33 and C1 = 9.47 mol/m3. For C1 < 8.03 mol/m3 and C1 > 9.47 mol/m3 the condition rB
12 > rB

21 is
fulfilled. Curves 1 and 2 show that the condition r12 = r21 is fulfilled.

Table 2. Relationships between coefficients RA
ij , RB

ij, Ri j, ξi j (i, j ∈ {1, 2, 3}, RA
det, RB

det and ξdet.

RA
11 > 0, RB

11 > 0, R11 > 0

RA
11 < RB

11, R11 < RA
11, R11 < RB

11 ξ11 < 0

RA
11 > RB

11, R11 < RA
11, R11 < RB

11 ξ11 > 0

RA
11 = RB

11, R11 < RA
11, R11 < RB

11 ξ11 = 0

RA
12 < 0, RB

12 < 0, R12 < 0

RA
12 > RB

12, R12 > RA
12, R12 > RB

12 ξ12 < 0

RA
12 < RB

12, R12 > RA
12, R12 > RB

12 ξ12 > 0

RA
12 = RB

12, R12 > RA
12, R12 > RB

12 ξ12 = 0

RA
21 < 0, RB

21 < 0, R21 < 0

RA
21 > RB

21, R21 > RA
21, R21 > RB

21 ξ21 < 0

RA
21 < RB

21, R21 > RA
21, R21 > RB

21 ξ21 > 0

RA
21 = RB

21, R21 > RA
21, R21 > RB

21 ξ21 = 0

RA
13 < 0, RB

13 < 0, R13 < 0

RA
13 > RB

13, R13 > RA
13, R13 > RB

13 ξ13 < 0

RA
13 < RB

13, R13 > RA
13, R13 > RB

13 ξ13 > 0

RA
13 = RB

13, R13 > RA
13, R13 > RB

13 ξ13 = 0

RA
31 < 0, RB

31 < 0, R31 < 0

RA
31 > RB

31, R31 > RA
31, R31 > RB

31 ξ31 < 0

RA
31 < RB

31, R31 > RA
31, R31 > RB

31 ξ31 > 0

RA
31 = RB

31, R31 > RA
31, R31 > RB

31 ξ31 = 0

RA
22 > 0, RB

22 > 0, R22 > 0

RA
22 < RB

22, R22 < RA
22, R22 < RB

22 ξ22 < 0

RA
22 > RB

22, R22 < RA
22, R22 < RB

22 ξ22 > 0

RA
22 = RB

22, R22 < RA
22, R22 < RB

22 ξ22 = 0

RA
23 < 0, RB

23 < 0, R23 < 0

RA
23 > RB

23, R23 > RA
23, R23 > RB

23 ξ23 < 0

RA
23 < RB

23, R23 > RA
23, R23 > RB

23 ξ23 > 0

RA
23 = RB

23, R23 > RA
23, R23 > RB

23 ξ23 = 0

RA
32 < 0, RB

32 < 0, R32 < 0

RA
32 > RB

32, R32 > RA
32, R32 > RB

23 ξ32 < 0

RA
32 < RB

32, R32 > RA
32, R32 > RB

23 ξ32 > 0

RA
32 = RB

32, R32 > RA
32, R32 > RB

23 ξ32 = 0

RA
33 > 0, RB

33 > 0, R33 > 0

RA
33 < RB

33, R33 < RA
33, R33 < RB

33 ξ33 < 0

RA
33 > RB

33, R33 < RA
33, R33 < RB

33 ξ33 > 0

RA
33 = RB

33, R33 < RA
33, R33 < RB

33 ξ33 = 0

RA
det > 0, RB

det > 0, Rdet > 0

RA
det < RB

det, Rdet < RA
det, Rdet < RB

det ξdet < 0

RA
det > RB

det, Rdet < RA
det, Rdet < RB

det ξdet > 0

RA
det = RB

det, Rdet < RA
det, Rdet < RB

det ξdet = 0
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Figure 15. The rr
i j and ri j (i, j ∈ {1, 3}, r = A, B) coefficients as functions of glucose concentration.

