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Melatonin and Female Reproduction:
An Expanding Universe
James M. Olcese*

Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States

For more than a half century the hormone melatonin has been associated with vertebrate

reproduction, particularly in the context of seasonal breeding. This association is due in

largemeasure to the fact that melatonin secretion from the pineal gland into the peripheral

circulation is a nocturnal event whose duration is reflective of night length, which of course

becomes progressively longer during winter months and correspondingly shorter during

the summer months. The nocturnal plasma melatonin signal is conserved in essentially

all vertebrates and is accessed not just for reproductive rhythms, but for seasonal cycles

of metabolic activities, immune functions, and behavioral expression. A vast literature on

melatonin and vertebrate biology has accrued over the past 60 years since melatonin’s

discovery, including the broad topic of animal reproduction, which is far beyond the

scope of this human-focused review. Although modern humans in the industrialized

world appear in general to have little remaining reproductive seasonality, the relationships

between melatonin and human reproduction continue to attract widespread scientific

attention. The purpose of this chapter is to draw attention to some newer developments

in the field, especially those with relevance to human fertility and reproductive medicine.

As the vast majority of studies have focused on the female reproductive system, a

discussion of the potential impact of melatonin on human male fertility will be left

for others.
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BRIEF INTRODUCTION

By virtue of being a small, amphiphilic, indoleamine molecule, melatonin (5-methoxy-N-acetyl
tryptamine) is synthesized de novo from serotonin (5-hydroxy-tryptamine), a highly dispersed
biologically active molecule in its own right. Historically, melatonin has been considered an
endocrine hormone released from the epithalamic pineal gland, which then acts on specific
G-protein-coupled melatonin receptors in target tissues of both adults and the fetus (1, 2). More
recently, melatonin has been reported to be synthesized in small amounts by a wide variety of
animal cells and tissues as well as diverse organisms, including all kingdoms of living organisms [cf.
(3, 4)], where it presumably has local paracrine and autocrine actions, some of which are probably
independent of specific melatonin receptors (5). Indeed, melatonin has been reported to interact
with a great many cellular proteins, including enzymes, channels, transporters, signaling molecules,
etc [for a recent comprehensive review, see (6)]. Thus, melatonin is perhaps best defined as both a
pineal hormone and a bioactive amine with cellular targets near its site of synthesis in some tissues.

While such generalizations permit the inclusion of many effects, it doesn’t remove a number
of challenges for the interpretation of the research data involving melatonin. For example, with
regard to targets, the reported affinities of the two known human melatonin receptors (in both cell
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expression systems and ex vivo) are in the nanomolar range
[cf. (7)], whereas many if not most experimental protocols
have employed very pharmacological concentrations to achieve
significant effects. Another point to consider is that although
plasma melatonin levels are physiologically elevated for many
hours at nighttime, protocols often expose tissues or cells to only
very short melatonin treatments, which may be physiologically
irrelevant. A common response to these concerns is that local
concentrations may be quite high and/or constant—especially
if there is local constitutive melatonin synthesis. Recent studies
suggest that melatonin synthesis by mitochondria may be
important for subcellular physiological processes (8). However,
there is little experimental evidence that disruption of such local
melatonin production has meaningful cellular consequences [in
contrast to the removal of plasma melatonin via extirpation of
the pineal gland, which has numerous effects on the reproductive
axis of laboratory animals - cf. (9)].

The human being is exposed to varying levels of melatonin
from conception to death. Much like the hormones thyroxine,
insulin or cortisol, themolecule melatonin has a variety of diverse
roles to play as a function of developmental life stage (embryo,
neonate, adolescent, or adult). It seems likely that many of these
actions of melatonin could be permissive or synergistic (like
the aforementioned hormones), but there is remarkably scant
research into this distinct possibility. A significant step in this
direction are the findings of circadian clock gene regulation by
melatonin in several tissues of the reproductive axis in both the
embryo and adults.

