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Abstract
The endocannabinoid system is a neurobiological signaling network that is present in the human biological systems, including 
the brain. This neurobiological system comprises cannabinoid receptors, endogenous ligands, as well as enzymatic synthesis, 
degradation and transport of endocannabinoids and has been suggested as a modulator of multiple physiological processes, 
including the sleep–wake cycle. On the other hand, the COVID-19 pandemic, originated by the novel coronavirus SARS-
CoV-2, has caused global catastrophes in economic, social, and health spheres. COVID-19 is a multi-organ disease with a 
broad spectrum of health complications, such as respiratory infections leading to respiratory-related symptoms and disorders. 
The development, approval, and application of vaccines against SARS-CoV-2 is ongoing; however, there are increasing 
reports of prolonged effects after COVID-19 infection, including respiratory and neurological sequelae. Here, I provide a 
comprehensive review of the current literature on the endocannabinoid system and their role in sleep modulation. Whilst I 
discuss relevant considerations for the high risk for developing sleep disorders related to respiratory failures, such as obstruc-
tive sleep apnea (OSA) in recovered COVID-19-infected subjects. Finally, I propose a framework that integrates the analysis 
of the components of the endocannabinoid system as prognostic biomarkers of the likely OSA after COVID-19 infection.
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1  Introduction

The endocannabinoid system  includes a broad range of 
molecular components such as two G-protein coupled recep-
tors named CB1 and CB2 which recognize their endogenous 
ligands anandamide (AEA) and 2-arachidonoylglycerol 
(2-AG) as well as enzymes that participate in the biosyn-
thesis, degradation, and transport of the endocannabinoids 
[1, 2]. On the other hand, the World is currently addressing 
a major pandemic crisis derived from COVID-19. Although 
eventually vaccines against SARS-CoV-2 will be available, 
long-term damage to various physiological systems in 
COVID-19-recovered subjects have been reported, including 

respiratory and neurological functions. Therefore, greater 
efforts must be made to develop successful diagnostic 
approaches for respiratory-related sleep disturbances, such 
as obstructive sleep apnea (OSA). An emergent insight from 
the role of the endocannabinoid system on sleep modulation 
is that this neurobiological network might be part of a new 
strategy for diagnosis of obstructive OSA in post-infected 
COVID-19 individuals.

2 � The Endocannabinoid System

The hemp Cannabis sativa contains over 500 phytocannabi-
noids including the psychoactive chemical delta-9-tetrahy-
drocannabinol and the non-psychotropic compound can-
nabidiol. Whereas the first molecule binds to cannabinoid 
receptors and exerts a plethora of neurobiological effects, 
the second compound has been suggested to show no affin-
ity to the cannabinoid receptors but displaying beneficial 
outcomes in many clinical conditions [3–5]. In the last 
decades, it has been characterized the components of the 
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endocannabinoid system comprising the cannabinoid recep-
tors (CB1/CB2), endogenous ligands (AEA and 2-AG) and 
their respective metabolizing and synthetic enzymes, as well 
as membrane transporter [1, 2]. Furthermore, the localiza-
tion of the endocannabinoid system in different biological 
samples has represented a new avenue for research in regards 
the active role of this neurobiological network in the modu-
lation of health.

