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Metabolic syndrome (MetS) in young adults (age 20–39) is often undiagnosed. A simple screening tool using a surrogate measure
might be invaluable in the early detection of MetS. Methods. A chi-squared automatic interaction detection (CHAID) decision
tree analysis with waist circumference user-specified as the first level was used to detect MetS in young adults using data from the
National Health and Nutrition Examination Survey (NHANES) 2009-2010 Cohort as a representative sample of the United States
population (𝑛 = 745). Results. Twenty percent of the sample met the National Cholesterol Education Program Adult Treatment
Panel III (NCEP) classification criteria for MetS. The user-specified CHAID model was compared to both CHAID model with no
user-specified first level and logistic regression basedmodel.This analysis identified waist circumference as a strong predictor in the
MetS diagnosis. The accuracy of the final model with waist circumference user-specified as the first level was 92.3% with its ability
to detect MetS at 71.8% which outperformed comparison models. Conclusions. Preliminary findings suggest that young adults at
risk for MetS could be identified for further followup based on their waist circumference. Decision tree methods show promise for
the development of a preliminary detection algorithm for MetS.

1. Introduction

Metabolic Syndrome (MetS) is a collection of cardiometa-
bolic risk factors that includes excessive central adiposity,
elevated triglycerides (TG) and fasting plasma glucose (FPG),
decreased HDL-cholesterol (HDL), and hypertension [1].
When these risk factors are present in tandem, they increase
the risk of heart attack, stroke, and cardiovascular morbidity
and/or mortality affecting one in three adults in the United
States (US) [2]. Additionally, there is a disproportionate
increase in healthcare costs for adults presenting with MetS
compared to those that do not [3, 4]. Prevalence and com-
plications associated with MetS and other cardiometabolic
diseases continue to be a major health concern in the United
States.

The National Cholesterol Education Program Adult
Treatment Panel III (NCEP) and International Diabetes
Federation (IDF) clinical risk models are limited in their
usefulness in that they only identify either the presence or

absence of MetS [3, 4]. However much like obesity, there
are varied clinical implications based on the severity of the
risk factors used to defineMetS. Furthermore, certain factors
might be more significant than others in predicting the
presence or absence of MetS. Waist circumference has been
demonstrated to be a strong predictor of cardiometabolic
risk [2, 5, 6] and can be easily and affordably obtained in
a clinical screening. Creating an early detection model that
stratifies the severity of cardiometabolic and anthropometric
factors used in the MetS diagnosis based on proxy measures
easily obtained in a clinical setting would be invaluable for
clinicians aiming to provide improved patient-centered care
[7].

Predictive models are useful and cost effective in iden-
tifying risk of developing cardiometabolic chronic diseases
[8]. Decision tree methodologies show promise over tradi-
tional predictive modeling procedures based on their ease of
interpretability by nonstatisticians. One of the outstanding
advantages of decision tree analysis is that it can visualize
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the relationship pathways between the binary target variable
and the related continuous and/or categorical predictor vari-
ables with a tree image [9]. Recently,Worachartcheewan et al.
[10] used a classification and regression tree (CART)model to
identify pathways for MetS detection in accordance with the
NCEP criteria using a large Thai population of overweight
men and women without regard to age or health status. In
this model, TGwas the strongest predictor ofMetS. However,
dyslipidemia is not commonly elevated in younger adulthood
and is invasive and costly to measure [7].

Unfortunately, there is a lack of research focusing on the
adult population ages of 20–39 years where preventative or
early correctivemeasures can be utilized. Rather, themajority
of research has focused on the adult population greater than
age 40 [11, 12]. Currently no preventative methodologies exist
for the early detection of MetS. Therefore, attention is war-
ranted to the derivation of premetabolic syndrome criteria
that identifies at-risk subjects who can utilize preventive
intervention well before qualifying as moderate to high risk
on current predictive models [13].