Melatonin has often been described as a chemical output
signal of the central circadian oscillator (the hypothalamic
suprachiasmatic nuclei, SCN). The clearest support for this
statement is the abolition of plasma melatonin rhythmicity
following disruption of the neural connectivity between
the SCN and the pineal gland. As mentioned earlier, the
nocturnal melatonin signal duration is of major importance
for physiological seasonality, however, the circadian phasing of
the melatonin signal has important ramifications for general
circadian functions, including body temperature, endocrine
rhythms, and sleep (10). This is in part due to fact that melatonin
receptors are expressed in the SCN and can mediate phase-
shifting feedback effects of melatonin. Hence, in clinical studies
of melatonin actions on the reproductive (or any) system, it
is imperative to keep issues such as the timing of melatonin
administration (day vs. night) and the duration of the plasma
melatonin levels following exogenous melatonin administration
in mind. Unfortunately, these considerations are too often
overlooked in clinical trials involving melatonin treatments.

Especially in the area of reproductive biology, it is clear that
the physiology of animal models is often not comparable to the
human state, most especially with regard to ovulatory cycles
and the regulation of pregnancy [cf. (11)]. Hence, promising
results from melatonin experiments in other species need
to be confirmed in clinical trials before one can draw any
conclusions of relevance to reproductive medicine. The most
obvious historical case in point is the controversy in the late
decades of the twentieth century regarding melatonin as an
“anti-gonadotrophic” or a “pro-gonadotrophic” hormone (in the

human it is physiologically neither, although at high doses there
may be some inhibitory effect on ovulation—see more below).

Human reproduction is a challenging object of study for
obvious reasons, e.g., population heterogeneity, ethical limits
when experimenting with humans, high research costs and
appropriate technologies, etc. The quality of clinical data—its
statistical power, reproducibility, appropriateness of controls,
treatment variations, and so on—make the attainment of firm
conclusions thus far about melatonin’s normal physiological
role in human reproduction difficult. Similarly, validation of
proposed pharmacological uses for melatonin or analogs in the
treatment of puberty, infertility, menopause, etc has not yet been
achieved due to limited published scientific literature. The goal
of this chapter is stimulate future research into the relationship
of melatonin to human reproductive function in anticipation
of generating novel diagnostic and therapeutic tools to improve
human health and fertility.

MELATONIN AND PUBERTY

Clinical reports from “pre-melatonin” days (i.e., prior to Aaron
Lerner’s discovery of the hormone in 1958) identified a potential
link between human puberty and pineal tumors. For example,
early in the twentieth century Marburg [see his (12) review]—
based on reported clinical findings of pineal tumors in children—
developed the hypothesis that secretions of the pineal inhibit
human reproductive activity. Indeed some clinicians of that
generation used pineal extracts to treat precocious puberty (13).

Following the seminal studies of Wurtman et al. (14)—
who demonstrated antigonadal effects of melatonin in female
rats—the investigation of melatonin’s impact on mammalian
reproduction rapidly expanded [cf. (15)]. However, with regard
to human puberty and its regulation by melatonin, conflicting
reports appeared in the later quarter of the twentieth century.
Whereas, some groups found higher plasma melatonin levels
associating with prepubertal and delayed pubertal conditions
(16, 17) and inversely lower levels of melatonin after puberty or
in cases of precocious puberty (18–20), numerous other groups
found no significant differences between normal and disordered
puberty (21–24). These discrepancies have led to skepticism
among twenty-first century clinicians regarding the importance
of melatonin in normal pubertal development. In both young
males and females, the puberty-related decline of high childhood
melatonin levels has been correlated more to advancing Tanner
stages than to chronological age (25), but no clear causative basis
for this relationship has been established for humans.

In view of the circadian secretion of melatonin and the
circadian nature of pituitary hormone levels during puberty and
in adults, it has long been suggested that melatonin regulates
human reproductive cycles. The pulsatile release of GnRH and
hence gonadotropin pulse frequency is highest during the night
during puberty (26) and the monthly surge of LH and FSH
secretion at ovulation also occurs mainly during the latter
hours of the dark phase (27, 28). To what extent the temporal
coincidence of hypothalamic secretions with melatonin release
simply reflects coordinated downstream activation of neural
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pathways under control of the central circadian oscillator in the
SCN as opposed to explicit regulation of the neuroendocrine axis
by melatonin remains unclear—most likely both pathways play
some role.

