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Abstract: A theoretical framework is presented for calculating the polarization, electro-rotation,
travelling-wave dielectrophoresis, electro-hydrodynamics and induced-charge electroosmotic flow
fields around a freely suspended conducting dimer (two touching spheres) exposed to non-uniform
direct current (DC) or alternating current (AC) electric fields. The analysis is based on employing
the classical (linearized) Poisson–Nernst–Planck (PNP) formulation under the standard linearized
‘weak-field’ assumption and using the tangent-sphere coordinate system. Explicit expressions are
first derived for the axisymmetric AC electric potential governed by the Robin (mixed) boundary
condition applied on the dimer surface depending on the resistance–capacitance circuit (RC) forcing
frequency. Dimer electro-rotation due to two orthogonal (out-of-phase) uniform AC fields and
the corresponding mobility problem of a polarizable dimer exposed to a travelling-wave electric
excitation are also analyzed. We present an explicit solution for the non-linear induced-charge
electroosmotic (ICEO) flow problem of a free polarized dimer in terms of the corresponding Stokes
stream function determined by the Helmholtz–Smoluchowski velocity slip. Next, we demonstrate
how the same framework can be used to obtain an exact solution for the electro-hydrodynamic (EHD)
problem of a polarizable sphere lying next to a conducting planar electrode. Finally, we present a new
solution for the induced-charge mobility of a Janus dimer composed of two fused spherical colloids,
one perfectly conducting and one dielectrically coated. So far, most of the available electrokinetic
theoretical studies involving polarizable nano/micro shapes dealt with convex configurations (e.g.,
spheres, spheroids, ellipsoids) and as such the newly obtained electrostatic AC solution for a dimer
provides a useful extension for similar concave colloids and engineered particles.

Keywords: induced-charge electroosmosis; electrophoresis; electro-rotation; electro-hydrodynamics;
polarization; travelling wave; Janus mobility; dimer (touching spheres); tangent-sphere coordinates

1. Introduction

An induced-charge electroosmosis (ICEO) is a non-linear physical phenomenon by
which an uncharged or a neutrally charged polarizable (conducting) colloid which is
suspended in an electrolyte engenders a fluid motion around its surface due to an ambient
electric field [1–3]. The electric field can be spatially uniform or non-uniform, steady (DC)
or time-dependent (AC) and, when being applied, it changes the charge density within the
electric double layer (EDL) surrounding the particle. The potential thus induced on the
polarized particle is proportional to the applied field and the Helmholtz–Smoluchowski
(HS) surface slip velocity is quadratic in the amplitude of the electric forcing [2]. For
some special simply connected orthotropic 3D shapes (i.e., spheres, spheroids, and tri-axial
ellipsoids) [4], it is possible under the ’weak-field’ assumption to find by linearizing the
governing Poisson-Nernst-Planck (PNP) equations explicit expressions for the induced-
charge electrophoretic (ICEP) mobility of the colloid, subject to DC or AC excitations
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and finite EDL thickness [5,6]. Similar analytic expressions can also be obtained for the
quadrupolar ICEO flow field that is induced around a symmetric stationary free particle,
exhibiting fluid pumping along the direction of the field and fluid ejection in the normal
direction [7]. A recent attempt to extend the analysis for some non-convex geometries which
are not simply connected, such as horn (closed) toroidal shapes (resembling blood cells)
is presented in [8]. A further theoretical generalization is provided here by considering
the common dimer configuration, consisting of two touching (fused) spherical particles.
For simplicity, we assume that the two colloids are of the same size and provide analytic
solutions for some practical electrokinetic dimer cases by using the R-separable ‘tangent-
sphere’ coordinate system [9].

The special arrangement of two (dimer) or more (chain) touching spherical particles
often occurs in many branches of mathematical physics and nanotechnology, such as
electrostatic [10–21] and optics [22–25]. The tangent-sphere coordinate system can be
effectively used for analytically tackling some related problems involving particle-wall
interactions in various electrokinetic [26–35], heat transfer [36–38], inviscid [39–43], and
viscous [44–50] flow scenarios. Note that the corresponding tangent-sphere formulation
can also be used as the leading-order (‘outer’) near-contact solution of a sphere lying
next to an isothermal wall or a planar electrode, both for DC and AC (high-frequency)
electrokinetic problems [32,34,36]. As far as we understand, the quadratic induced-charge
electrophoretic (ICEP) and the related electro-hydrodynamic (EHD) problems of two fused
spherical colloids which are subjected to non-uniform AC electric ambient fields, including
some pertinent symmetry-breaking (Janus) aspects, have not been addressed before and
thus this work can be considered as a first attempt in this direction.

The structure of the paper is as follows: In Section 2, we present an analytic solution
for the ‘standard’ ICEO problem of a dimer composed of two fused conducting spherical
colloids which are exposed to a spatially uniform AC axial ambient electric field. The
analysis is performed under the ‘weak’ field and thin EDL assumptions, linearizing the
PNP equations and applying the Robin (mixed) electrostatic boundary condition on the
dimer surface in terms of the rivalling RC frequency [51,52]. The far-field dipole and the
dimer polarization are also found in the course of the analysis. In Section 3, we address
the corresponding electro-rotation (ROT) problem of a dimer as a result of applying two
orthogonal uniform AC fields which are out of phase along the longitudinal and transverse
directions. Explicit expressions are thus provided for the incited angular velocities of the
dimer, by assuming a low-Reynolds (creeping) flow. Next, we consider in Section 4 the
case of a travelling-wave electrophoresis whereby applying a non-uniform axial AC electric
field results in a finite mobility of the dimer. General expressions for the phoretic velocity
are given in terms of the forcing frequency and amplitude of the applied field, which are
shown to vanish for the special case when the ambient field is spatially uniform.

In Section 5, we address the ICEO flow problem around a stationary dimer under
a uniform field and obtain a closed-form solution for the velocity field in terms of the
Stokes stream function by enforcing the HS velocity slip condition. The related problem of
a freely suspended conducting sphere placed near a planar electrode is then considered
in Section 6 and the corresponding EHD velocity field is explicitly solved by providing
an analytic expression for the Stokes stream function. Finally, we analyze in Section 7 a
typical case of a dimer symmetry-breaking, by considering a Janus arrangement of two
spheres (one metallic and one dielectric) that are subjected to a uniform ambient field in the
direction along the centers. It is demonstrated that as a result of the metallo-dielectric Janus
asymmetry, the dimer will acquire a finite phoretic velocity (in contrast to the homogeneous
case) in the direction of the metallic sphere. We conclude with some discussions in Section 8.
A list of symbols and abbreviations appears after Section 8.
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2. Polarization

It is convenient to express the dimer (two touching spheres) geometry shown in Figure 1
in terms of a semi-separable curvilinear three-dimensional (3D) orthogonal tangent-sphere
coordinate system (µ, υ, ϕ) [9], which is related to the Cartesian system (x, y, z) by:

z =
υ

µ2 + υ2 ; x + iy =
µeiϕ

µ2 + υ2 (1)

Figure 1. Schematic description of the problem of a dimer that is composed of two geometrically
identical spheres in free space as in Sections 2–5 and Section 7. The dimer is subjected to: a uniform
AC electric field acting in the z direction (Sections 2–5 and Section 7), a uniform AC electric field acting
in the x direction (Section 3), and a non-homogeneous axisymmetric travelling wave propagating
along the z direction (Section 4). The two spheres are identically conductive in Sections 2–5, and in
Section 7 the lower sphere is coated by a thin dielectric layer.

