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The complement system, originally classified as part of innate immunity, is a tightly

self-regulated system consisting of liquid phase, cell surface, and intracellular proteins.

In the blood circulation, the complement system, platelets, coagulation system, and

fibrinolysis system form a close and complex network. They activate and regulate each

other and jointly mediate immune monitoring and tissue homeostasis. The dysregulation

of each cascade system results in clinical manifestations and the progression of different

diseases, such as sepsis, atypical hemolytic uremic syndrome, C3 glomerulonephritis,

systemic lupus erythematosus, or ischemia–reperfusion injury. In this review, we

summarize the crosstalk between the complement system, platelets, and coagulation,

provide integrative insights into how complement dysfunction leads to hemopathic

progression, and further discuss the therapeutic relevance of complement in hemolytic

and thrombotic diseases.
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INTRODUCTION

The complement system is an ancient and critical effector mechanism of the innate immune
system, which consists of central components of the whole cascade (C1 to C9), regulators and
inhibitors, proteases and newly assembled enzymes, multiple activation products, and receptors
for complement components and their products (1). Based on the different mechanisms for its
initiation, the complement system is classified into three pathways (the alternative, lectin, and
classical pathways, short as CP, LP, AP) that merge at the level of C3 cleavage. Being a central
immune surveillance system, complement can be activated within seconds upon infection or
stimulation. Complement activation leads to the generation of anaphylactic peptides, cytolytic
compounds, and antimicrobial compounds. These generated molecules in turn activate pro-
inflammatory mediators and recruit effector cells, thereby providing an immediately acting barrier
against invading microbes or modified self-cells, including tumor cells, in a self-controlling manner
(2, 3). In addition, complement also functions in regulation of adaptive immunity, mediation of cell
integrity, and tissue homeostasis (4).

Apart from the complement cascade, the coagulation and the fibrinolytic systems are also
enzymatic cascades existing in the blood. The coagulation cascade and fibrinolytic system plus
platelets compromise the hemostasis system (5). Hemostasis is classically defined as the cessation
of bleeding in the body and takes place in a highly organized and time-dependent manner at the
site of vascular injury. The coagulation cascade comprises the intrinsic pathway and the extrinsic
pathway. Activation of coagulation cascade via each pathway leads to fibrin formation. Platelets,
also called “thrombocytes,” have no nucleus and are fragments of the cytoplasm derived from

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01212
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01212&domain=pdf&date_stamp=2020-07-10
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:peter.zipfel@leibniz-hki.de
mailto:dr_huyu@126.com
https://doi.org/10.3389/fimmu.2020.01212
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01212/full
http://loop.frontiersin.org/people/796173/overview
http://loop.frontiersin.org/people/272666/overview
http://loop.frontiersin.org/people/1016215/overview
http://loop.frontiersin.org/people/25074/overview
http://loop.frontiersin.org/people/781470/overview


Luo et al. Complement in Hematological Disorders

the megakaryocytes of the bone marrow that enter the blood
circulation (6). Platelets have a major function in repairing
vascular damage and stopping acute bleeding. When the
endothelium is broken, platelets are immediately activated by
different factors, such as collagen and tissue factors (7). The
activated platelets and fibrin are then cross-linked together
via GpIIbIIIa, forming thrombus. Meanwhile, platelets also
contribute to thrombus formation in atherosclerosis, venous
thrombosis, myocardial infarction, disseminated intravascular
coagulation (DIC), and many other pathological conditions.

An expanding body of evidence suggests multiple interactions
between the hemostatic system and innate immunity exist,
especially the complement system. Both systems consist of fluid
phase factors distributed in the blood, in which these factors form
a close network, interact with each other, tightly self-regulate,
and mediate immune surveillance and tissue homeostasis (8).
However, the dysregulation of any component in both systems
results in pathological conditions and clinical manifestations
of the diseases with critical thrombotic or inflammatory
complications, such as sepsis, systemic lupus erythematosus, or
ischemia-reperfusion injury (9).

In this review, we first give an overview of the close
interaction between complement and hemostatic networks,
then provide a deep insight into the roles of complement in
hematologic disorders and further discuss current complement-
based immunotherapy in treating such disorders. This overview
is crucial in understanding hemopathic pathology and guiding
the development of complement-based diagnostic tools and
valuable therapies to improve the clinical management of patients
with hemopathic conditions.