MELATONIN AND THE FEMALE
REPRODUCTIVE CYCLE

Melatonin receptors have been demonstrated in a variety of cell
types in the female reproductive tract uterus. As shown inTable 1
the majority of studies demonstrate dual expression of both MT1
and MT2 receptors. Hence, one should consider all of these cells
to be potential targets for melatonin action.

Some 30 years ago, Brzezinski et al. demonstrated that
human preovulatory follicular fluid contained melatonin at levels
higher than plasma melatonin levels (44). This was subsequently
confirmed and later shown to vary inversely with day length
and concomitantly with follicular progesterone (P4) levels (45,
46), suggesting preferential uptake of circulating melatonin
by the ovary. Nakamura et al. (47) subsequently found that
larger preovulatory follicles had higher melatonin levels than
smaller immature follicles. Later observations that increasing oral
doses of melatonin results in significantly elevated melatonin
concentrations in follicular fluid of women volunteers (48) also
support this view. Several reports followed in which melatonin
was shown to modulate progesterone production by cultured
human granulosa/luteal cells (29, 49, 50). More recently, the
effects of melatonin on cultured human granulosa/luteal cells has
been extended to include synergism with hCG—albeit at very
high melatonin concentrations (51).

Interestingly, when combined with progesterone, melatonin
at high doses is able to suppress human ovulation (52). As
will be discussed later, rising progesterone levels during
human pregnancy (when ovulation is strongly suppressed)
are accompanied by rising plasma melatonin levels. It
could be insightful to assess the effects of progesterone on
melatonin receptor expression in the human ovary and other
reproductive tissues.

TABLE 1 | Melatonin binding sites in the human female reproductive system.

Organ Cells Receptor

type

Response References

Ovary Granulosa/luteal nd ↑ P4 (29–31)

MT1, MT2 ↓ P4 (32, 33)

nd ↓ BMP6 signaling (34)

nd ↓ oxid. Stress (31)

Uterus Myometrium MT1, MT2 ↑ contractility (35, 36)

(37)

Breast Glandular

epithelium

MT1 ↓ERα

transcriptional

activity

cf. (38)

Placenta Choriocarcinoma MT1, MT2 ↓hCG secretion (39)

Trophoblast MT1, MT2 ↓Inflammation,

autophagy

(40, 41)

(42, 43)

Among 61 women undergoing assisted reproductive therapy
(ART) treatment cycles it was reported that a positive correlation
exists between follicular melatonin levels and markers of ovarian
reserve, e.g., anti-Muellerian hormone and baseline FSH levels
(53). These authors also found a similar correlation between
follicular fluid melatonin levels and in vitro fertilization (IVF)
outcomes and oocyte quality. Similarly, Zheng et al. (54) found a
significant positive correlation between follicular fluid melatonin
concentrations and antral follicle count in women undergoing in
vitro fertilization—also consistent with a supportive or protective
action of melatonin on ovarian cycle progression.

These results have motivated a number of studies into the
potential benefit of pharmacological melatonin supplementation
in the treatment of infertility [cf. (55) for review]. Although
the etiology of infertility is complex and not fully clarified, a
recurring aspect appears to be excessive production of reactive
oxygen species in the follicular fluid (56). In an oft-cited study by
Tamura et al. (57), it was reported that when patients were given
3mg of melatonin orally in the evening from the fifth day of the
previous menstrual cycle until the day of oocyte retrieval, intra-
follicular concentrations of melatonin rose 4-fold. Markers of
intra-follicular oxidative damage were decreased after melatonin
treatment compared to those in the prior cycle, suggesting
that melatonin treatment reduces intra-follicular oxidative stress.
These investigators then assessed the clinical outcomes of 115
patients who failed to become pregnant in the previous IVF-
ET cycle with a low fertilization rate (< 50%). In the 56
patients treated with melatonin, the fertilization rate (50.0 ±

38.0%) was markedly improved compared with the previous
IVF-ET cycle (20.2 ± 19.0%), and 11 of 56 patients (19.6%)
achieved pregnancy. In contrast, in the 59 control patients,
the fertilization rate (22.8 ± 19.0 vs. 20.9 ± 16.5%) was not
significantly changed, and only 6 of 59 patients (10.2%) achieved
pregnancy. These intriguing findings are consistent with the
view that pharmacological melatonin administration increases
intra-follicular melatonin concentrations, reduces intra-follicular
oxidative damage and may have a beneficial effect on fertilization
and pregnancy rates during ART. In a recent report, similar
benefits were found in 40 women with idiopathic infertility
who were administered pharmacological melatonin and who
subsequently showed improved intrafollicular oxidative capacity
and oocyte quality in IVF protocols (58).