The Cartesian coordinates are normalized by 2a (sphere diameter), µ ∈ [0, ∞], υ ∈ [−∞, ∞],
ϕ ∈ [0, 2π], and υ = ±1 represent the surface of each sphere. At the origin of the tangent-
sphere coordinate system, both µ and υ tend to infinity and in the far- field they approach
zero.

A general (‘external’) harmonic function, which vanishes at infinity, can be written as
(see [9], p. 104):

χ(µ, υ, ϕ) =
(

µ2 + υ2
)1/2

Re

{
∞

∑
n=0

einϕ
∫ ∞

−∞
An(s)Jn(µs)eυsds

}
(2)

where An(s) are generally complex functions such that the above integral is convergent
and Re means the real part. An axisymmetric field (n = 0), which is antisymmetric with
respect to υ can be written as:

χ0(µ, υ) =
(

µ2 + υ2
)1/2 ∫ ∞

0
A0(s)J0(µs)

sinh(sυ)

s ∗ cosh(s)
ds. (3)

Making use of the following identity (see [53], 6.611.1):

1

(µ2 + υ2)
1/2 =

∫ ∞

0
J0(µs)e−sυds (4)
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one immediately finds from Equation (1) that

z =
(

µ2 + υ2
)1/2 ∫ ∞

0
sJ0(µs)e−sυds. (5)

Let us next consider an ideally polarizable (conducting) dimer that is exposed to a
uniform ambient AC electric field (unit amplitude) acting along the z axis of symmetry. A
general expression for the AC potential φo(µ, υ, t) can then be written in terms of its phase
as Re

{
φ0(µ, υ)e−iΩt}, where t denotes time, Ω is the forcing frequency, and φ0(µ, υ) =

−z + χ0(µ, υ).
When the polarized (initially unchanged) dimer is freely suspended in an electrolyte,

its surface is generally screened by an electric double layer (EDL) of a nano-metric size
λ0, so that the boundary conditions governing the surface potential is of a Robin (mixed)
type [51], i.e.,

∂φ0(µ, υ)

∂n
= −iΩφ0(µ, υ) on υ = 1; Ω =

2aΩλ0

D
(6)

where D represents the diffusivity of the symmetric monovalent electrolyte and Ω denotes
the common RC dimensionless frequency [1]. The normal derivative in Equation (6) can
be also written as ∂/∂n = 1/hυ∂/∂υ, where hυ = 1/

(
µ2 + υ2) denotes the corresponding

metric coefficient.
Thus, substituting Equations (3) and (5) into Equation (6) and following the same

procedure as in [41,43] leads to:[
∂

∂υ
+ i
(

µ2 + υ2
)−1

Ω

]{
−υ

µ2 + υ2 +
(

µ2 + υ2
)1/2 ∫ ∞

0
A0(s)J0(µs)

sinh(sυ)

s ∗ cosh(s)
ds
}

= 0 (7)

to be applied on υ = 1. Finally, substituting Equation (4) in Equation (7) results in the following
second-order inhomogeneous ordinary differential equation (ODE) for the coefficient A0(s):

d2 A0(s)
ds2 − 1

s
dA0(s)

ds
−
[

1 + (1 + iΩ)
tanh(s)

s
− 1

s2

]
A0(s) = [(2− iΩ)s− 1]e−s (8)

The solubility condition of Equation (3) implies that A0(s) must vanish both for s→ 0
and s→ ∞.

An exact analytical solution of Equation (8) for Ω = 0 (DC limit) has been given by [38] as:

limA0(s)
Ω→0

=
1
2

s ∗ cosh(s)[log(2 ∗ cosh(s)) + s(tanh(s)− 2)] (9)

As far as we know, an exact analytical solution of Equation (8) for Ω 6= 0 is not known.
Following the works of [41,43], who dealt with a similar ODE, a good approximation for
the ‘exact’ solution of Equation (8) can be obtained by using the corresponding ‘asymptotic’
solution, namely for s→ ∞. Indeed, by letting s→ ∞ in Equation (8), one finds to leading-
order:

A0(s, Ω) ' s
4 + iΩ

[
2(1 + iΩ)

2 + iΩ
− (2− iΩ)s

]
e−s (10)

It is worth mentioning that expanding Equation (9) for large s yields A0(s→ ∞, 0) =
(s/4)(1− 2s)e−s in agreement with Equation (10). In addition, note that letting Ω→ ∞ in
Equation (8) renders A0(s, Ω→ ∞) = s2e−s, which is again in accordance with Equation
(10). For small values of Ω the right-hand side of Equation (10) can be expressed as
A0(s) + (iΩ/4)s2e−s + O

(
Ω2) where A0(s) is explicitly given by Equation (9).

A full numerical solution of Equation (8) for Ω 6= 0 can be found by discretizing
Equation (8) and using a second-order central finite difference scheme, yielding a tri-
diagonal matrix that can be directly solved. A comparison between the numerical solution
of both Re{A0(s, Ω)} and Im{A0(s, Ω)} with the asymptotic solution of Equation (10)
where Im represents the imaginary part, generally shows good agreement (Figure 2). Note
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the excellent agreement obtained for Ω = 0, as well as for relatively low frequencies, when
comparing the numerical solution of Equation (8) with both the exact and asymptotic
solutions given in Equations (9) and (10), respectively. It should also be noted that for
large values of Ω, e.g., Ω = 10, both the real and imaginary parts of A0(s, Ω) are in the
same phase whereas for Ω = 0.5 or Ω = 1 they are largely of opposite sign. This is due
to a delayed change in the behaviour of the real part of A0(s, Ω) becoming fully positive
whereas the imaginary part is already fully positive at Ω = 0.5.

Figure 2. Cont.
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Figure 2. The solution of Equation (8) of Section 2 for (a) Ω = 0, (b) Ω = 0.5, (c) Ω = 1, and
(d) Ω = 10, and where the exact solution of Ω = 0 is given by Equation (9). The asymptotic solution
is of Equation (10).