Figure 15 shows that Curves 1A and 1B intersect at a point with coordinates rA
13 = rB

13 = 0.17 and
C1 = 9.1 mol/m3, and Curves 2A and 2B—at a point with coordinates rA

31 = rB
31 = 0.17 i C1 = 9.29 mol/m3.

The course of Curves 1A, 1B and 1 shows that for C1 < 9.1 mol/m3, rB
13 > rA

13 > r13 and for C1 > 9.1
mol/m3, rA

13 > rB
13 > r13. Similarly, Curves 2A, 2B and 2 show that for C1 < 9.29 mol/m3, rB

31 > rA
31 > r31

and for C1 > 9.29 mol/m3, rA
31 > rB

31 > r31. Curves 1B and 2B overlap in the whole range of C1 used.
Therefore, it can be assumed that rB

13 = rB
31. In turn, Curves 1A and 2A do not coincide only beyond the

point with the coordinates: rA
13 =rA

31 = 0.24 and C1 = 11.25 mol/m3. For C1 > 11.25 mol/m3, rA
13 > rA

31.
Curves 1 and 2 show that the condition r12 = r21 is fulfilled.

From the course of curves shown in Figure 16, it follows that rA
23 = rB

23 = r23 and rA
32 = rB

32 = r32.
Curves 1 and 2 and 1A and 2B intersect at a point with coordinates r23 = r32 = rA

23 = rB
32 = 0.11 × 10−3

and C1 = 2.33 mol/m3, while Curves 1B and 2A—at a point with coordinates rB
23 = rA

32 = 0.12 and C1 =

2.6 mol/m3. For C1 < 2.33 mol/m3, r23 = rA
23 = rB

23 > r32 = rA
32 = rB

23 = rB
32 and for C1 > 2.33 mol/m3, r23 =

rA
23 = rB

23 > r32 = rA
32 = rB

32. As can be seen, the values of the coefficients ri j, rr
i j, r ji and rr

ji (i, j ∈ {2, 3} and r
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= A, B) (Figure 16) are three orders of magnitude smaller than the values of the coefficients ri j, rr
i j, r ji

and rr
ji (i, j ∈ {1, 2} and r = A, B) and ri j, rr

i j, r ji and rr
ji (i, j ∈ {1, 3} and r = A, B) (Figures 14 and 15).

 

3 

 
Figure 15. The 𝑟  and 𝑟  (i, j ∈ {1, 3}, r = A, B) coefficients as functions of glucose concentration. 

 

 
Figure 16. The 𝑟  and 𝑟  (i, j ∈ {2, 3}, r = A, B) coefficients as functions of glucose concentration. Figure 16. The rr

i j and ri j (i, j ∈ {2, 3}, r = A, B) coefficients as functions of glucose concentration.

Figures 14–16 show that Kedem–Caplan relations take the form: 0.05 ≤ r12 = r21 ≤ 0.3, 0.1 ≤ rA
12 ≤

0.67, 0.15 ≤ rB
12 ≤ 0.48, 0.11 ≤ rA

21 ≤ 0.63, 0.15 ≤ rB
21 ≤ 0.46, 0.1 ≤ r13 = r31 ≤ 0.11, 0.14 ≤ rA

13 ≤ 0.24, 0.13 ≤
rB

13 ≤ 0.28, 0.11 ≤ rA
31 ≤ 0.24, 0.13 ≤ rB

31 ≤ 0.25, 0.03 × 10−3
≤ r23 = rA

23 = rB
23 ≤ 0.18 × 10−3, 0.06 × 10−3

≤

r32 = rA
32 = rB

32 ≤ 0.36 × 10−3. Hence it follows that, rA
12 , rA

21, rB
12 , rB

21, rA
13 ≈ rA

31, rB
13 = rB

31, r23 = rA
23 = rB

23
, r32 = rA

32 = rB
32. The values of all coupling coefficients presented in Figure 8a,b and Figure 9a fulfilled