These data point to a potential benefit of melatonin in
the process of oogenesis. In this regard, the high levels of
melatonin required for effects seem consistent with high follicular
fluid concentrations of melatonin. Some investigators have also
proposed that follicular granulosa cells have the capability for
local melatonin synthesis (59, 60), which if confirmed would add
new insight into melatonin’s role as a paracrine modulator in the
reproductive system of humans.

Many female reproductive hormones undergo 24-h rhythms
under both standard sleep-wake cycles and under constant
routine conditions, indicating that they are under endogenous
circadian control (61, 62). Interestingly, these rhythms are robust
in the early follicular phase but not in the luteal phase of
the menstrual cycle, which is largely under the control of
high luteal progesterone secretions. Perturbations of the human
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circadian system (e.g., from shift work) are known to disrupt
reproductive cycles [cf. (63) for review]. However, data are
lacking on the potential role of melatonin to the etiology of
these disruptions, despite initial early findings in one small
study (64) that demonstrated a high incidence of irregular
menstrual cycles in night workers whose melatonin levels were
significantly suppressed.

MELATONIN AND PREGNANCY

Following earlier research on maternal transfer of melatonin
to the fetus and neonatal development of pineal melatonin
rhythmicity in the 1980s and 1990s (65–67), a period of relative
quiescence welcomed the transition to a new millennium.
However, a growing number of studies in the past decade have
focused on the action of melatonin on the placenta and fetal
development as well as circadian roles for melatonin before and
after parturition.

It is now relatively well-established that a prime entrainment
signal from the maternal circulation to fetus is melatonin (68),
which crosses the placenta (69), and can bind to melatonin
receptors in numerous fetal tissues (70).

Melatonin receptor (MT1 and MT2) transcripts and proteins
have also been detected in human placentae (39–41) and
subsequently shown to be expressed throughout pregnancy,
albeit with declining levels after the first trimester (71). In
addition, mRNA and protein expression of the melatonin-
synthesizing enzymes, AANAT and HIOMT, have also been
reported (40, 41), leading to the view that in addition to the
rising plasma melatonin levels during pregnancy (72), local
production of melatonin may serve an additional paracrine role.
One target may be the placental trophoblast cells, which secrete
the “pregnancy hormone” human chorionic gonadotropin
(hCG). In two separate laboratories, it was found that high
micromolar to millimolar concentrations of melatonin in vitro
significantly elevated hCG release by human trophoblast cells
(40, 71). More recently, the latter group also reported that
melatonin at these high levels protects trophoblast cells in
vitro against hypoxia/reoxygenation–induced inflammation and
autophagy (42).

Another potential target for melatonin may be the
vascularization of the placenta in early pregnancy through
remodeling of the maternal uterine spiral arteries, a process
that appears to be defective in preeclampsia—a leading cause of
maternal mortality, especially in developing countries. Placental
and systemic oxidative stress is considered to be a major
underlying mechanism of pathology in preeclampsia (73). With
a view toward melatonin’s antioxidant properties, it is striking
that blood levels and placental synthesis of melatonin decline
significantly in women with severe preeclampsia (74–76). In a
meta-analysis by Dou et al. (77), these data were corroborated
and melatonin levels were found to correlate with the severity of
the disease. In terms of a possible beneficial effect of melatonin on
placental tissues, Hannan et al. (78) demonstrated that melatonin
in vitro upregulated antioxidant response genes in human
placental trophoblasts as well as in umbilical vein endothelial

cells, albeit only at extremely high (1mM) levels. A recent pilot
clinical study by Hobson et al. (79) essentially corroborated these
in vitro findings. These authors reported modest improvements
in the duration of pregnancy in a small cohort of women with
preeclampsia who had taken 10mg oral melatonin three times
per day from recruitment until delivery. While it seems highly
unlikely that these pharmacological concentrations of melatonin
reflect in vivo circumstances, these results non-etheless open
the door for new therapeutic possibilities to improve clinical
outcomes for women with preeclampsia.