Once the coefficients A0(s, Ω) are found, one can determine the corresponding polar-
izability of a dimer by examining the far-field behaviour of Equation (3) along the z-axis
(µ = 0) as υ → 0. Thus, by replacing sinh(sυ) in Equation (3) to leading- order of sυ
and noting that υ2 → 1/z2, one obtains the following expression for the dipole term d0
(normalized with respect to the dimensionless volume π/3 of the dimer [31]):

limχ0(0, υ)
υ→0

= υ2
∫ ∞

0

A0(s)
cosh(s)

ds, d0(0) = −
∫ ∞

0

A0(s)
cosh(s)

ds (11)

Let us first evaluate the corresponding far-field dipole d0(0) defined in Equation (11) by
substituting the exact solution given in Equation (9), which renders (see [53], 3.523.3 & 3.557.3):
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d0(0) = − 1
2

∫ ∞
0 s{ln[2cosh(s)[ + s[tanh(s)− 2]}ds = 1

2

∫ ∞
0

[
s3

2cosh2(s) −
s2e−s

cosh(s)

]
ds

= 3
32 ζ(3),

(12)

where ζ(3) denotes the Euler–Riemann zeta function (ζ(3) = 1.202 . . .). Note that Equation
(12) coincides with the longitudinal resistivity parameter, corresponding to two touching
insulating identical spheres [38], obtained in the context of a dimer’s heat conduction and
effective conductivity. Finally, we provide below an approximate solution for the frequency-
dependent dipole term by substituting the solution of Equation (10) into Equation (11)
which renders (see [53], 3.552.3):

d0(Ω) =
3

8(4 + iΩ)

[
ζ(3)(2− iΩ)− 4(1 + iΩ)

3(2 + iΩ)
ζ(2)

]
(13)

The above ‘asymptotic’ approximation for the AC dipole-term, may be also compared
against the ‘exact’ value given in Equation (12) in the DC limit.

3. Electro-Rotation

Let us next consider the case of a uniform AC transverse forcing (acting in the x
direction), where the corresponding asymmetric total ‘outer’ field (see Equation (2)) is now
given by:

φ1(µ, υ, ϕ) = − µcosϕ

µ2 + υ2 +
(

µ2 + υ2
)1/2

cosϕ
∫ ∞

0
A1(s)J1(µs)

cosh(sυ)

s ∗ sinh(s)
ds (14)

The coefficients A1(s) in Equation (14) (symmetric with respect to υ), can be found in
a similar manner to Equation (6) by enforcing the Robin boundary condition ∂φ1/∂υ =
−i
(
µ2 + υ2)Ωφ1 on υ = 1, resulting in the following second-order inhomogeneous ODE

for A1(s):

d2 A1(s)
ds2 − 1

s
dA1(s)

ds
−
[

1 + (1 + iΩ)
coth(s)

s

]
A1(s) = (2− iΩ)se−s (15)

Equation (15) (compared to its ‘axisymmetric’ version of Equation (8)), is derived by
using the relations below for the Bessel function (obtained from Equation (4)):

µ

(µ2 + υ2)
3/2 =

∫ ∞

0
sJ1(µs)e−sυds;

[
µ2s2 + s

d
ds

(
s

d
ds

)
− 1
]

J1(µs) = 0 (16)

It is interesting to note that unlike Equation (8), an exact solution of Equation (15) is
not available even in the DC limit (Ω = 0). Nevertheless, an asymptotic-type solution of
Equation (15) can be obtained in a similar manner to Equation (10), by letting s→ ∞ which
renders:

A1(s, Ω) ' −s2e−s 2− iΩ
4 + iΩ

+ O
(
e−s) (17)

Thus, it appears that at least to a leading -order, A0(s, Ω) = A1(s, Ω), as evidenced by
obtaining the asymptotic limits of both Equations (8) and (15). In addition, note that the
DC leading-order solution A1(s, 0) = −s2e−s/2 found for s→ ∞ from Equation (17) fully
agrees with the DC asymptotic solutions obtained by [41,43].

The far-field dipole (along the x-axis) of Equation (14), normalized by the dimer non-
dimensional volume π/3 [31], can again be found by setting υ = 0 and letting µ → 0,
which renders

limφ1 (0, µ)
µ→0

' 1
2

µ2cosϕ
∫ ∞

0

A1(s)
sinh(s)

ds, d1(Ω) = −1
2

∫ ∞

0

A1(s, Ω)

sinh(s)
ds (18)
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since on z = 0, υ = 0 and µ2 =
(

x2 + y2)−1. Substituting Equation (17) in Equation (18)
finally leads to the following asymptotic expression for the dispersion of the transverse
frequency-dependent far-field dipole (see [53], 3.552.1):

d1(Ω) = 3
(

2− iΩ
4 + iΩ

)
ζ(3), (19)

Electro-rotation (ROT) [6] of a dimer about its axis of symmetry can be achieved by
applying two orthogonal (out-of-phase) uniform AC electric fields (of the same amplitude
E0) acting in the x and y directions, such that the total field is given by:

→
E(t) = E0

(
êx − i êy

)
e−iΩt (20)

where
(
êx, êy, êz

)
are the corresponding unit vectors along the (x, y, z) directions, respec-

tively. The electrostatic (time-averaged) torque acting on the dimer can then be written in

term of its effective dipole
→
d e f f as [54]:

→
τ =

1
2

(→
d e f f ×

→
E
∗)

, (21)

where the superscript (*) denotes the complex conjugate. Due to the axisymmetry of the

dimer, the dimensional effective dipole is defined here using Equation (19) as
→
d e f f =

εE0a3d1(Ω)
(
êx − iêy

)
e−iΩt, where ε denotes the dimer’s permittivity. Substituting this

expression for the effective dipole together with Equation (20) in Equation (21), taking the
average over a single period, results in:

→
τ (Ω) = εE2

0a3Im[d1(Ω)]êz =
−9εE2

0a3ζ(3)Ω
(16 + Ω2)

êz. (22)

Following [48,49], we recall that the resisting Stokes torque of a steady rotation of two touch-
ing equal spheres about their axis of symmetry, can be expressed as

→
τ s = −12πηa3

.
Θzζ(3)êz,

where
.

Θ is the corresponding angular velocity and η represents the dynamic viscosity
of the solvent. Ignoring inertia effects and letting

→
τ ' →τ s, one gets the following explicit

solutions for the ROT angular velocity (mobility) of a dimer:

.
Θz =

3εE2
0

4πη
· Ω

16 + Ω2 . (23)

Thus, the ROT spectra given in Equation (23) is of a Lorentzian type, it vanishes both
for zero and infinitely large forcing frequencies and exhibits a peak at Ω = 4, such that
.

Θz,max = 3εE2
0/(32 ∗ π ∗ η).