THE CROSSTALK BETWEEN
COMPLEMENT AND HEMOSTASIS

The complement system is genetically derived from the serine
protease reaction cascade encoded by the same ancestor gene
as coagulation factors. In blood circulation, complement forms
close networks with not only platelets but also the coagulation
and fibrinolytic systems, participating in a wide range of
biological functions. The common roles of these systems are
to present the first defense line against infectious microbes
that enter the bloodstream and blood circulation, to initiate
repairment after tissue damage, and to cause adverse reactions
either maintaining homostasis or resulting in severe disorders
(10). In this part, we summarize the interaction network between
complement, platelets, and coagulation cascade.

Abbreviations: TCC, terminal complement complex; AP, alternative pathway;

LP, lectin pathway; CP, classical pathway; C3, complement factor 3; ITP,

idiopathic thrombocytopenic purpura; HUS, hemolytic uraemic syndrome;

aHUS, atypical hemolytic uremic syndrome; PNH, paroxysmal nocturnal

hemoglobinuria; MASP2, mannose-binding lectin-associated serine protease 2;

AIHA, autoimmune hemolytic anemia; CAD, cold agglutinin disease; CAS,

secondary cold agglutinin syndrome; PCH, paroxysmal cold hemoglobinuria; DIC,

disseminated intravascular coagulation.

The Interplay Between Complement and
Platelets
Hamad et al. reported that the complement system
activated platelets in various ways, while thrombin-
activated platelets in turn activated complement cascade,
which forms a potential self-strengthening cycle (10),
indicating a close interplay between the complement system
and platelets.

The Effect of the Complement System on Platelet

Activation
An early in vitro report showed that thrombin-mediated platelet
aggregation and serotonin secretion are highly enhanced by
the combination of C3 and terminal complement complex
(TCC). In this process, Polley et al. found that thrombin
associated with the platelet membrane presumably initiated
C3 convertase formation in a way different from the known
classic or alternative mechanisms. The formed C3 convertase
entered the known complement sequence at the C3 stage and
proceeded to activate the terminal components through C5
to C9, which may enhance the uptake of the C3 and TCC
complex by platelets. In turn, the activated complement system
on the platelet surface, as a combination of C3 and TCC,
highly enhanced platelet aggregation and serotonin secretion
(11, 12). Another report showed that TCC induced membrane
microparticle formation, thereby exposing the binding sites
for factor Va and serving as a basis for the proteolytic
generation of thrombin (13). Furthermore, both in vivo and
in vitro data have shown that TCC-mediated stimulation of
platelets causes transient membrane depolarization (14), granule
secretion (15), induction of phosphatidylserine, and platelet-
catalyzed thrombin generation, affecting platelet activation and
coagulation initiation (13, 16, 17) (Figure 1). In addition, Koelm
et al. reported that surface-bound C1q, by interacting with
the von Willebrand factor (VWF), induced platelet rolling
(18). C1q was also shown to bind gC1qR/p33 or gC1qR on
platelet surfaces, thereby initiating platelet activation, a process
that can further induce the aggregation of platelets via a P-
selectin-dependent pathway (19–21). In vivo data showed that
C3, independently of TCC formation, played specific roles in
platelet activation. C3−/− mice have prolonged bleeding time
and diminished platelet activation, further proving a direct link
between complement and platelet activation (22, 23). Besides,
the anaphylatoxin C3a and its derivative C3adesArg directly
induced platelet activation and aggregation (24). In comparison
to C3−/− mice, C5−/− mice have no apparent defect in platelet
activation, platelet deposition in the vessel wall, and the initial
hemostasis (22).