2.1 � Synthesis and Degradation of Anandamide 
and 2‑Arachidonoylglycerol

AEA is formed by the following mechanisms: (a) Free 
arachidonic acid and ethanolamine (b) the synthesis from 
N-arachidonoyl phosphatidylethanolamine through the 
action of a phosphodiesterase [1, 2]. Once AEA is synthe-
tized, it crosses the membrane with the aid of the ananda-
mide membrane transporter (AMT) for binding to the can-
nabinoid receptors. Complementary, it has been suggested 
that AEA is converted into ethanolamine and arachidonic 
acid by the enzymatic activity of the fatty acid amide hydro-
lase (FAAH) [6]. On the other hand, the biosynthesis of 
2-AG engages membrane phospholipids and the activation 
of phospholipase C and diacylglycerol lipase (DAGL) and, 
once formed, this endocannabinoid binds to the cannabi-
noid receptors [7]. On the other hand, 2-AG is degraded 
to arachidonic acid and glycerol by a molecular mecha-
nism that includes the engagement of the monoacylglyc-
erol lipase (MAGL) enzyme [7]. Due to the discovery of the 
endocannabinoid system elements in the brain [8–11], its 
role in the modulation of multiple brain functions, including 
the sleep–wake cycle [12–15], has been suggested.

3 � The Sleep–Wake Cycle

Based in polysomnogram characteristics, three major states 
of vigilance have been described in most of the mammals: 
Wakefulness, slow wave sleep and rapid eye movement 
sleep. Given the knowledge in the field of the sleep–wake 
cycle, it would be indeed ambitious to describe the com-
plete evidence in regards the neuroanatomical nucleus and 
neurochemical systems involved in the control of the sleep; 
however, this topic has been extensively revised elsewhere 
[16–23].

3.1 � Circadian and Homeostatic Factors Controlling 
the Sleep

The sleep–wake cycle is also under the influence of circadian 
and homeostatic factors. In regards the circadian rhythms, 
this natural feature allows temporal patterns for periods of 
time of ~ 24 h to the biological activities of all organisms in 

the planet. In the case of the sleep–wake cycle, the circadian 
component is known as Process C, which fluctuates within 
a cycle of ~ 24 h and is synchronized by external signals, 
including the light–dark period [24, 25]. Complementary, 
the homeostatic process called Process S, regulates the defi-
cits of normal biological states and in turn, exerts adjust-
ments. In this regard, the sleep homeostasis is driven by the 
increase in sleep in response to prolonged waking periods. If 
sleep deficit reaches a critical point as consequence of sleep 
deprivation, then the sleep homeostasis mechanism exerts an 
adjustment by increasing the sleeping time known as “sleep 
rebound”. Thus, sleep pressure dissipates once sleep is onset 
[25, 26].

3.2 � Sleep Disturbances

The sleep–wake cycle, as many other physiological phenom-
ena, shows aberrant features that have been characterized as 
sleep disorders [27]. According to the International Clas-
sification of Sleep Disorders, several pathological patterns 
of the sleep have been classified in multiple Axis in which 
insomnia, central disorders of hypersomnolence, and many 
others are included.

4 � COVID‑19

The COVID-19 pandemic, originated by the novel coronavi-
rus SARS-CoV-2, has caused worldwide catastrophe in sev-
eral areas. The clinical manifestation of COVID-19 ranges 
from asymptomatic/mild symptoms to severe illness and 
death. The main transmission mechanisms of SARS-CoV-2 
are through viral-loaded respiratory droplets generated when 
an infected patient sneezes or coughs and by direct con-
tact to infected people or contaminated surfaces [28, 29]. 
Clinical diagnosis of COVID-19 shows it as a multi-organ 
disease with a broad spectrum of symptoms, such as chest 
pain, gastrointestinal infections, and respiratory failures, 
among many others. Precisely because the respiratory sys-
tem is likely the site where SARS-CoV-2 starts the replica-
tion and propagation, severe respiratory-related symptoms 
and diseases have been identified in patients with COVID-19 
[30]. Fortunately, the development, approval, and applica-
tion of vaccines against SARS-CoV-2 is ongoing [31].