The purpose of this pilot study is to investigate the
utility of the chi-squared automatic interaction detection
(CHAID) algorithm to identify and develop pathways for the
early detection of MetS. The central hypothesis states that
the decision tree pathways derived from CHAID algorithms
using data from National Health and Nutrition Examination
Survey (NHANES) 2009-2010 will detect the presence of
MetS in adults of 20–39 years of age. These pathways are
meant to serve as pilots for the future development of an easily
interpreted, clinically relevant, cost-effective screening tool to
detect cardiometabolic chronic disease [14].

2. Materials and Methods

2.1. Participants. The current study is based on publicly
available data from the National Health and Nutrition Exam-
ination Survey (NHANES) 2009-2010 cohort [15]. The full
data set includes 10,537 subjects designed to represent the
population of the United States across age, sex, and ethnicity.
Subjects with missing MetS criteria were excluded from the
present study due to the inability in making a complete
classification of MetS (subjects lost 𝑛 = 7589). Subjects not
meeting the inclusion criteria of an age between 20 and 39
years were excluded as were those with a body mass index
(BMI) less than 20 kg/m2 (subjects lost 𝑛 = 2203; n = 522 for
age <20 years, 𝑛 = 1622 for age >39 years, and 𝑛 = 59 for BMI
<20 kg/m2). The final sample retained meeting the inclusion
criteria included 745 subjects.

Demographic information included age, sex, and dichot-
omous ethnicity represented as ethnic or nonethnic. Anthro-
pometric information includedweight (kg), height (cm), BMI
(kg/m2), and waist circumference (cm). Laboratorymeasures
included HDL (mg/dl), TG (mg/dl), fasting plasma glucose
(FPG, mg/dl), and blood pressure expressed as systolic and
diastolic pressures (mmHg).

The criteria for MetS followed the NCEP guidelines
defined as presenting with three or more of the following
factors: waist circumference > 88 cm for women or >102 cm

for men, blood pressure ≥ 135/≥85mmHg, TG ≥ 150mg/dl,
HDL < 50mg/dl for women or <40mg/dl for men, or FPG ≥
100mg/dl [16]. Sample characteristics are illustrated in Table 1
and are expressed as mean ± standard deviation. Of the 745
subjects between the ages of 20–39 years, 20% (𝑛 = 149)
presented with the NCEP criteria for MetS. Approval for this
analysiswas provided by theUniversity ofAkron Institutional
Review Board.

2.2. Statistical Analysis. The data was arranged in a column-
wise format with each subject given a sequence identifier.
Data management was performed using data set merging
and data subset functions with statistical analysis performed
using IBM SPSS version 19. A CHAID algorithm analysis was
used to develop the decision tree models. CHAID decision
trees are nonparametric procedures that make no assump-
tions of the underlying data. This algorithm determines how
continuous and/or categorical independent variables best
combine to predict a binary outcome based on “if-then”
logic by portioning each independent variable into mutually
exclusive subsets based on homogeneity of the data. For
this study, the response variable is the presence or absence
of MetS. According to Kass (1980), the CHAID algorithm
operates using a series of merging, splitting, and stopping
steps based on user-specified criteria as follows [17].

The merging step operates using each predictor variable
where CHAID merges nonsignificant categories using the
following algorithm.

(1) Perform cross-tabulation of the predictor variable
with the binary target variable.

(2) If the predictor variable has only 2 categories, go to
step 6.

(3) 𝜒2-test for independence is performed for each pair
of categories of the predictor variable in relation to
the binary target variable using the 𝜒2 distribution
(df = 1) with significance (𝛼merge) set at 0.05. For
nonsignificant outcomes, those paired categories are
merged.

(4) For nonsignificant tests identified by 𝛼merge > 0.05,
those paired categories are merged into a single
category. For tests reaching significance identified by
𝛼merge ≤ 0.05, the pairs are not merged.

(5) If any category has less than the user-specified mini-
mum segment size, that pair is merged with the most
similar other category.

(6) The adjusted𝑃 value for themerged categories using a
Bonferroni adjustment is utilized to control for Type
I error rate.