The Effect of Platelets on Complement Activation
Apart from the above-mentioned effects of complement on
platelet activation, platelets also initiate/regulate complement
activation via different secreted or surface-expressed factors.
As for initiating complement activation, platelet-expressed P-
selectin activates complement either on its own or by fixing
C3b from spontaneous basal plasmatic C3 cleavage (25–27).
Further platelets, by secreting chondroitin sulfate, bind C1q or
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FIGURE 1 | Cross-interaction of complement with platelets and the coagulation system. Different complement components bind to platelet surface receptors and

also closely interplay with coagulation factors, leading to the activation of platelets and also the initiation of coagulation cascade. In turn, the activated platelets and

coagulation factors also assist complement activation by binding or interfering with different components. TCC, terminal complement complex; MASPs,

mannose-binding lectin-associated serine proteases; FD, factor D; FH, factor H; PMPs, platelet microparticles, VWF, von Willebrand factor.

factor D, thereby initiating local complement activation (28–30).
As for regulating complement activation, platelets, by secreting
Factor H from alpha-granules, either regulate C3 convertase
activity or modulate C1q effects via CR3 (31, 32). However,
contradictory data showed that Factor H was present throughout
the cytoplasm and on the surface of normal resting platelets but
with no evident concentration of Factor H in alpha-granules,
lysosomes, or dense granules (33). In addition, platelet-expressed
VWF was recently identified as a novel complement regulator
that can protect endothelial cells from injury by down-regulating
complement activation (34). Furthermore, a platelet, by secreting
chondroitin sulfate, binds complement regulators C1 inhibitor
(C1INH), C4b-binding protein (C4BP), and Factor H, thereby
blocking complement activation on its surface (10, 35).

Aside from the above-mentioned close interplay between
complement and platelets, a growing body of evidence indicates
that complement activation influences platelet-associated
pathologies, such as idiopathic thrombocytopenic purpura (ITP)
(36), atypical hemolytic uremic syndrome (aHUS) (37, 38),
and paroxysmal nocturnal hemoglobinuria (PNH) (39, 40).
Currently, such diseases are treated with anti-complement
therapeutics, such as Eculizumab, H17/3E7, and TNT003,
controlling the pathophysiological processes that are driven by
complement over-activation (details will be discussed further in
section Therapeutic Relevance of the Complement System).

The Interplay Between Complement and
Coagulation
The complement and coagulation cascades are evolutionarily
related enzymatic cascades in blood circulation. They are
linked in their activation mechanisms and influence innate
immune functions following tissue injury. Early reports showed
that the levels of complement activation products in normal
human serum are much higher than in anti-coagulated blood,
indicating the progression of complement activation upon blood
clotting (41).

The Effect of the Complement System on

Coagulation Cascade
The complement system activates coagulation cascade via
multiple factors (Figure 1). In vitro data showed that activated
MASP-1 cleaved fibrinogen, fXIII, and TAFI, further promoting
fibrin cross-linking (42, 43), while MASP-2 participated in
the activation of thrombin and the subsequent generation of
fibrin (44). Further, the complement activation products C5a
and TCC trigger tissue factor expression and activation in
both human endothelial cells and neutrophils, which results in
the activation of the extrinsic coagulation pathway (45, 46).
C5a was also shown to induce the up-regulation of PAI-1,
thereby promoting a local procoagulant effect on mast cells
(47, 48). Additionally, TCC can cause an increase of blood
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thrombogenicity by simultaneously inducing procoagulant and
antifibrinolytic proteins and inhibiting natural anticoagulants
(49, 50). Besides the above-mentioned roles of the complement
activation products, the complement regulators also display
obvious effects on coagulation. For example, C4b binding protein
(C4BP), by binding to protein S, affects natural anticoagulation
in vitro (51). Another complement regulator, C1 inhibitor,
also shows an inhibitory effect on the activity of fXIIa, fXIa,
and kallikrein in the coagulation system (52–54). Importantly,
Subramaniam et al., by using an in vivo mouse model,
showed that C5−/− and C3−/− mice had longer tail bleeding
times and were less susceptible to thrombosis, further proving
that complement plays important roles in the progression of
coagulation (22).

The Effect of Coagulation Cascade on Complement

Activation
The interplay between complement and coagulation cascades
occurs in both directions. The coagulation factors can also
activate complement cascade at different levels. For the initiation
of complement activation, Factor XII binds to the complement
C1 or the globular C1q receptor (gC1qR), initiating CP activation
(55, 56). Fibrin and the plasmin-generated fibrin fragment (D-
dimer) in plasma bind and activateMASP-1 andMASP-2, leading
to LP activation. Furthermore, pre-kallikrein cleaves Factor B
and activates C1s, thereby activating both AP and CP (57). In
terms of C3 activation, the interaction of fibrinogen/fibrin with
the MASPs also modulates the activation of C3 and C4, as well
as the surface deposition of C3b and C4b (58). Meanwhile,
kallikrein can cleave not only complement factor B but also
C3 and C5 (53, 59, 60). Also, on the C5 level, in vivo data
showed that thrombin cleaved C5 in the absence of C3 (61).
Further investigation revealed that, besides thrombin, several
other factors (i.e., FIXa, FXa, FXIa, and plasmin) can also cleave
C3 andC5, leading to C3a andC5a generation, respectively.What
is more, thrombomodulin and tissue-factor pathway inhibitor
participate in complement regulation (62–65).