the conditions 0 ≤ ri j ≤ 1, 0 ≤ rr
i j ≤ 1, 0 ≤ r ji ≤ 1 and 0 ≤ rr

ji ≤ 1 determined by Roy Caplan [20].
Graphs in Figures 14 and 15 have characteristic shapes, depending on the configuration of

the membrane system and the properties of the solutions. In the case of homogeneous solutions
(mechanically stirred solutions—Graphs 1 and 2), the coefficients do not depend on the configuration
of the membrane system and are approximately linearly dependent on the concentration of glucose.
This means that mechanical stirring of solutions at a sufficiently high speed eliminates CBL creation
and causes maximization of fluxes and forces on the membrane. In the case of heterogeneous solutions
(without mechanical stirring of the solutions in the chambers), the appearance of CBL near the
membrane, reduces the value of the respective fluxes and increases the value of coupling factors for the
same concentrations of solute in relation to homogeneous conditions. In addition, coupling coefficients
for heterogeneous conditions strongly depend on the membrane configuration.

In Configuration A, the increase in glucose at a constant ethanol concentration at the beginning
causes an increase in the coupling coefficients. In Configuration B, an increase in glucose causes a
decrease in the value of coupling coefficients. The range of glucose concentrations for which the change
in coupling coefficients in Configuration B is maximum is within the range similar to Configuration
A of the membrane system. Analyzing the characteristics of coupling coefficients in heterogeneous
conditions, we observed that for the respective characteristics in the A and B configurations of the
membrane system, the respective graphs pairs (1A and 1B, 2A and 2B) intersect at a concentration of
about 9.2 mol m−3. At this glucose concentration, the densities of the ternary solutions in the upper
and lower chambers at the initial moment are the same. In this case, we observed the appearance of
hydrodynamic instabilities that cause a disturbance of CBL diffusion reconstruction. Despite the fact
that the solution densities were the same at the initial moment, the diffusion of glucose and ethanol
through the membrane caused the appearance of sufficiently large and concentration gradients (and
density gradients) in opposite direction to the gravitational field in the CBL areas. These gradients can
cause hydrodynamic instabilities in the membrane system.
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Graphs in Figure 17 show that in the case of heterogeneous solutions (solutions not mechanically
mixed—Graphs 1A and 1B, 2A and 2B), the coupling factors do not show their dependence on the
configuration of the membrane system. Perhaps, because their value is very small.

Figures 17–19 show the dependences (er
i j)r

= f (C1, C2 = 37.71 mol/m3) and
(
ei j

)
r

= f (C1, C2 =

37.71 mol/m3), (i, j ∈ {1, 2, 3} and r = A, B) calculated on the basis of Equations (13) and (14) and
data presented in Figures 14–16. Figure 17 shows that Curves 1A and 1B intersect at a point with
coordinates:

(
eA

12

)
r

=
(
eB

12

)
r

= 0.036 and C1 = 9.18 mol/m3, and Curves 2A and 2B—at a point with

coordinates:
(
eA

21

)
r

=
(
eB

21

)
r

= 0.032 and C1 = 9.41 mol/m3. The course of Curves 1A, 1B and 1 shows that

for C1 < 9.18 mol/m3,
(
eB

12

)
r

>
(
eA

12

)
r

> (e12)r and for C1 > 9.18 mol/m3,
(
eA

12

)
r

>
(
eB

12

)
r

> (e12)r. Similarly,

the Curves 2A, 2B and 2 show that for C1 < 9.41 mol/m3
,
(
eB

21

)
r
>

(
eA

21

)
r
> (e21)r and for C1 > 9.41 mol/m3,(

eA
21

)
r

>
(
eB

21

)
r

> (e21)r. Curves 1B and 2B have maxima. The coordinates of the maximum of Curve

1B are
(
eB

12

)
r

= 0.065 and C1 = 6.54 mol/m3. In turn, the coordinates of maximum of the 2B curve are(
eB