A similar analysis can be also conducted for the complimentary case of an ‘asym-
metric’ rotation of a dimer, say a rotation about its transverse x-axis, by considering

the following asymmetric AC ambient field
→
E(t) = E0

(
êy − iêz

)
e−iΩt instead of Equa-

tion (20). The corresponding dimensional effective dipole moment is now given as
→
d e f f = εE0a3(d1êy − id0êz

)
e−iΩt, where d0(Ω) and d1(Ω) are defined in Equations (13)

and (19), respectively, which finally renders
→
τ = εE2

0a3 Im[d0(Ω) + d1(Ω)]êx/2. The vis-
cous creeping torque experienced by a rotating dimer about its transverse axes (x, y). has
been numerically computed in [45] as

→
τ s = −3.740 · 8πηa3

.
Θxêx. Thus, by letting

→
τ s '

→
τ

(ignoring inertia effects) and using Equations (13) and (19), one obtains:

.
Θx(Ω) =

−εE2
0

16ηπ · 3.740
Im[d0(Ω) + d1(Ω)] =

3εE2
0

8ηπ · 3.740
· Ω

16 + Ω2

[
15
4

ζ(3) +
2−Ω2

4 + Ω2 ζ(2)
]

, (24)
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Equation (24) provides the sought explicit (asymptotic) expression for the transverse
ROT spectra of a dimer consisting of two equal fused spheres. It is given again in a
Lorentzian form of compact support which vanishes both for zero and infinitely large
forcing frequencies.

4. Traveling-Wave Electrophoresis

It is well-known that a polarizable dimer embedded in ‘unbounded’ solute, which
is exposed to a uniform (DC or AC) axisymmetric field, remains stationary although an
induced-charge (dipole-type) electroosmotic (ICEO) flow is generated around its surface [2].
Nevertheless, if the ambient electric field is spatially non-uniform, the dimer acquires a
linear velocity (mobility) in the z direction due to dielectrophoresis (DEP). In this section
we consider the more general case of a polarized dimer that is subjected to an arbitrary
non-homogenous travelling-wave (TW) excitation [54], whereby the ambient axisymmetric
electric forcing is expressed in cylindrical coordinates

(
z, r =

√
x2 + y2

)
, as

XTW(z, r, k; t) = −Re{ XTW(z, r, k)e−iΩt
}

, (25)

where XTW(z, r, k) = (E0/k)ei(kz−ϕ) I0(kr) and I0 is the modified Bessel function of the first
kind and zero order. The forcing reference amplitude is denoted by E0, k represents its wave
number, ϕ is an arbitrary phase angle, and Ω is the forcing frequency. The particular form
of Equation (25) is selected so that under the long-wave approximation (k→ 0, ϕ = π/2)
one gets Re { XTW(z, r, 0)

}
= E0z, representing a time-harmonic axisymmetric ambient

uniform field.
Expanding XTW(z, 0, k) in a Taylor series in k on the z-axis (r = 0) renders:

Xtw(z, 0, k) =
∞

∑
n=0

Cnzn + const, Cn =
E0(ik)

n−1

n!
zne−iϕ. (26)

However, we recall that a general axisymmetric harmonic function which is propor-
tional to zn can be also expressed in term of a Legendre polynomial Pn(η̃) as RnPn(η̃), where
R2 = r2 + z2 and η̃ = cos−1(z/R). Note that on the z-axis (r = 0), R = z and η̃ = 0. Thus,
the polynomial zn can be considered as the limiting value of an axisymmetric harmonic
function of (z, r) evaluated on r = 0. Hence, following Equations (1), (2), and (26), one gets
for υ > 0 and µ→ 0:

lim
µ→0

[RnPn(η̃)] = zn =
1

υn = lim
µ→0
{
(

µ2 + υ2
)1/2 ∫ ∞

0
A(n)

0 (s)J0(µs)e−υsds
}

. (27)

Finally, by virtue of the identity in Equation (4), one can deduce by repeated differenti-
ations that A(n)

0 = sn/n!, which reduces to Equation (5) for n = 1.
The total electric potential, including the ambient field of Equation (27) and the

scattering field given in Equation (3), can then be expressed for odd n, as:

φ
(n)
0 (µ, υ) = −RnPn(η̃) + χ(n)(µ, υ) =

(
µ2 + υ2

)1/2 ∫ ∞

0

[
A(n)

0 (s)
sinh(υs)

s ∗ cosh(s)
− sn

n!
e−υs

]
J0(µs)ds. (28)

A similar form to Equation (28) is also available for even values of n by simply
replacing sinh(υs)/cosh(s) with cosh(υs)/sinh(s). The unknown coefficients A(n)

0 (s) are
then found by enforcing the Robin-type boundary conditions of Equation (6) on χ(n)(µ, υ),
which is represented by the first integral on the right-hand side of Equation (28), resulting
in the following differential equation (ODE) for A(n)

0 (s) (n-odd):
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d2 A(n)
0 (s)

ds2 − 1
s

dA(n)
0 (s)
ds

−
[

1 + (1 + iΩ)
tanh(s)

s
− 1

s2

]
A(n)

0 (s) =
sn

n!

[(
1 +

1− iΩ
n

)
s− n

]
e−s. (29)

The corresponding ODE for even values of n is obtained by replacing tanh(s) in
Equation (29) with coth(s). Note that Equation (29) reduces to Equation (8) as expressed for
n = 1. Equation (29) does not yield an exact solution; however, an approximate expression
for A(n)

0 (s) (any n), can be found in a similar manner to Equation (8), in Section 2, by
considering the limit s→ 0 in Equation (29), leading to:

A(n)
0 (s) =

sn

(n− 1)!(2n + 2 + iΩ)

[
2(1 + iΩ)

2 + iΩ/n
−
(

2− iΩ
n

)
s
]

e−s + O
(

sn−1e−n
)

, (30)

which again reduces to Equation (10) for n = 1.
In order to find the far-field multipoles of χn(µ, υ) in Equation (28) prevailing along

the axis of symmetry r = 0, z→ ∞, it is enough again to expand sinh(υs) in a Taylor series
for µ = 0 and υ→ 0, resulting in

χ(n)(0, υ→ 0) ∼
∞

∑
m=0

υ2m+2

(2m + 1)!