The splitting step occurs following the determination of
all the possible merges for each predictor variable. This step
selects which predictor is to be used to “best” split the node
using the following algorithm.

(1) 𝜒2-test for independence using an adjusted𝑃 value for
each predictor.
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Table 1: Subject demographics and descriptive statistics.

Parameter Mean ± standard
deviation (n = 745)

Age (yr) 29.3 ± 5.8
Weight (kg) 82.7 ± 21.3
Height (cm) 168.2 ± 9.9
Body mass index (kg/m2) 29.2 ± 6.8
Systolic blood pressure (mmHg) 113.8 ± 11.7
Diastolic blood pressure (mmHg) 66.7 ± 11.8
Waist circumference (cm) 96.8 ± 15.8
HDL (mg/dl) 51.30 ± 14.9
Triglyceride (mg/dl) 126.7 ± 114.3
Fasting plasma glucose (mg/dl) 98.0 ± 24.6
Values are mean ± standard deviation. HDL: high-density lipoprotein
cholesterol (n = 745; male = 335, female = 410).

(2) The predictor with the smallest adjusted 𝑃 value (i.e.,
most statistically significant) is split if the 𝑃 value less
than the user-specified significance split level (𝛼split) is
set at 0.05; otherwise the node is not split and is then
considered a terminal node.

The stopping step utilizes the following user-specified
stopping rules to check if the tree growing process should
stop.

(1) If the current tree reached the maximum tree depth
level, the tree process stops.

(2) If the size of a node is less than the user-specified
minimum node size, the node will not be split.

(3) If the split of a node results in a child node whose
node size is less than the user-specified minimum
child node size value, the node will not be split. The
parent node is the level where the data set divides into
child nodes that can themselves become either parent
nodes or end in a terminal or decision node.

(4) The CHAID algorithm will continue until all the
stopping rules are met.

The CHAID analysis was run in duplicate with parent
nodes defined at 20 subjects, child node defined at 5 subjects,
and significance set at (𝛼merge, 𝛼split, and 𝑃 value) ≤0.05.

For the first run, the first level or first division was user-
specified as waist circumference due to the measurement
of this parameter having the lowest cost in MetS screening
[18, 19]. The second run was utilized as a comparison to the
first model with no first division user-specified. This allowed
the algorithm to determine the parameter of the first split.
CHAIDaccuracy anddetectionwas expressed as percentages.

Logistic regression with testing for multicollinearity was
performed on the five factors used to define MetS as a
parametric comparison to the CHAID models. Results were
expressed as overall accuracy of the logistic regression model
and detection of MetS, both expressed as percentages with
significance of the overall model set at 𝑃 ≤ 0.05.

3. Results

3.1. CHAID: Waist Circumference User-Specified. The deci-
sion tree algorithm partitioned the data into statistically
significant subgroups that were mutually exclusive and
exhaustive [17]. The tree analysis in Figure 1 shows the 4-
level CHAID tree with a total of 29 nodes, of which 15
were terminal nodes. Four major predictor variables reached
significance to be included in this model including waist
circumference, TG, HDL, and FPG.The blood pressure MetS
criteria, sex, age, and ethnicity did not reach significance
for inclusion in the model. This model had an overall
classification accuracy of 92.3% with its ability to detect MetS
at 71.8%.

The first level of the tree was split into four initial
branches according to the user-specified first level on waist
circumference. The mean waist circumference of this sample
was 96.82 cm with 49.1% of the total population and 86.6%
of the population with MetS presenting with the NCEP
waist circumference criteria. The MetS prevalence of sub-
jects whose waist circumference was less than 86 cm was
0.5%, which was significantly less than subjects whose waist
circumference was between 86 and 94 cm, between 94 and
103 cm, or greater than 103 cm (8.8%, 21.5%, or 45.8%, resp.).