21

)
r

= 0.054 and C1 = 7.23 mol/m3. This means that the maximum Curve 1B is shifted relative to the

maximum Curve 2B vertically by (rB
12 − rB

21) = 0.011 and horizontally by ∆C1 = 0.69 mol/m3. Curves 1B

and 2B coincide on the section with coordinates:
(
eB

12

)
r

=
(
eB

21

)
r

= 0.045 and C1 = 8.73 mol/m3 and
(
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12

)
r

=
(
eB

21

)
r

= 0.028 and C1 = 13.09 mol/m3. For C1 < 8.73 mol/m3 the conditions:
(
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>
(
eB

21

)
r

(for C1 >

13.09 mol/m3) and
(
eB

12

)
r

<
(
eB

21

)
r

are fulfilled. Curves 1 and 2 show that the condition (e12)r = (e21)r
is fulfilled. 
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Figure 18 shows that Graphs 1A, 1B, 2A and 2B intersect approximately at the point with the
coordinates

(
eA

13

)
r

=
(
eB

13

)
r
≈ 0.008 and C1 = 9.24 mol/m3. Curves 1A, 1B and 1 show that for C1 < 9.24

mol/m3
(
eB

13

)
r

>
(
eA

13

)
r

> (e13)r and for C1 > 9.24 mol/m3
(
eA

13

)
r

>
(
eB

13

)
r

> (e13)r. Similarly, the course of

Curves 2A, 2B and 2 shows that for C1 < 9.24 mol/m3
(
eB

31

)
r

>
(
eA

31

)
r

> (e31)r and for C1 > 9.24 mol/m3(
eA

31

)
r

>
(
eB

31

)
r

> (e31)r. Curves 1B and 2B coincide for C1 > 9.24 mol/m3. Therefore, it can be assumed

that for this concentration range
(
eA

31

)
r

>
(
eB

31

)
r

> (e31)r. In the other ranges C1 Curves 1A and 2A do

not cover. This means that
(
eB

13

)
r

>
(
eB

31

)
r

and
(
eA

13

)
r

>
(
eA

31

)
r
. Curves 1 and 2 show that the condition

(e13)r = (e31)r.
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From the course of Curves 1A, 1B and 1 presented in Figure 19 it follows that
(
eA

23

)
r
=

(
eB

23

)
r
= (e23)r

and
(
eA

32

)
r

=
(
eB

32

)
r

= (e32)r. Curves 1, 1A and 1B and 2, 2A and 2B intersect at a point with coordinates

(e23)r =
(
eA

23

)
r

=
(
eB

23

)
r

= (e32)r =
(
eA

32

)
r

=
(
eB

32

)
r
≈ 0.004 and C1 = 2.57 mol/m3. For C1 < 2.57 mol/m3,

(e23)r =
(
eA

23

)
r

=
(
eB

23

)
r

> (e32)r =
(
eA

32

)
r

=
(
eB

32

)
r

and for C1 > 2.57 mol/m3, (e23)r =
(
eA

23

)
r

=
(
eB

23

)
r

< (e32)r

=
(
eA

32

)
r

=
(
eB

32

)
r
.

Figures 17–19 show that Kedem–Caplan relations take the form: 0.005 ≤ (e12)r = (e21)r ≤ 0.05,
0.002 ≤