∫ ∞

0
A(n)

0 (s)
s2m

cosh(s)
ds. (31)

Next, recalling that χn in Equation (31) can be also expanded along the axis of symme-
try (z→ ∞), in terms of the far-field multipoles d̃(n)m as:

χ(n)(0, υ→ 0) =
∞

∑
m=0

d̃
(n)
m

dm

dzm

(
1
z

)
=

∞

∑
m=0

(−1)mm!d̃
(n)
m υm+1, (32)

implying that the corresponding multipoles of order m and odd n, are explicitly given by:

d̃
(n)
2m+1 =

−1

[(2m + 1)!]2

∫ ∞

0
A(n)

0 (s)
s2m

cosh(s)
ds. (33)

The steady-state (time-averaged) dielectrophoretic force component FDEP, which is
exerted on the dimer by the travelling-wave ambient field given in Equations (25) and (26),
can then be expressed following [5,54] in terms of the above multipoles as:

FDEP = 2πRe
{

∞
∑

n=0

(−1)nCnd(n)n
n!

dn+1

dzn+1

[
∞
∑

m=0
C∗mzm

]∣∣∣∣
z=0

}
= −4πRe

{
∑∞

m=0(m + 1)C2m+1C∗2m+2d(2m+2)
2m+1

}
,

(34)

where the TW amplitudes Cm, are defined in Equation (26). Note that only the odd-order
(2m + 1) multipoles of Equation (33) contribute to the DEP force in Equation (34).

The higher-order multipole terms in Equation (33), can be next evaluated by substi-
tuting the leading-order asymptotic expression of A(n)

0 (s) obtained in Equation (30) into
Equation (33), resulting in:

d̃
(2m+2)
2m+1 =

4m + 4− iΩ

(2m + 2)![(2m + 1)!]2[4m + 6 + iΩ]

∫ ∞

0

s4m+3e−s

cosh(s)
ds. (35)

The integral in Equation (35) can be evaluated analytically (see [53], 3.552.3) and thus
one finds
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d̃
(2m+2)
2m+1 =

4m + 4− iΩ
4m + 6 + iΩ

T(m), T(m) =
2−(4m+3)

[
1− 2−(4m+3)

]
(4m + 3)!ζ(4m + 4)

(2m + 2)![(2m + 1)!]2
, (36)

where ζ(n) denotes again the Riemann zeta function.
Finally, substituting Cm defined in Equations (26) and (36) into Equation (34) leads to:

FDEP = 4πE2
0Ω ∑∞

n=0
(4m + 3)
{(2m + 1) !]2

k4m+1T(m)[
(4m + 6)2 + Ω2

] . (37)

Equation (37) is the sought expression for the axial travelling-wave dielectrophoretic
(TWDEP) force acting on a polarizable dimer that is exposed to an arbitrary ambient non-
uniform traveling-wave (TW) field prescribed by Equations (25) and (26), in terms of the
dimensional RC frequency Ω defined in Equation (6) and the characteristic wave number k
of the ambient field. The spectrum of Equation (37) is again of a Lorentzian type, vanishing
both at Ω = 0 (DC limit) and Ω → ∞ (due to insufficient time for AC charging to take
place over a single period), as well as for k→ 0 (infinitely long wave-length corresponding
to a uniform field).

5. Induced-Charge Electroosmosis

Following the analysis presented in Section 2, we consider here the case of a freely
suspended polarizable dimer, which is subjected to an axisymmetric AC uniform elec-
tric field. We are interested here in calculating the induced electroosmotic flow field
prevailing around the colloid. Thus, the total electric field (of unit amplitude) incited
in the surrounding electrolyte is given by φ0(µ, υ, Ω) = −z + χ0(µ, υ, Ω), where the
scattering potential χ0(µ, υ) is defined in Equation (3) in terms A0(s, Ω). The coeffi-
cient A0(s, Ω) is determined by applying the Robin-type boundary condition on the
dimer surface (υ = ±1) in terms of the RC dimensionless frequency Ω defined in Equa-
tion (6) and is found by solving the inhomogeneous 2nd-order non-linear ODE given
in Equation (8). As previously explained, for most practical numerical purposes, it is
possible to use the one-term asymptotic approximation given in Equation (10), namely
A0(s, Ω) ≈ [2(1 + iΩ)/(2 + iΩ)− (2− iΩ)s]se−s/(4 + iΩ). Hence, substituting this ex-
pression in Equation (3) and letting s→ ∞, leads to ([53], 6.623.2):

φ0(µ,±1, Ω) = ±
[
− 1

1+µ2 +
(
1 + µ2)1/2 ∫ ∞

0 A0(s, Ω)J0(sµ) ds
s

]
= ± 2

4+iΩ

[
− 3

1+µ2 +
1+iΩ
2+iΩ

]
.

(38)

Next, assuming a ‘thin’ Debye layer (EDL) as compared to the dimer radius, the
induced-charge distribution in the solvent engenders a HS slip velocity on the dimer
surface [2,3]. For a perfectly conducting dimer, this surface velocity slip, when expressed in
the present curvilinear coordinate system, can be written (dimensionless form) in terms of
the potential φ0(µ, υ) as:

Uµ(µ,±1, Ω) = − sgn(υ)
2hµ

∂|φ0(µ,±1, Ω)|2

∂µ
=

[
72µ

(16 + Ω2)(1 + µ2)
2 −

24µ
(
2 + Ω2)

(16 + Ω2)(4 + Ω2)(1 + Ω2)

]
sgn(υ). (39)

Here Uµ(µ,±1, Ω) denotes the tangential velocity over the surface of the dimer and

hu = hυ =
(
µ2 + υ2)−1 are the two metric coefficients of the curvilinear coordinates

(tangent-sphere) system (µ, υ, ϕ). It is clear that Uµ in Equation (39) is asymmetric with
respect to υ (z = 0 plane) and a result the DEP force exerted on the dimer by a uniform
field is null! Yet, the induced HS slip velocity on the colloid surface renders a dipole-type
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velocity field around the dimer which decays (as expected) away from the origin. The
resulting induced-charge electroosmotic (ICEO) flow field in the solvent, is assumed to
be governed by the Stokes momentum equation [2] (ignoring inertia) and thus under the
present axisymmetric forcing, can be expressed in terms of a Stokes stream surface ψ(µ, υ),
satisfying the following fourth-order PDE: E4ψ(µ, υ) = 0, where:

E2ψ(µ, υ) =
1
4

µ
(

µ2 + υ2
)[ ∂

∂µ

(
µ2 + υ2

µ

)
+

∂

∂υ

(
µ2 + υ2

µ

)]
ψ(µ, υ). (40)

A general solution of Equation (40) for a tangent-sphere coordinate system (containing
four unknown coefficients), was given in [44]. Imposing the surface no-flux conditions
ψ(µ,±1) = 0 and the asymmetry with respect to υ finally yields:

ψ(µ, υ, Ω) =
µ

(µ2 + υ2)
3/2

∫ ∞

0
F(s, Ω)[sinh(ns)− υ ∗ tanh(s)cosh(υs)]J1(µs)ds, (41)

where F(s, Ω) is yet to be determined.
The tangential velocity component, Uµ(µ,±1, Ω), can be next found following [44]

directly from Equation (41) as:

Uµ(µ,±1, Ω) = − (1+µ2)
2

µ
∂ψ
∂υ (µ, υ, Ω)