Besides the above-mentioned two-way interplay between the
coagulation and complement cascades, NETosis appears to be a
third important player involved in the complement-coagulation
interaction, forming a triangular relationship to protect the
host against pathogens. Activated complement proteins stimulate
NET formation, and NETs, in turn, serve as a platform for
complement activation. Furthermore, NETs act as a scaffold for
thrombus formation during coagulation (66). Taken together,
all of the close interplay between coagulation and complement
explains why the association of both systems with several clinical
inflammatory and thrombotic conditions exists.

COMPLEMENT IN HEMOLYTIC AND
THROMBOTIC DISEASES

Complement activation plays an essential role in controlling
infection and maintaining homeostasis, whereas complement
dysfunction is associated with the pathogenesis of multiple
hemolytic and thrombotic diseases (Figure 2). Cross-interplay

of the complement and hemostatic systems could be a key
mediator of “thrombo-inflammation” (67). Abundant evidence
demonstrated that complement hyperactivation is correlated
with thrombosis and the development of multiple organ failures.
This section aims to provide an integrative overview of the
mechanisms underlying the interactions between complement
and hemostasis in disease pathology.

Complement in Autoimmune Hemolytic
Anemia
Autoimmune hemolytic anemia (AIHA) is a collective term for
several diseases. It is characterized by autoantibody-mediated
destruction of red blood cells. Complement activation in
AIHA may exacerbate extravascular hemolysis and may also
occasionally result in intravascular hemolysis. In particular, the
subgroup primary cold agglutinin disease (CAD), secondary
cold agglutinin syndrome (CAS), and paroxysmal cold
hemoglobinuria (PCH) are entirely complement-dependent
disorders, whereas warm-antibody AIHA is only partially related
to complement activation (68).

In CAD, autoimmune disorders are often associated with
CP hyperactivation (69). The major subtype of cold agglutinin
(CA) is the IgM subtype, which accounts for 90% of the total
cases (29). IgM binds to erythrocytes at the end of circulating
limbs and then activates CP, resulting in C3 cleavage (30).
When returned to the central part of the circulation with
a body temperature of 37◦C, IgM becomes dissociated from
the cell surface, but C3b remains bound to red blood cells.
These C3b opsonized red blood cells bind to complement
receptors on systemic macrophages. Afterwards, they are cleared
in the liver to mediate extravascular hemolysis. In homeostatic
conditions, the expression of complement regulators CD55 and
CD59 on erythrocyte membranes blocks complement activation
and protects the erythrocytes from lysis. However, in severe
conditions with infection, surgery and autoimmune diseases,
intravascular hemolysis caused by the over-activation of TP
may occur due to the dysfunction of these two surface-
expressed regulators (28, 70). Current therapy for IgM-mediated
autoimmune hemolytic anemia mainly aims to decrease auto-
antibody production. However, most of these treatments require
time to become effective and also will neither stop immediately
ongoing complement-mediated hemolysis nor prevent hemolysis
of transfused red blood cells. Therefore, direct inhibition of the
complement system might be a suitable approach to halt or
at least attenuate ongoing hemolysis, which helps to improve
the recovery of red blood cell transfusion in autoimmune
hemolytic anemia. In recent years, several complement inhibitors
have become available in the clinic with proven efficacy in
autoimmune hemolytic anemia, which will be discussed in
section Therapeutic Relevance of the Complement System.

CAS is different fromCAD in terms of etiology and the locality
of B cells, but it is characterized by the same complement-
dependent hemolysis mechanism (71). Furthermore, the
hemolysis of PCH is entirely complement-dependent. Polyclonal
IgG antibodies bind to the P antigen on the erythrocyte surface
but do not agglutinate erythrocytes. This P-antigen-antibody
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FIGURE 2 | Link between complement and hematological disorders. Complement, on the one hand, can protect the host from infection and maintain body

homeostatic conditions, and, on the other hand, it may also cause hematological disorders due to uncontrolled activation or utilization of complement regulators.