5 � COVID‑19, Stress, and Sleep Disturbances

Once the World Health Organization proclaimed the world-
wide sanitary emergency on 2020 of COVID-19, most 
Countries responded to “flatten the curve” of infections by 
imposing mandatory measurements including physical dis-
tancing, social isolation, and prolonged lockdowns. Over 
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time, data emerged on collateral damage due to the length-
ened quarantines showed that measurements affected mil-
lions of individuals in the World caused by stress derived 
from unemployment, loneliness, financial and health con-
cerns, isolation, etc. [32–34]. It is worthy to mention that 
these external stressors have been linked to sleep problems 
during the prolonged quarantines [35, 36]. For instance, 
in China, a survey demonstrated that 18% of respondents 
claimed poor sleep quality [37]. In line with this Partinen 
(2021) found an enhancement in the prevalence of sleep 
disturbances as a collateral effect of COVID-19 crisis due 
to social isolation [38]. In most of the cases, insomnia was 
the main sleep disturbance related to stress derived from 
lockdowns [37–39].

6 � Pulmonary Damage in COVID‑19 Patients 
and Obstructive Sleep Apnea

Subjects that suffered and recovered from COVID-19 have 
shown affections in the alveolar epithelial cells as well 
as lung functioning which have been associated to the per-
sistent dyspnea [40–43]. The impairment in the functioning 
of the respiratory system impacts on multiple physiological 
events, including abnormal sleep patterns by the interrup-
tion in breathing. This multiple extended pauses in breath 
are the main clinical manifestation of OSA which fragments 
the sleep consolidation during the nighttime and seems to 
be a factor causing insomnia. Thus, on the next waking 
period, the person complaints of excessive daytime sleepi-
ness. Since subjects recovered from COVID-19 show severe 
alterations in pulmonary functioning, then it is plausible to 
assume that these pulmonary sequelae might promote OSA. 
In despite that the possible mechanism of respiratory sys-
tem disturbances that leads to sleep disorders remains to be 
described, it is possible to draw the following hypothesis: 
Subjects recovered from SARS-CoV-2 infection show effects 
in the alveolar epithelial cells as well as lung functioning 
which have been linked to shortness of breath [40–43]. How-
ever, we cannot rule out that additional mechanism could be 
engaged such as alveolar epithelial injury, viral infection of 
endothelial cells or disorders in the brain respiratory systems 
[44, 45]. Unfortunately, there are no data available regard-
ing the clinical association among pulmonary dysfunctions 
post-COVID-19 infection and OSA morbidity; however, this 
relationship cannot be discarded.

7 � Beyond Respiratory Damage: COVID‑19 
Affecting the Brain and Obstructive Sleep 
Apnea

At this moment, the major bodies of evidence on COVID-
19 effecting sleep have been obtained from studies on the 
stress derived from lockdowns, although I have previously 
mentioned the possible consequence on the genesis of OSA 
after lung damage on COVID-19-recovered subjects. How-
ever, current data suggest that after infection with SARS-
CoV-2, some subjects are still battling with several symp-
toms including neurological sequelae [40, 46]. This scenario 
has led to propose that COVID-19 might be able to induce 
brain damage [47]. Moreover, it is unknown whether OSA 
might be the result of a disruption in the functioning of the 
brain respiratory centers, such as medulla oblongata [48], in 
subjects that suffered COVID-19.

My considerations, as well as their implications, could be 
the basis of future studies involving large cohorts of recov-
ered subjects from COVID-19 to confirm the hypotheses 
described here and eventually include the characterization 
of the neurobiological substrates for such scenarios. How-
ever, in line with recent evidence suggesting that COVID-
19 induces effects in recovered individuals, including 
brain dysfunctions, I hypothesize that long-term effects of 
SARS-CoV-2 would alter brain functioning on which the 
sleep–wake cycle rely.