∣∣∣
υ=±1

= −
(
1 + µ2)1/2 ∫ ∞

0 F(s, Ω)[sinh(s)− s/cosh(s)]J1(µs)ds,
(42)

Combining next Equations (39) and (42) yields:

∫ ∞

0
F(s, Ω)[sinh(υs)− s/cosh(s)]J1(µs)ds = − 72µ

(16 + Ω2)(1 + µ2)
5/2 +

24µ
(
2 + Ω2)

(16 + Ω2)(4 + Ω2)(1 + µ2)
3/2 , (43)

which can be inverted using ([53], 6.623.1), resulting in:

F(s, Ω) =
24s2e−s[s− 2

(
2 + Ω2)/(4 + Ω2)]

(16 + Ω2)[s ∗ sinh(s)− s/cosh(s)]
. (44)

Finally, substituting Equation (44) into Equation (41) provides the sought expression
for the Stokes stream function governing the low-Reynolds (creeping) ICEO flow field
about the polarized dimer. The corresponding curvilinear velocity components

(
Uµ, Uυ

)
,

induced in the electrolyte, can then be obtained by a proper differentiation of ψ(µ, υ, Ω),
i.e., Uµ(µ, υ, Ω) = −

(
µ2 + υ2)2/µ · ∂ψ/∂υ and Uυ(µ, υ, Ω) =

(
µ2 + υ2)2/µ · ∂ψ/∂µ. Note

also that F(s, Ω) is non-singular as s→ 0 and that the velocity field in the fluid decreases
with the dimensionless RC frequency as

(
16 + Ω2)−1 (maximum velocity is attained at the

DC limit Ω = 0).

6. Electro-Hydrodynamics of a Particle Next to a Wall

Here, we demonstrate how the present methodology can be applied to obtain an
analytic solution for the electro-hydrodynamic (EHD) flow field around a spherical colloid
placed next to a conducting planar substrate (electrode) which is subjected to a uniform
DC electric field excitatiin. In the case where the field is applied in a direction normal to
the electrode, an explicit solution is found for the corresponding Stokes stream function.
We consider a freely suspended initially uncharged polarizable particle (of unit diameter),
lying next to a grounded planar electrode (z = 0), which is subjected to a uniform electric
field −E0z as z→ ∞ (see Figure 3). The standard electrokinetic model combined with the
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thin EDL assumption (2), implies that the electric field in the solute φ(µ, υ) is governed by
the Laplace equation and satisfies

1
hυ

∂φ(µ, υ)

∂υ

∣∣∣∣
υ=0

= −E0,
∂φ(µ, υ)

∂υ

∣∣∣∣
υ=1

= 0. (45)

Figure 3. Schematic description of the problem in Section 6 of a spherical particle next to a wall
(z = 0), which is subjected to a uniform DC electric field acting in the z direction.

Since the problem preserves axial symmetry with respect to the z-axis, a general
solution for φ(µ, υ) can then be expressed in terms of the tangent-sphere coordinates for
υ ≥ 0, as [9]:

φ(µ, υ)

E0
= − υ

µ2 + υ2 +
(

υ2 + µ2
)1/2 ∫ ∞

0
B(s)cosh(sv)J0(µs)ds, (46)

where B(s) is a coefficient to be determined. Note that Equation (46) automatically satisfies
the boundary condition at υ = 0 in Equation (45) on the plane z = 0. Enforcing next the Neu-
mann boundary condition applied on the colloid surface (υ = 1), given by Equation (45),
leads to:∫ ∞

0
B(s)cosh(sv)J0(µs)ds +

(
1 + µ2

) ∫ ∞

0
sB(s)sinh(sv)J0(µs)ds =

1

(1 + µ2)
1/2 −

2

(1 + µ2)
3/2 . (47)

Recalling that the Bessel function satisfies sµ2 J0(µs) = −d[sdJ0(µs)/ds]/ds and using
Equation (4), an integration by parts of Equation (47) results in the following inhomoge-
neous second-order ordinary differential equation:

ssinh(s)
d2B(s)

ds2 + [sinh(s) + 2scosh(s)]
dB(s)

ds
= (2s− 1)e−s. (48)

Employing the general scheme outlined in ([55], p. 14), the first integral of Equation (48)
which is finite for s→ 0, is given by:

dB(s)
ds

= 1− coth(s) +
s

2sinh2(s)
. (49)

Thus, an explicit expression for B(s) (which vanishes for s → ∞), can be found by
integrating Equation (49), resulting in:

B(s) = s− 1
2

s coth(s)− 1
2

ln[2 sinh(s)]. (50)

such that B(s→ 0)→ [ln(2s) + 1]/2 + O(s).
Once the electrostatic problem governed by Equations (46) and (48) has been solved,

one can also consider the corresponding hydrodynamic problem. Following [44], a general
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explicit expression for the Stokes stream function of the creeping velocity field past an
impermeable sphere in contact with a planar wall can be expressed in a tangent-sphere
coordinate system in terms of four unknown coefficients

(
Ã, B̃, C̃, D̃

)
as:

Ψ(µ, υ) =
µ

(µ2 + υ2)
3/2

∫ ∞

0

{[
B̃(s) + υÃ(s)

]
sinh(υs) + [ D ˜(s) + υ C ˜(s)]cosh(υs)J1(µs)

}
ds. (51)

Since both the grounded electrode (z = υ = 0) and particle (υ = 1) are considered
as stream surfaces, namely ψ(µ, 0) = ψ(µ, 1) = 0, Equation (51) implies that D̃(s) = 0.
In addition, applying the vanishing velocity (no-slip) condition over the surface of the
rigid polarizable colloid (see discussion in [30]) renders ∂ψ(µ, υ)/∂υ|υ=1 = 0. By virtue of
the above three boundary conditions, one can express the general solution for the Stokes
stream function given by Equation (51) in terms of a single coefficient C̃(s) as:

ψ(µ, υ) =
µ

(µ2 + υ2)
3/2

∫ ∞

0
C̃(s)

[
υsinh(s(1− υ))

sinh(s)
− s(1− υ)sinh(sυ)

sinh2(s)

]
J1(µs)ds. (52)

It is also important to note that Equation (52) is obtained by substituting:

Ã (s) = C̃(s)
s− sinh(s)cosh(s)

sinh2(s)
, B̃(s) = −C̃(s)

s
sinh2(s)

, (53)

in Equation (51).
In order to find the single coefficient C̃(s) in Equation (52), we need to calculate the

induced horizontal HS slip velocity on the planar electrode at the edge of the Debye layer
(EDL), given by (see [2,30]) as:

Uz(r, z = 0) = Uυ(µ, υ = 0) = − ελ0E0

η

(
µ2 + υ2

) ∂φ(µ, υ)