(
eA

12

)
r
≤ 0.145, 0.006 ≤

(
eB

12

)
r
≤ 0.068, 0.003 ≤

(
eA

21

)
r
≤ 0.104, 0.005 ≤

(
eB

21

)
r
≤ 0.054, 0.004 ≤ (e13)r

= (e31)r ≤ 0.02, 0.005 ≤
(
eA

13

)
r
≤ 0.016, 0.004 ≤

(
eB

13

)
r
≤ 0.02, 0.005 ≤

(
eA

31

)
r
≤ 0.015, 0.04 ≤

(
eB

31

)
r
≤ 0.02,

0.003 × 10−6
≤ (e23)r =

(
eA

23

)
r

=
(
eB

23

)
r
≤ 0.009 × 10−6, 0.001 × 10−6

≤ (e32)r =
(
eA

32

)
r

=
(
eB

32

)
r
≤ 0.034 ×

10−6. Hence it follows that,
(
eA

12

)
r
,

(
eA

21

)
r
,
(
eB

12

)
r
,

(
eB

21

)
r
,
(
eA

13

)
r
≈

(
eA

31

)
r
,
(
eB

13

)
r

=
(
eB

31

)
r
, (e23)r =

(
eA

23

)
r

=
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(
eB

23

)
r
, (e32)r =

(
eA

32

)
r

=
(
eB

32

)
r
. The values of all coupling coefficients presented in Figures 14–16 fulfill

the conditions 0 ≤
(
ei j

)
r
≤ 1, 0 ≤

(
eA

ij

)
r
≤ 1, 0 ≤

(
e ji

)
r
≤ 1, 0 ≤ (eA

ji)r
≤ 1 determined by Roy Caplan [20].

Figures 20 and 21 show the dependences
(
Qr

R

)
i j

= f (C1, C2 = 37.71 mol/m3) and (Qr)i j = f (C1, C2

= 37.71 mol/m3), (i, j ∈ {1, 2, 3} and r = A, B) calculated on the basis of Equations (15) and (16) and
data presented in Figures 14–16. Figure 20 shows that Curves 1A and 1B intersect at a point with
coordinates:

(
QA

R

)
12

=
(
QB

R

)
12

= 0.07 and C1 = 9.24 mol/m3. The course of Curves 1A, 1B and 1 shows

that for C1 < 9.24 mol/m3,
(
QB

R

)
12

>
(
QA

R

)
12

> (QR)12 and for C1 > 9.24 mol/m3,
(
QA

R

)
12

>
(
QB

R

)
12

>

(QR)12. Curve 1B has a maximum. The coordinates of the maximum of Curve 1B are
(
QB

R

)
12

= 0.12 and

C1 = 6.77 mol/m3. Figure 21 shows that Graphs 1A and 1B intersect at the point with the coordinates(
QA

R

)
13

=
(
QB

R

)
13

= 0.015 and C1 = 9.16 mol/m3. Curves 1A, 1B and 1 show that for C1 < 9.24 mol/m3(
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R

)
13

>
(
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R

)
13
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(
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>
(
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R
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> (QR)13. Moreover, it was shown

that
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23
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The results of experimental research indicate that ω11 >> ω12, ω22 >> ω21, ζr
p = ζr

a1 = ζr
a2 = =1, ζr

v1
= ζr

s11 = ζr
s12 = ζr

1 and ζr
v2 = ζr

s22 = ζr
s21 = ζr

2 (r = A, B). By accepting the above conditions and that ζr
1 ≈

ζr
2 = ζr. Given this condition, and Equations (5), (9) and (10), we can write:

ξ11 =
ζA
− ζB

ζAζB

Lp[C1ω22(1− σ1) + C2ω11(1− σ2)]

ω11ω22 + Lp
[
ω22C1(1− σ1)

2 +ω11C2(1− σ2)
2
] (17)

ξ12 =
ζA
− ζB

ζAζB
1

(1− σ1)
(18)

ξ13 =
ζA
− ζB

ζAζB
1

(1− σ2)
(19)

ξ21 = −
ζA
− ζB

ζAζB = ξ31 = −ξ22 = −ξ23 = −ξ32 = −ξ33 (20)
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ξdet =

(
ζA

)2
−

(
ζB

)2

(ζA)
2
(ζB)2

(21)

Equations (17)–(20) contain the factor
(
ζA

1 − ζ
B
1

)(
ζA

1 ζ
B
1

)−1
and Equation (22)—the factor[(

ζA
)2
−

(
ζB

)2
][(
ζA

)2(
ζB

)2
]−1

. This factor, using Equation (1) can be written in a form containing

the thickness of CBLs. To simplify the accounts, using the conditions
(
Dr

i j

)
l
=

(
Dr

i j

)
h

= Dij and δr
h = δr

l =

δr, we write the Equation (1) in the form:

ζr =
Di j

Di j + 2RTωi jδr (22)

Using Equation (22) we can write:

ζA
− ζB

ζAζB =
2RTωi j

(
δB
− δA

)
Di j

(23)

(
ζA

)2
−

(
ζB

)2

(ζA)
2
(ζB)2

=
4RTωi j

Di j2
{Di j(δ

B
− δA) + RTωi j[(δ

B)
2
− (δA)

2
]} (24)

From all the foregoing considerations, it is clear that coefficients ξi j (i, j ∈ {1, 2, 3} and ξdet are
measures of the natural convection effect. If the conditions ξi j < 0 and ξdet < 0 are fulfilled, fluxes of
natural convection in single-membrane system are directed vertically upwards. In turn, for coefficients
ξi j > 0 and ξdet > 0, the fluxes are directed vertically downwards. Zeroing of the coefficients (ξi j = 0 and
ξdet = 0) means that the system is in the critical point where the flux turns its direction from vertically
upwards to vertically downwards. In this point, the structure of layers lose its stability, but natural
convection does not have precise turn yet, what means that the membrane system is not sensitive to
changes in the gravitational field. This is shown by dependencies ξi j = f (C1, C2 = 37.71 mol/m3), (i, j
∈ {1, 2, 3} and ξdet = f (C1, C2 = 37.71 mol/m3), presented in Figures 11–13 as well as interferograms
presented in the previous publication [37,38]. Hydrodynamic stability in the membrane system is
controlled by the concentration Rayleigh number [34–38]. The Rayleigh number value depends on the
concentration of solutions separated by the membrane [34,35]. For the points where ξi j = 0 and ξdet =

0, (i, j ∈ {1, 2, 3}) the critical value of concentration Rayleigh number (RC) can be specified.
For example, we will consider Equations (20) and (23) and Figures 2 and 3 for the ξ22 coefficient.

This equation can be written as ξ22 = 2RTω11
(
δB
− δA

)
D11

−1. It is drawn from the equation and
Figure 2 that if ξ22 = 0, then ζA

1 = ζB
1 = 0.234. From the equation, it becomes apparent that if ξ22

= 0, then δA = δB. The values of δA and δB can be determined by laser interferometry [35–38] or
volume flux measurements [34]. Figure 3 presents the dependences δr = f (ρh − ρl) obtained by
converting the dependence ζr

i = f (C1, C2 = const.) shown in Figure 3, with the help of equations

δr = Di j
(
1− ζr

i

)(
2RTωi jζ

r
i

)−1
and ρh − ρl = (∂ρ/∂C1)(C1h − C1l) + (∂ρ/∂C2)(C2h − C2l). From this figure

it follows that δA = δB
≈ 1.3 × 10−3 m for ρh − ρl = 0.046 kg/m3.

Let us consider the dependency ξ22 = f (C1, C2 = 37.71 mol/m3) shown in the Figure 12. It results
from the figure that ξ22 = 0 for C1 = 9.24 mol/m3 and C2 = 37.71 mol/m3. It should be pointed out that
C1 = 9.24 mol/m3 if C1h = 33.44 mol/m3 and C1l = 1 mol m−3 while C2 = 37.71 mol/m3, for C2h = 201
mol/m3 and C2l = 1 mol/m3. Therefore, consisting solution density amounts to 998.3 kg/m3. In turn,
kinematic viscosity of this solution is equal to ν = 1.063 × 10−6 m2/s. Density difference of solutions
located in the Compartments (h) and (l) calculated on the basis of equation ρh − ρl = (∂ρ/∂C1)(C1h
− C1l) + (∂ρ/∂C2)(C2h − C2l), where (∂ρ/∂C1) = 0.06 kg/mol, (∂ρ/∂C2) = −0.0095 kg/mol, amounts to
ρh − ρl = 0.046 kg/m3. Taking these data into consideration, as well as D11 = 0.69 × 10−9 m2/s, g =
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9.81 m/s2, ω11 = 0.8 × 10−9 mol/Ns, δ = 1.3 × 10−3 m in the expression for the concentration Rayleigh
number RC = [g(ρh − ρl)(δ)3](ρhνhD11)−1 [29,30], we get RC = 1353.1. This value corresponds to the
(RC)crit. = 1100.6, obtained for the case of the rigid membrane surface and the free liquid interior
(rigid-free borders) [44,45]. For electrolysis occurring in a cell containing electrodes placed in parallel
in horizontal planes, the critical Rayleigh number depends strongly on the distance between these
electrodes and for amperostatic conditions takes the values in the range of RC = 1070 ÷ 1540 [46].
In turn, for potentiostatic conditions RC takes the values in the range of RC = 763.3 ÷ 1351 [47].
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4. Conclusions