C1INH, C1 inhibitor; FHL-1, factor H-like protein 1; C4BP, C4 binding protein; AP, alternative pathway; CP, classical pathway; LP, lectin pathway; TP, terminal pathway;

CFHR1, complement factor H related protein 1; TCC, terminal complement complex; MASPs, mannose-binding lectin-associated serine proteases; FB, factor B; FD,

factor D; FP, factor P.

complex is a very strong complement activator, which leads
to complete over-activation of CP and TP, mediates massive
intravascular and extravascular hemolysis, and causes sudden
onset of the disease.

In contrast, auto-antibodies to warm-AIHA (w-AIHA) mostly
belong to the IgG class (72). In up to 50% of w-AIHA, a direct
antiglobulin test is positive for complement fragments, and the
most common one is C3d (73). Another autoimmune disease
characterized by platelet destruction and thrombocytopenia is
immune thrombocytopenia purpura (ITP) (74). Thrombocyte
destruction in ITP is mediated by multiple immune mechanisms.
Interestingly, some ITP patients have increased complement
activation, indicating that complement also takes part in ITP
progression. However, how the complement system interferes
with ITP progression remains unclear.

Complement in Disseminated Intravascular
Coagulation
Disseminated intravascular coagulation (DIC) is characterized by
an increased incidence of thrombin formation or hemorrhagic
diathesis due to the consumption of platelets and coagulation
proteins in the circulation. The most common cause of DIC is
sepsis, being characterized by an over activation of complement
and platelet activation. Others reported that mannose-binding
lectin (MBL) and/or MASP-1/3 were involved with hemostasis
following injury. Staphylococcus aureus-infected MBL null mice
developed DIC with the characteristic of elevated IL-6 levels
in blood. Infected MBL null mice also developed liver injury,
suggesting that MBL deficiency may develop into DIC and
organ failure during infectious diseases (75). Furthermore, Zhao
et al. reported, on the basis of 276 patient samples, that the

complement components were modified in sepsis patients with
DIC. The statistical data showed that C3, TCC, and MBL were
significantly increased in septic patients with DIC (76).

Complement in Paroxysmal Nocturnal
Hemoglobinuria
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired
syndrome characterized by intravascular hemolysis, thrombosis,
and bone marrow failure (77). Thrombosis is the most
urgent indication for therapies and the leading cause of PNH
death. The reasons for the thrombosis tendency in PNH are
multifactorial. The absence of two glycosylphosphatidylinositol-
anchored complement surface proteins, CD55 and CD59, on the
platelet’s surface of PNH patients leads to the formation of pre-
thrombotic particles. CD55 regulates the formation of C3 and
C5 convertases by binding to C3b and C4b and preventing the
amplification of complement cascade, while CD59 prevents C9
polymerization and TCC formation. The absence of these two
regulators leads to uncontrolled complement activation and lysis
of the cell membrane, which accounts for hemolysis and other
PNH manifestations (78).

Meanwhile, C5a was clearly shown to induce inflammation
and thrombosis by inducing the release of inflammatory
cytokines, such as IL-6, IL-8, and TNFα (46). Furthermore,
Fibach et al. show that oxidative stress, in conjunction with
activated complement, may cause the underlying symptoms of
PNHs, such as intra- and extravascular hemolysis and thrombotic
complications. Besides dysfunction of the complement system,
other deficiencies such as in heparin sulfate and GPI-anchored
common receptor are also presumed to favor thrombosis in
PNH (79, 80). However, it is not clear which mechanism has the
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greatest impact on PNH thrombosis. Currently, themost effective
strategy to prevent PNH thrombosis is complement inhibition
on TP (81). Eculizumab is indicated for the treatment of acute
thromboembolic events.