∂µ

∣∣∣∣
υ=0

, . (54)

where we recall that η denotes the dynamic viscosity of the electrolyte. The EDL thickness
is denoted by λ0 and ε represents the relative permittivity of the solute. Expressed in
terms of the Stokes stream function, the above slip velocity evaluated on the surface of the
spherical colloid can be written (see [30]) as:

Uυ(µ, υ = 0) = −
(
µ2 + υ2)2

µ

∂ψ(µ, υ)

∂υ

∣∣∣∣
υ=0

. (55)

Thus, following Equations (54) and (55), one finds:

∂ψ(µ, υ)

∂υ

∣∣∣∣
υ=0

= − ελ0E0

η

µ

µ2 + υ2
∂φ(µ, υ)

∂µ

∣∣∣∣
υ=0

. (56)

The term on the left-hand side of Equation (56) can be readily found from Equation (52) as;

∂ψ(µ, υ)

∂υ

∣∣∣∣
υ=0

=
1

µ2

∫ ∞

0
C̃(s)

[
1− s2

sinh2(s)

]
J1(µs)ds. (57)

In a similar way, using Equation (46) we obtain:

∂φ(µ, υ)

∂µ

∣∣∣∣
υ=0

=
∫ ∞

0
B̃(s)J0(µs)ds +

∫ ∞

0
sB̃(s)

dJ0(µs)
ds

ds = −
∫ ∞

0
s

dB̃(s)
ds

J0(µs)ds. (58)

Next, integrating Equation (58) by parts and combining it with Equation (57), finally
leads to:

C̃(s) = −
εE2

0λ0

η

sd2B(s)/ds2

1− [s/sinh(s)]2
= −

εE2
0λ0

η

s[3/2− scoth(s)]
sinh2(s)− s2 . (59)
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It should be noted that C̃(s) vanishes for a large s but it is singular like O
(
s−3) for

s→ 0. Nevertheless, we recall that the kernel in Equation (52) behaves like υ(1− υ)s3 for
small s, so that the integral in Equation (52) is well-defined. Substituting Equation (59) into
Equation (52) provides the sought explicit expression for the Stokes stream function for
the EHD velocity field generated around a polarized spherical colloid placed adjacent to a
grounded electrode. Thus, the corresponding velocity components in the fluid domain, i.e.,(
Uµ, Uυ

)
= −

(
µ2 + υ2)2/µ · (∂/∂υ,−∂/∂µ)ψ(µ, υ), can be explicitly determined.

Solving the integral in the right-hand side of Equation (52) numerically leads to the
contour plots of the Stokes stream function and the associated velocity fields depicted in
Figure 4 (see also [30,34]). It is clearly seen that the highest velocity magnitude is observed
along the lower surface of the sphere, where fluid is pushed into the gap between the sphere
and the grounded wall/electrode, and then it rises up along the sphere. Hence, the EHD slip
velocity of the surrounding fluid works to push the particle away from the wall (repulsion).

Figure 4. The (a) contours of the Stokes stream function and (b) velocity vectors around the spherical
particle placed next to a wall at z = 0 of Section 6, and which is subjected to a uniform DC electric
field acting in the z direction. The velocity-vector field modulus was adjusted for better viewing.
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7. Induced-Charge Electrophoresis of a Janus Dimer

As a final demonstration of the above methodology, we consider a typical symmetry-
breaking problem related to the mobility of two touching (fused) spherical colloidal particles
of different surface properties that are exposed to an ambient electric field. For simplicity,
we consider here the case of a dimer composed of two geometrically identical spheres,
the upper one is taken to be perfectly conductive and the lower one is coated with a
thin dielectric layer. The dimer is subjected to a uniform axisymmetric DC field acting
along the z-axis (Figure 1). The effect of the coating is to suppress the induced-charge
electroosmotic flow on the dielectric sphere [3] and due to material asymmetry, it leads to a
finite induced-charge electrophoretic (ICEP) motion of the Janus dimer. It is important to
note that the mobility of the Janus dimer arises from material symmetry- breaking, whereas
it is well-known that the mobility of a similar homogeneous dimer (conductive or dielectric)
is always null under the same (uniform) forcing.

The formulation of the DC electrostatic problem is outlined in Section 2, where the
total potential is given by φ0(µ, υ) = −ξ + χ0(µ, υ), where χ0(µ, υ) is given in Equations
(3) and (9) satisfying ∂φ0(µ, υ)/∂υ = 0 on υ = ±1. Nevertheless, the induced potential ξ
on the perfectly conductive sphere (υ = 1, zero inner potential) is given following [3] by:

ξ(µ, 1) = −φ0(µ, 1)− C =
1

1 + µ2 −
(

1 + µ2
)1/2 ∫ ∞

0
A0(s)

tanh(s)
s

J0(µs)ds− C, (60)

where C is a constant to be determined and the corresponding ξ potential on the unpolarized
dielectric (coated) sphere (υ = −1) can be practically neglected. Charge conservation
arguments applied over the surface of the conducting sphere imply that the integral of the
potential ξ(µ) over its surface vanishes and thus one gets ([53], 6.656.3):

C =
1
2
− 2

∞x

0

A0(s)
tanh(s)

s
J0(µs)

µdµds

(1 + µ2)
3/2 =

1
2
−
∫ ∞

0
A0(s)e−s tanh(s)

s
J0(µs)ds. (61)

Substituting Equation (9) in Equation (61) and integrating by parts renders an explicit
expression for C:

C = − 1
2 −

1
2

∫ ∞
0 [ln(2 cosh(s)) + s(tanh(s)− 2)]sinh(s)e−sds

= 1
4

[
1 + ln(2) + 1

4 ζ(2)
]
= 0.5261,

(62)

where ζ(2) = π2/6. Numerical integration of the integral in Equation (62) verified the
result presented on the right-hand side of Equation (62).

The dimensionless slip velocity generated by the induced-charge electroosmotic (ICEO)
flow past the polarizable sphere, can be described by the HS slip velocity [1,2] as

→
v S =

−ξ(µ, 1)∇||φ
∣∣∣
υ=1

, where ∇|| denotes the tangential (to the surface) gradient. Thus, the
axial ICEP mobility of the Janus dimer is given by the following integral:

Uz = −
1
Sd

∫ 2π

0

∫ ∞

0
ξ(µ, 1)

∂φ0(µ, 1)
∂z

hµhφdµdφ = −2π

Sd

∫ ∞

0
ξ(µ, 1)

∂z
∂µ

∂φ0(µ, 1)
∂µ

hφ

hµ
dµ, (63)

where Sd represents the surface area of the dimer. Substituting the values of the metric coef-
ficients hµ = 1/

(
1 + µ2), hφ = µ/

(
1 + µ2), and ∂z/∂µ = −2µ/

(
1 + µ2) in Equation (63),

yields for Sd = 2π:

Uz = 2
∫ ∞

0
ξ(µ, 1)