From the above presented studies, the following results are obtained:

1. In order to describe transport processes of ternary solutions of nonelectrolytes through horizontally
oriented membrane, nine Peusner’s coefficients should be calculated Rr

i j (i, j ∈ {1, 2, 3}, r = A, B)
and the determinant of the matrix of these coefficients is det [Rr] = Rr

det. For the Nephrophan
membrane and aqueous solutions of glucose and ethanol, the values of coefficients Rr

i j (i, j ∈
{1, 2, 3}, r = A, B) and Rr

det are dependent on concentration solutions and configuration of the
membrane system. For i , j these coefficients fulfill the relations Rr

i j , Rr
ji.

2. Concentration dependencies of coefficients ξi j = (RA
ij − RB

ij)/Rij = f (C1, C2 = 37.71 mol/m3) and

ξdet = (det [RA] – det [RB])/det [R]) = f (C1, C2 = 37.71 mol/m3) facilitate estimation of natural
convection direction: for ξi j < 0, natural convection is directed vertically upwards and for ξi j >

0—vertically downwards. The value of coefficients ξi j and ξdet (ξi j < 0, ξdet < 0, ξi j = 0, ξdet =

0, ξi j > 0 or ξdet > 0) shows the influence of concentration polarization and natural convection
on the membrane transport. For ξi j = 0 the critical value of the concentration Rayleigh number
(RC) can be estimated, for the point where convective stream changes its direction from vertical
upwards into vertical downwards. The RC value estimated in this paper for the considered case
amounts to (RC)crit. = 1353.1.

3. For (i, j ∈ {1, 2}, r = A, B) the coupling (rr
i j),

(
Qr

R

)
i j

and energy conversion
(
er

i j

)
r

Coefficients depend

on the concentration of homogeneous solutions and in concentration polarization conditions—on
the concentration of solutions and the configuration of the membrane system. For (i, j ∈ {1, 3}, r =

A, B) these coefficients in concentration polarization conditions depend and in homogeneous
solutions do not depend on the concentration of solutions and the configuration of the membrane
system. The crisscrosses of suitable A and B characteristics are observed at a glucose concentration
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C1 = 9.24 mol m−3. For (i, j ∈ {2, 3}, r = A, B) the coefficients (rr
i j) and

(
er

i j

)
r

depend on the

concentration of homogeneous solutions and in concentration polarization conditions and do
not depend on the configuration of the membrane system. The crisscrosses of suitable A and B
characteristics are observed at a glucose concentration C1 ≈ 2.5 mol m−3. The

(
Qr

R

)
i j

coefficient is

independent of the concentration and configuration of the membrane system.
4. Curves marked with a number and the letters A or B are evidence that there are transition

points associated with the change in the nature of membrane transport from osmotic-diffusion to
osmotic-diffusion-convective or vice versa. This means that in Configuration A, we have
a transition from convective to convective, and in Configuration B—from convective to
non-convective. These transitions are a pseudo-phase transition.

5. The presented equations are a new research tool for membrane transport and the influence of
gravity field on this transport.
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