MELATONIN AND PARTURITION

Given its proven role as an endocrine signal of night time
duration (7, 80) it was not unexpected to find an influence
of melatonin on the timing of parturition. Takayama et al.
(81) showed that female rats whose endogenous melatonin was
eliminated by pinealectomy had no disturbances in estrous
cyclicity or in their ability to become pregnant, but they failed
to deliver their young exclusively during the daytime (early
daytime is the normal birthing phase for nocturnal animals,
such as rodents). Instead, the rats gave birth randomly across
the 24-h light-dark cycle. However, evening administration of
melatonin (i.e., at the time when endogenous levels would
normally increase) was effective in restoring the normal daytime
birth pattern. Importantly, melatonin was ineffectual when given
in the morning or continuously. This strongly points to the
timing of birth in the rat being under circadian control, and
that melatonin may serve as a key circadian “gating” signal for
this event. These data suggest that the clock may play a subtle,
but important role in the reproductive process; however, care
must be taken when extrapolating rat data to the human as we
are largely diurnal (day-time active), whereas the majority of
laboratory rodents are nocturnal (night-time active).

The precise mode of action of melatonin in the mammalian
uterus, while still not completely understood, is clearly species-
specific. Some earlier reports with rodents (82, 83) showed
direct inhibitory effects of pharmacological doses of melatonin on
uterine contractility as well as the presence of melatonin-specific
binding sites in the uterus (84). There are further reports of
the inhibitory effects of melatonin on prostaglandin synthesis in
various rodent tissues (85, 86). Melatonin has also been shown to
modulate calcium signaling in various tissues, including vascular
smooth muscle, often via synergistic actions with other receptor-
mediated processes (7). Again, care must also be taken when
extrapolating data gathered from nocturnal species, such as the
laboratory mouse (C57/Bl6), as these and other strains do not
produce endogenous melatonin and their parturition physiology
is vastly different from that of the human female.

In contrast to the nocturnal rodent, human labor, and delivery
are statistically more common during the night phase (87, 88).
In view of its nocturnal secretion pattern and the reported
effects of melatonin on uterine contractions in other mammals, it
seemed reasonable to explore whether melatonin may act as the
“temporal gate” in contributing to the contractions that underlie
human parturition.
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Data from our laboratory (35, 37) have uncovered a significant
positive synergistic action of melatonin and oxytocin (OT) on
human myometrial smooth muscle cell contractions in vitro in
which melatonin results in striking amplification of OT-induced
IP3 signaling and OT-induced contractions. These findings
may explain the high level of nocturnal uterine contractions
found in late term human pregnancy that lead to nocturnal
labor (Figure 1). More recently, we have also identified a
synergistic action of melatonin and OT on myometrial smooth
muscle cell induction of the core circadian gene hBMAL1 (90).
BMAL1 is a transcription factor at the core of the circadian
system (91, 92) as it serves to regulate the expression of genes
whose promoters contain the E-box motif, which includes
the melatonin receptors. OT analogs are important tools in
obstetrical practice. Continuous infusion of OT agonists is
commonly used to induce labor, while OT antagonists are now
used to prolong pregnancy in cases of preterm labor. However,
prolonged labor induction by application of continuous OT is
only effective when high amounts of the hormone are given [due
to receptor “desensitization”- (93)]. Unfortunately, continuous
OT administration is often accompanied by serious side effects,
including fetal distress, uterine rupture, postpartum atony and
bleeding. Discovery of a synergism between OT and melatonin
signaling (35, 37) could eventually lead to the development of
new melatonin + low dose OT medicinal combinations for
labor induction without the considerable side-effects of high
OT administration. Conversely, studies employing the well-
known inhibitory effect of light of circulating melatonin levels
have provided corroborating evidence that the nocturnal uterine
contractions common to late pregnancy are under melatonin
control (94, 95).