∂φ0(µ, 1)
∂µ

µ2

(1 + µ2)
2 dµ. (64)
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In order to analytically evaluate φ0(µ, 1), we again use the asymptotic expression for A0(s),
as given by Equation (10) (see also Figure 2a), namely A0(s)tanh(s)/s = s(1− 2s)e−ssinh(s)/4,
which leads to:

φ0(µ, 1) = − 1
1 + µ2 +

(
1 + µ2)1/2

4

∫ ∞

0
(1− 2s)e−s J0(sµ)dµ =

1
4

[
1− 6

1 + µ2

]
. (65)

Finally, by substituting Equation (65) into Equation (64) one finds:

Uz = 6
∫ ∞

0

[
6

1 + µ2 − (1 + 4C)
]

µ3

(1 + µ2)
4 dµ =

1− 2C
6

= 8.7 ∗ 10−3, (66)

where C is given by Equation (62). Note that the dimensionless phoretic velocity (mobility)
of the Janus dimer is in the negative z direction, namely from the conducting (metallic)
sphere towards the coated (dielectric) sphere as expected [3].

8. Discussion and Summary

In this work we presented an analytical methodology for evaluating the non-linear
(quadratic in the applied field) ICEO problem about doubly connected (non-convex) mi-
cro/nano polarizable colloids freely suspended in a conducting (electrolyte) fluid. In
particular, we chose to analyze the two touching (fused) spheres (dimer) configuration by
applying the R-separable tangent-sphere orthogonal coordinate system. The linearized
formulation was based on solving both the electrostatic and hydrodynamic (Stokes regime)
problems. These two problems are uncoupled due to the ‘weak’ field (standard model)
assumption and using the classical (linearized) PNP formulation. In addition, we con-
sidered the EDL around the dimer as thin. The ambient electric forcing can be either
of a DC or AC nature as well as spatially uniform or non-uniform. In the course of the
analysis, we obtained explicit expressions for the linear and angular mobilities of a freely
suspended dimer under various electric forcing and also for the electroosmotic ICEO flow
field engendered around a stationary dimer by the same forcing. It was demonstrated that
the same approach enabled us to consider the EHD flow of a conducting sphere adjacent to
a planar wall (electrode) and to analytically resolve the mobility problem of a free Janus
dimer composed of two spheres, one conducting and one dielectric (symmetry-breaking).

First, we considered the case of a homogeneous dimer under an AC uniform field
directed along the line of centers. The solution of the electrostatic problem was found
by solving a mixed (Robin-type) non-homogeneous boundary condition applied on the
dimer’s surface in terms of the electric potential and the imposed RC frequency Ω (6).
The solution was determined by solving a non-trivial complex second-order ODE (8). It
was further demonstrated that the asymptotic solution of this ODE can indeed serve as a
pretty good approximation (see Figure 2), by comparing it both against the known exact
solution for the DC case (9) as well as the corresponding numerical solution (obtained by
using a 2nd-order central finite-difference scheme). Thus, we may conclude that, at least
for the practical range of forcing frequencies (i.e., below the Maxwell–Wagner limit), where
Ω is of the order of unity, the ‘asymptotic’ approximation may be effectively used. One
can then obtain for example, an analytic expression for the polarizability (far-field dipole)
of a dimer in terms of the Riemann zeta function. The same approach was further used in
Sections 3 and 4 for the corresponding ICEP problem to explicitly find the angular velocities
of a dimer under ROT excitation (two orthogonal out-of-phase uniform fields) and the linear
mobility when the dimer was exposed to a general axisymmetric travelling wave (non-uniform
AC fields). The mobility spectra in both cases were found to be of a Lorentzian type (compact
support), exhibiting a maximum value at a prescribed RC frequency.

As far as ICEO and some related hydrodynamic problems, the integral Stokes stream-
function formulation has been used in Section 5 to determine the steady (time-averaged)
electroosmotic flow field induced around a stationary dimer due to an axisymmetric
uniform AC electric field affected by the corresponding HS velocity slip. The velocity
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components were expressed in the curvilinear ’tangent-sphere’ coordinate system. They
decreased with frequency, depended quadratically on the field, and decayed away from
the dimer. A similar stream function integral approach was also applied in Section 7 to
determine the EHD flow field induced around a spherical colloid lying next to a planar
conducting electrode resulting in an explicit solution as depicted in Figure 4. Finally, we
provided a new demonstration for a typical symmetry-breaking DC problem involving
a Janus dimer configuration composed of one perfectly conducting sphere and the other
purely dielectric. Due to the mismatch in material properties between the spheres, it was
shown that such a non-homogeneous dimer (in contrast to the homogeneous case) will
acquire a finite mobility along the line of centers. The direction of the phoretic mobility (as
expected) is always from the metallic towards the dielectric sphere. The above examples
demonstrate the versatility of the presented integral formulation for other multi-connected
configurations and engineered colloids such as particle interaction and chaining phenomena
of spherical colloids.
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Nomenclature

An
Complex function forming the integrand solution of the general time-dependent
potential, see Equation (2)

a Radius of the sphere
C Constant (Section 7)
D Diffusivity of the symmetric monovalent electrolyte
→
d e f f Effective dipole

E0 Forcing amplitude of the excitation
E(t) Forcing electric field
E4 Biharmonic operator
ê Unit vector
h Metric coefficient
I0 Modified Bessel function of the first kind
J0 Bessel function of the first kind
k Wave number
n Normal unit vector
Pn Legendre polynomial
R Spherical radius
r Polar radius in the x–y plane, see Figure 3
Sd Surface area of the dimer
s Integration variable, e.g., Equation (2)
t Time
U Velocity component
→
v Velocity vector
x Axial coordinate, see Figure 1
y Lateral coordinate
z The dimer axisymmetric coordinate, see Figure 1
ε Electric permittivity
ζ Euler–Riemann zeta function
η̃ Spherical angle
η Dynamic viscosity
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Θ◦ Angular velocity
λ0 Nano-metric EDL thicknessµ

υ

ϕ

 Orthogonal tangent-sphere coordinate system

ξ Induced potential
→
τ Electrostatic torque
φ Total electric potential

XTW
Ambient axisymmetric electric forcing of a non-homogenous travelling-wave (TW)
excitation (Section 4)

χ Harmonic function, a component of the total electric potential in the far- field
ψ Stream function
Ω RC dimensionless frequency
Ω Frequency
AC Alternating current
EDL Electric double layer
DC Direct current
DEP Dielectrophoresis
EHD Electro-hydrodynamic
HS Helmholtz–Smoluchowski
ICEO Induced-charge electroosmosis
ICEP Induced-charge electrophoresis
PNP Poisson–Nernst–Planck
RC Resistance–capacitance circuit
ROT Electro-rotation
TW Travelling wave
TWDEP Travelling-wave dielectrophoresis
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