8 � The Endocannabinoid System and Sleep

The presence of the endocannabinoid system in the central 
nervous system represents an interesting framework that 
seems to modulate multiple brain functions, including the 
sleep–wake cycle. In this regard, different reports have dem-
onstrated that the CB1 cannabinoid receptors, AEA, 2-AG, 
FAAH, and AMT are engaged in sleep control as well in 
sleep-related phenomena such as circadian and homeo-
static regulation. For example, administrations of AEA or 
2AG increases sleep whereas the administrations of FAAH 
enhances wakefulness whereas AMT seems to promote 
REM sleep. Moreover, the blockade of the CB1 cannabi-
noid receptor by pharmacological means facilitates alert-
ness. Lastly, current evidence suggests the link between the 
endocannabinoid system and sleep disturbances, including 
narcolepsy [12–15, 49–56].
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9 � The Endocannabinoid System 
as Prognostic Biomarker 
of Obstructive Sleep Apnea in COVID‑19 
Post‑Infected Subjects

The prediction that disturbances in the functioning of the 
endocannabinoid system is a possible cause of OSA in post-
COVID-19 patients is based in the previously mentioned 
evidence which suggests the active role of this neurobiologi-
cal network on the modulation of the sleep–wake cycle [15, 
57, 58] as well as the data showing that the endocannabi-
noids are dysregulated in sleep alterations, including OSA 
[59–61]. The hypothetical scenario might show that sub-
jects recovered from COVID-19 could show higher serum 
concentrations of AEA compared to healthy controls, and 
in turn, display a dysregulation of the anti-inflammatory 
cytokines, which are activated by the endocannabinoid 
system [60]. In line with this idea, data have shown that 
patients with OSA present elevated activity of inflammation-
related molecules [62]. Although the role of the endocan-
nabinoid system in the sleep control has been studied in 
recent years, there are several gaps that will require fur-
ther focus, including the characterization of the molecu-
lar mechanisms of action by which the endocannabinoids 
regulate the neurobiological networks linked to the sleep 
disturbances. Moreover, the lack of evidence suggesting 
the disruption of the functioning of the endocannabinoid 
system either during the SARS-CoV-2 infection or after 
recovery of COVID-19 is limited; however, recent evidence 
has suggested a likely involvement of the CB2 cannabinoid 
receptor and COVID-19 [63–66]. Whether additional mem-
bers of the endocannabinoid system, such as AEA, 2-AG, 
or FAAH, FAAH, DAGL, MAGL and, AMT, might be 
affected in post-COVID-19 disease, remains to be deter-
mined. Thus, here, I propose some suggestions for moving 
forward, by including as a new approach for diagnosis of 
OSA from recovered subjects of SARS-CoV-2 infection: 
(i) The analysis of the CB1 cannabinoid receptors avail-
ability in the cerebral regions involved in the sleep–wake 
cycle modulation as well as brain nuclei related to breath 
control by imaging techniques; (ii) the characterization of 
the endogenous contents of AEA and 2-AG in biological 
samples, such as plasma or saliva; (iii) the measurement 
of FAAH, DAGL, MAGL and, AMT in biological tissues. 
My prediction is that the components of the endocannabi-
noid system might show abnormal patterns in post-infected 
COVID-19 individuals. Perhaps these very first reports may 
provide a descriptive and phenomenological data; however, 
these findings would suggest that the dysfunctional activity 
of the endocannabinoid system may represent an alternative 
tool for diagnostic and eventual development of treatments 
for the lingering OSA in post-COVID-19-infected subjects. 

Indeed, this theoretical construct would merit further study 
to corroborate and explain my hypothesis. Therefore, future 
experiments should be aimed at unlocking the precise neuro-
biological mechanisms through which the endocannabinoid 
components are related to the likely OSA onset in recovered 
subjects from COVID-19.

10 � Discussion

The endocannabinoid system is integrated by the CB1/CB2 
cannabinoid receptors, the endogenous ligands AEA and 
2-AG, and their respective metabolizing and synthetizing 
enzymes, as well as membrane transporter [1, 2]. This neu-
robiological system has been described in multiple human 
biological samples, including the brain [1, 2, 6–11], sug-
gesting its role on the regulation of a broad neurobiologi-
cal processes such as the sleep–wake cycle [12–15, 49–58], 
which is also driven by a variety of neuroanatomical brain 
areas, neurochemicals, and circadian and homeostatic fac-
tors [16–26]. On the other hand, the sleep disorders are 
the pathological feature of sleep patterns described by the 
International Classification of Sleep Disorders [27], includ-
ing insomnia and sleep-related breathing disorders, such as 
OSA.