Complement in Atypical Hemolytic Uremic
Syndrome
Atypical hemolytic uremic syndrome (aHUS) is a type of
thrombotic microangiopathy characterized by glomerular
endothelial damage, thrombosis, and mechanical hemolysis.
Both genetic and acquired abnormalities of the complement
system can cause aHUS progression (82). Complement
activation is normally controlled by regulatory proteins, such as
Factor H and FHL-1 in plasma and CD46 on the cell surface.
Approximately 70% of patients with aHUS have mutations in
genes that regulate the AP activation because the pathogenesis
of aHUS is strongly correlated to the AP dysfunction (82–85).
Most patients have one defective allele and one intact allele of
Factor H (86), which occurs in the carboxy-terminal surface
recognition region and leaves the complement-regulatory region
of the amino-terminus intact. These heterozygous mutations
of Factor H gene reduce its surface binding to erythrocytes,
weakening the protective surface property, and thereby leading
to uncontrolled complement activation. The amplified local
complement activation causes erythrocyte lysis and host tissue
damage. Besides the mutation of fluid-phase regulator Factor H,
heterozygous mutations of CD46 also predispose to aHUS (87).
Further, mutations in factor I and C3 were identified in aHUS.
In addition, Abarrategui-Garrido et al. reported that a novel
genetic mutation in CFHR1 is highly associated with aHUS (88).
Importantly, in aHUS patients, deletions of CFHR1, CFHR3,
and CFHR4 lead to the development of Factor H autoantibodies
(89). These autoantibodies bind to and block the C-terminal
recognition region of Factor H, leading to uncontrolled AP
complement activation.

THERAPEUTIC RELEVANCE OF THE
COMPLEMENT SYSTEM

In the last decade, the complement system has been increasingly
focused on since its inappropriate or uncontrolled activation
is closely related with many diseases, such as thrombotic and
hemolytic diseases and autoimmune diseases. The application of
anti-complement agents in the clinic represents a major technical
achievement, suggesting a novel etiologic treatment for different
human diseases (90).

Eculizumab, the first anti-complement agent, is a monoclonal
antibody that binds to C5, interferes with C5 cleavage, and
thereby inhibits TP activation (91). Eculizumab is approved for
PNH, aHUS, and Myastenia gravis, with potential impact on the
severe clinical course. This TP inhibitor was later also proved
efficacious for the treatment of severe idiopathic warm AIHA.
With more and more interest in the complement therapies,
different subtypes of C5 inhibitors with higher specificity

were generated, such as Ravulizumab (A.LXN1210) and ALN-
CC5 (Table 1). Ravulizumab, being a second-generation of C5-
specific monoclonal antibody, provides immediate, complete,
and sustained C5 inhibition. Ravulizumab binds to C5 with
a higher affinity than Eculizumab, inhibiting the formation of
C5a and C5b, thereby blocking the occurrence of complement
activation and hemolysis, and achieving better readout when
treating patients with PNH and aHUS (98). ALN-CC5 is another
TP inhibitor that targets C5 via RNA interference. ALN-CC5 can
significantly reduce the C5 level and inhibit complement activity.
Importantly, Hill et al. reported that patients with PNH have
good tolerance to ALN-CC5 and prolonged duration of drug
efficacy (99).

However, C5 inhibitors have broad effects on the TP of the
complement system, lacking specificity. Widespread inhibition
of the complement cascade may jeopardize patient health due
to increased susceptibility to infections. Thus, the development
of pathway-specific complement inhibitors has been a long-
lasting goal over the past few decades. Compstatin, Compstatin
40 (Cp40), and its long-acting analog, polyethylene glycol(PEG-
Cp40) are newly designed complement inhibitors that display
inhibition on the upstream of the complement cascade (92).
Compstatin is a cyclic fibrin polypeptide composed of 13 amino
acids that binds to C3 and C3b. At present, the compstatin-
related inhibitors used for the treatment of patients with PNH
are mainly Cp40 and PEG-Cp40 (94).

Another type of pathway-specific inhibitor is recombinant
fusion protein, which includes TT30 and CRIg-L-FH/CRIg-L-
FH. TT30 is a 65-kDa recombinant human fusion protein,
consisting of the iC3b/C3d-binding region of complement
receptor 2 and the inhibitory domain of the regulator Factor
H, that can efficiently block AP activation. Risitano et al.
confirmed that TT30 completely inhibited erythrolysis in PNH
patients and C3b-mediated extravascular hemolysis in a dose-
dependent manner (95). In addition, TT30 effectively inhibits
AP-mediated C3b deposition on the erythrocyte membrane
in a CR2-dependent manner, blocks the formation of TCC,
and inhibits both intravascular and extravascular hemolysis of
AIHA (95). CRIg-FH and CRIg-L-FH are novel CRIg-targeted
complement inhibitors that are designed by connecting the
functional domains of CRIg and Factor H. CRIg-L-FH is
slightly more potent than CRIg-FH. Both regulators dramatically
inhibited both AP- and CP-mediated hemolysis and successfully
eliminated the deposition of C3b/iC3b, thereby efficiently
protecting aberrant erythrocytes of PNH patients (96).