A strong, parallel upregulation of the melatonin MTNR1B
receptor and oxytocin receptor (OTR) protein in the
myometrium of laboring pregnant, as compared to non-laboring
pregnant women has also been demonstrated (35). Parallel
trends were noted forMTNR1A andMTNR1BmRNA expression
and for melatonin-binding to these same samples (89) implying
melatonin receptor suppression throughout most of gestation
with activation (de-suppression) at the end of pregnancy in
preparation for parturition. Although uterine quiescence is
thought to be a key function of progesterone during pregnancy
[e.g., (96, 97)], it is unclear whethermelatonin receptor activation
in the human myometrium at term pregnancy involves changes
in progesterone signaling. Interestingly, in preliminary studies
of biopsies from women who entered preterm labor, melatonin
receptor protein expression was detected in all samples (98),
leading to the fascinating possibility that premature expression
of myometrial melatonin receptors may predispose a woman to
contractions and preterm labor (99).

MELATONIN IN REPRODUCTIVE AGING

In contrast to early childhood, when high melatonin levels are
correlated with low gonadotropin secretion, the presence of low
melatonin levels in elderly people appears to be correlated with
reproductive aging, i.e., high gonadotropin secretion (100, 101).
It is well-established that plasma melatonin levels in elderly

individuals are reduced and that the circadian timing of the
nocturnal melatonin peak is advanced (102–105).

The normal cessation of female reproductive fertility
(menopause) is determined by the inability of the ovaries to
produce viable follicles and changes in hormonal secretion that
leads to failure of menstrual cycles. Thus, clinically, ovarian
aging is characterized by a diminished follicular reserve, which
correlates with elevated gonadotropin secretion from the
anterior pituitary.

An earlier report of mitigation of depression, and improved
mood and sleep quality following melatonin administration
to perimenopausal and postmenopausal women (106) could
not be confirmed in a study by Amstrup et al. (107) which
found no significant effect on quality of life or sleep quality
in 81 postmenopausal women who were given pharmacological
melatonin nightly for 1 year. However, these authors did
report a non-significant trend toward improved sleep quality
in a subgroup of melatonin-treated women who had sleep
disturbances at initial baseline. Toffol et al. (108) showed
that postmenopausal women have lower nighttime serum
melatonin levels than perimenopausal women; however, they
found no correlations between serum melatonin and FSH
or estradiol levels, Beck Depression Inventory score, State-
Trait Anxiety Inventory score, BNSQ insomnia score, BNSQ
sleepiness score, subjective sleep score, climacteric vasomotor
score, or quality of life. The apparent discrepancies in the
aforementioned studies is probably reconcilable, since in the
Bellipanni and Amstrup investigations pharmacological levels
of melatonin (3 mg/night for 6–12 months) were administered,
while the Toffol study analyzed physiological and psychological
correlations with naturally reduced endogenousmelatonin levels.
More recently however, long term pharmacological melatonin
administration was shown to reduce psychosomatic symptoms
in postmenopausal women after 12 months of treatment in
a double-blind, placebo study (109). This is consistent with
numerous previous studies on the use of pharmacological
melatonin in the treatment of sleep disturbances in elderly men
and women [cf. (110)].

Some studies have proposed a role for melatonin in ovarian
aging, given the supportive and pleiotropic effects of melatonin
on ovarian activities, including suppression of oxidative stress,
protection of mitochondrial integrity, etc (48, 111, 112).
However, as most of the research to date has been in rodents
[cf. (113, 114)] a clear etiological relationship between declining
endogenous melatonin levels and human menopause has not
been adequately demonstrated, nor have sufficiently powered
clinical trials with melatonin administration to perimenopausal
women been reported.