The Coronavirus-19 (COVID-19) is a lethal disease that 
causes flu-like symptoms as well as shortness of breath, 
gastrointestinal infections, and brain dysfunctions [28–30]. 
Moreover, mandatory measurements to prevent the spread 
of COVID-19 including physical distancing, social isolation, 
and prolonged lockdowns have caused undesirable effects 
such as stress [32–34]. It is known that stressful conditions 
are associated to sleep disturbances [35, 36], which have 
been increased precisely as a result of prolonged lockdowns 
[37]. Among the sleep disturbances related to COVID-19 
crisis, there is evidence showing that OSA is present in 
COVID-19 patients as consequence of respiratory dysfunc-
tion [38–40]. Thus, it is highly possible that patients recov-
ered from COVID-19 might display pulmonary disfunction 
leading to develop OSA [41, 42]. Moreover, it is worthy 
to highlight the likely effects on brain activity after even 
6 months of COVID-19 infection [44], which may include 
affections on brain respiratory centers, leading to the estab-
lishment of OSA (Fig. 1). Indeed, future studies are needed 
to discard in COVID-19-recovered patients the disturbances 
in brain areas related to breathing during sleep, regulation 
of sleep homeostasis or circadian sleep control as well as 
the pattern of sleep-related neurochemicals. Perhaps one 
approach for develop a new diagnostic tool for the likely 
OSA in COVID-19-recovered subjects may include the 
analysis of the activity of the components of the endocan-
nabinoid system by testing the endogenous tone of AEA or 
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2-AG, as well as the activity of FAAH, AMT, DAGL and, 
MAGL in sleep-related brain areas. It is therefore expected 
that the endocannabinoid system might be disrupted in post-
infected COVID-19 subjects.

One of the main shortcomings of my hypothesis is the 
lack of focus on the proximate brain mechanisms triggering 
OSA in post-COVID-19-recovered subjects. Even though 
many authors have already proposed that COVID-19 might 
induce sleep disturbances, limited studies have identified 
in post-infected individuals. In this regard, recent publica-
tions have suggested the likely existence of sleep disorders 
in post-COVID-19-infected subjects leading to highlight 
the importance of proper medical counselling [67–69]. In 
sum, although my considerations might be too speculative, 
the described body of evidence allows me to propose the 
study of the components of the endocannabinoid system as 
diagnostic tool of OSA morbidity in recovered subjects from 
COVID-19.

11 � Conclusions

The evidence reviewed here suggests that the involvement 
of the endocannabinoid system on OSA in recovered peo-
ple of COVID-19 might represent an inductive and causal 
reasoning. This idea is backed by the revised evidence. 
Moreover, the identification of the potential neurobiologi-
cal mechanisms involved in OSA in recovered subjects of 

COVID-19 should support more specific hypotheses and 
predictions about the attribution of the role of the endocan-
nabinoid components on OSA but also to draw hypothesis 
in regards the role of COVID-19 post-infected individuals 
in sleep disorders, including OSA. My considerations also 
raise a wide range of interesting questions with important 
diversity for comprehensive understanding in regards the 
interaction between the components of the endocannabinoid 
system and the neuroanatomical and neurochemical sys-
tems that regulate the sleep–wake cycle. For example, what 
would be the profile of the sleep-related neurotransmitters 
in recovered COVID-19 subjects? What is the relationship 
between the likely circadian disturbed pattern of expression 
of FAAH and OSA in COVID-19 post-infected individuals? 
By the examination of the nature and consequences of these 
questions, we might be provide a new perspective on diag-
nostical approaches for sleep disturbances in post-COVID-
19-infected people.
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