The third type of pathway-specific inhibitor is monoclonal
antibodies, including TNT003, Sutimlimab, and H17/3E7.
TNT003, as shown by Peerschke et al., is a mouse-derived
monoclonal antibody that targets serine proteinase C1s, inhibits
complement deposition and the formation of TCC complexes,
and thus prevents intravascular and extravascular hemolysis
in CAD patients (69). Statistical analysis showed that when
TNT003 was applied in ITP patients, plasma C4d, C3b, and
C5b-9 deposition were decreased dramatically (92), suggesting
a possible therapeutic effect of TNT003 on ITP. Sutimlimab,
another monoclonal antibody that binds C1s, quickly blocks
hemolysis, corrects anemia, and eliminates the need for blood
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TABLE 1 | The main complement-related immunotherapies used in hematological disorders.

Complement therapies Targeted factors Diseases to be treated Readout Molecular nature References

TNT003 C1s CAD, ITP Higher specificity, narrow effect Monoclonal antibody (69, 92)

Sutimlimab C1s CAD Higher specificity, narrow effect Monoclonal antibody (93)

Cp40 C3b, C3d PNH Higher specificity, narrow effect Cyclic polypeptide (94)

PEG - Cp40 C3b, C3d PNH Higher specificity, narrow effect Cyclic polypeptide (94)

TT30 iC3b/C3d PNH, AIHA Higher specificity, narrow effect Fusion protein (95)

CRIg-L-FH C3b/C3bi PNH Efficiently protected aberrant erythrocytes Fusion protein (96)

CRIg-FH C3b/C3bi PNH Efficiently protected aberrant erythrocytes Fusion protein (96)

H17/3E7 C3b/C3bi PNH Efficiently inhibits erythrocytes lysis Monoclonal antibody (97)

Eculizumab C5 PNH, aHUS, wAIHA First generation of C5 inhibitor, broad

effect

Monoclonal antibody (91)

Ravulizumab C5 PNH, aHUS High affinity, better effect Monoclonal antibody (98)

ALN-CC5 C5 PNH Good tolerance and long duration siRNA (99)

CAD, cold agglutinin disease; ITP, immune thrombocytopenia purpura; PNH, Paroxysmal nocturnal hemoglobinuria; AIHA, Autoimmune hemolytic anemia; aHUS, Atypical hemolytic

uremic syndrome. The order was classified according to the target factors of the whole complement cascade.

transfusion in patients with CAD. Based on these data,
sutimlimab was given a breakthrough treatment designation
by the U.S. Food and Drug Administration for treatment
of this condition (93). Lindorfer et al. reported that the
monoclonal antibody H17/3E7 was directed to combine with
C3b/iC3b to effectively inhibit the lysis of erythrocytes in
PNH patients. By combining with C3 and C3b, H17/3E7
can inhibit the formation of C3 and C5 convertase, thereby
effectively inhibiting AP activation, whereas CP activation is
not affected (97). These inhibitors have been more and more
widely used for the treatment of thrombotic and hemolytic
diseases, indicating that anti-complement agents are potential
therapeutic drug candidates for a range of complement-
mediated diseases.

CONCLUDING REMARKS AND
PERSPECTIVES

A large amount of experimental and clinical evidence shows
that complement closely interplays with hemostasis systems
and participates in many important biological functions, while
dysfunction of the complement system directly or indirectly
interferes with many hemopathic progressions. Thereby,
complement-related therapies have become more and more

into focus. However, current existing anti-complement agents

display a broad effect but lack specificities, which may increase
patient susceptibility to infections due to general inhibition
of the overall complement-mediated effector functions. New
therapies for precisely targeting complement are on the way and
are urgently needed. One of the great challenges in this aim is to
clarify the disease pathogenesis and find out which complement
component’s dysfunction leads to hemopathic progression
and how.
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