SUMMARY AND FUTURE PERSPECTIVES

To summarize this short overview of melatonin’s association with
human female reproduction and fertility, melatonin does not
have a strong impact on human puberty, although in this regard
its contributions as an endocrine output of the circadian clock
need further careful study. Its impact on oogenesis and ovulation,
while modest, could still be valuable in the development of new
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FIGURE 1 | Hypothesized involvement of melatonin with other non-specified uterotonins (e.g., oxytocin, prostaglandins, cytokines) in the establishment of the

well-known day night difference in human myometrial contractions during normal late term pregnancy and labor. In this working model the uterine smooth muscle cells

are suggested to be in a relaxed state during the daytime because of low levels of melatonin and other unspecified uterotonins (note: the histograms are not meant to

be quantitative, but rather to depict relative differences between day and night). High nocturnal uterine contractility is proposed to arise as a synergistic response

between uterotonic factors and melatonin, the latter of which is markedly elevated at night. Suppression of nocturnal melatonin levels in late term pregnant women

has been demonstrated to significantly reduce uterine contractility (89).

treatments for certain forms of female infertility. Along similar
lines, pharmacological melatonin, or analogs may ultimately find
application in placental therapeutics, e.g., for treating placental
inflammation, oxidative stress, and preeclampsia. And finally,
melatonin receptors in the human uterine smooth muscles may
offer a surprising new target for the management of labor, both
term labor and preterm labor.

There is thus far little substantiated information on the
potential association between clinical syndromes involving
the reproductive system and melatonin deficits (or excess),
or melatonin receptor polymorphisms. Luboshitzky et al.
(115) documented increased excretion of the major melatonin
metabolite (6-sulfatoxymelatonin) in women with PCOS,
although whether this was a consequence of increased or
decreased plasma melatonin levels was not apparent. More
recently, in a pilot study Tagliaferri et al. (116) administered
pharmacological doses of oral melatonin for 6 months to 40
women with PCOS and reported significant improvements in
menstrual cyclicity and normalization of androgen balance.

A similar reduction of PCOS-related hirsutism and androgen
levels after 12 weeks of melatonin supplementation was also
found in a recent investigation by Jamilian et al. (117). Thus,
the therapeutic use of melatonin in women with PCOS-
related conditions shows promise, and should be explored
further. Interestingly, Song et al. (118) identified significant
gene polymorphism differences in a region of the melatonin
type 1 receptor (MTNR1a) between women with polycystic
ovarian syndrome (PCOS), but no associated phenotypic
differences were seen. Whether other polymorphisms in
the human melatonin receptor can be related to other
reproductive disorders remains a fascinating though largely
uncharted territory.

While research into the potential roles of melatonin in human
reproductive physiology continues to expand our intellectual
universe after six decades, some common features are apparent.
Firstly, melatonin can potentially reach every cell of the body,
conveying both circadian information (via plasma melatonin
rhythms) and serving as a paracrine modulator of local oxidative
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state, inflammatory responses, autophagy, etc (e.g., in the ovary
and placenta). Some of these actions are likely to be melatonin
receptor-dependent, while others may be receptor-independent.
In some cases, melatonin may serve as a permissive or synergistic
signal, affecting the response of tissues to other molecules (e.g.,
oxytocin in the uterus). As an ancient molecule that has taken
membership in a wide array of cellular processes in all kingdoms
of living organisms over the eons of terrestrial biological
evolution, melatonin’s involvement in human reproduction is
best described to be subtle, diverse, and essential. For example,
from in utero fetal programming to the timing of parturition,
and from influences on metabolism in key reproductive tissues
to modulation of neuroendocrine rhythms, melatonin appears to
make contributions to all of these processes.

On a closing note, it is critically important to again make
the distinction between physiological effects of melatonin and
pharmacological consequences of melatonin administration.

This warning is of course not unique for melatonin—consider
for example another circadian hormone like cortisol. Similarly,
when evaluating target effects of melatonin one must remain
attentive to species-specific differences in the responsiveness of
any tissue to rhythmic and also non-rhythmic levels of melatonin.
Developmental stage, gender differences and genetic variabilities
all can affect how a reproductive tissue will respond to melatonin.
In this regard, it behooves the melatonin researchers of the future
to maintain an openmind and an eye for the unexpected. Clearly,
melatonin and/or novel analogs of melatonin will eventually find
their place in the armamentarium of reproductive medicine in
ways that we probably can’t even imagine.
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