As seen in the second level of the tree, HDL and TG
were shown to be the next best predictor variables for each
of the waist circumference splits in the first level. The subset
of subjects categorized by a waist circumference less than
86 cm and who had HDL less than or equal to 38mg/dl had
a higher prevalence of MetS (4.8%) than those who had an
HDL greater than 38mg/dl (0.0%). In the subset of subjects
with a waist circumference greater than 103 cm, the next split
based on HDL of less than or equal to 38mg/dl and 38–
49mg/dl and greater than 49mg/dl had MetS prevalence of
82.1%, 45.3%, and 7.9%, respectively.

In the subset of subjects categorized by a waist circum-
ference between 86 and 94 cm the next level based on TG
less than 138mg/dl resulted in lower MetS prevalence (1.6%)
compared to TG greater than 138mg/dl (36.4%). The subset
of subjects categorized by a waist circumference between 94
and 103 cm and the next level of TG greater than 162mg/dl
had a MetS prevalence of 57.8% compared to TG less than
or equal to 162mg/dl (5.1% MetS). These results indicate
that further testing for MetS might not be warranted for
subjects presenting with a waist circumference less than
86 cm but would be recommended for those in either of the
subcategories of waist circumference.

FPG level was the most prominent variable in the third
level of the tree. The only exception was the split based HDL
for subjects who had a waist circumference between 94 and
103 cm and TG level was greater than 162mg/dl. In the subset
of subjects whose waist circumference was between 86 and
94 cm and TG level was less than or equal to 138mg/dl,
FPG less than or equal to 103mg/dl resulted in 0% MetS
prevalence compared to the subset greater than 103mg/dl
(16.7%). This was consistent for subjects who had TG greater
than 138mg/dl with the next level based on FPG less than
or equal to 92mg/dl (0%) compared to FPG greater than
92mg/dl (52.2%).
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Figure 1:MetS:metabolic syndrome, TG: triglyceride (mg/dl), HDL: high-density lipoprotein cholesterol (mg/dl),Waist: waist circumference
(cm), and FPG: fasting plasma glucose (mg/dl).

In the subset of subjects whose waist circumference was
between 94 and 103 cm and TG level was less than or equal
to 162mg/dl, FPG again resulted in a 0% MetS prevalence
compared to FPG greater than 162mg/dl (18.5%). In the
subset of subjects whose waist circumference was between
94 and 103 cm and TG level was greater than 162mg/dl,
HDL less than or equal to 38mg/dl resulted in higher MetS
prevalence of 82.6% compared to HDL greater than 38mg/dl
(31.8%). In the subset of subjects whose waist circumference
was greater than 103 cm, HDL level greater than 49mg/dl and
FPG greater than 103mg/dl had a MetS prevalence of 2.1%
compared to FPG less than or equal to 103mg/dl (26.7%).
Note that FPG level was the only variable in the fourth level
of the tree.

Terminal nodes (nodes that do not split any further) are
the ends of each pathway where the prevalence is equated to
the likelihood of presenting withMetS. Decision rules for the
detection of MetS, presented in Table 2, show the “if-then”
logic for each of the 15 terminal nodes. The terminal nodes
are chronologically sorted by the proportion ofMets detected,
where the highest proportion of 94.4% MetS occurred in
node 29 and the lowest proportion of 0% occurred in nodes
6, 14, 16, and 18.

3.2. Model Comparison. The following are the results of the
user-specified first split model, referred to as the proposed
CHAID model, as compared to the CHAID model with
no user-specified first split and a logistic regression derived
model.

For the CHAID model with no user-specified first split,
the first variable was split on FPG. Like the proposed CHAID
model, four major predictor variables were selected by the
algorithm in this model including waist circumference, TG,
HDL, and FPG. The blood pressure MetS criteria, age, sex,
and ethnicity did not reach significance and thus were not
used in themodel. Compared to the proposedCHAIDmodel,
this model had a lower, but not practically different, overall
classification accuracy of 92.2% with its ability to detect MetS
at 69.8%.

The logistic regression model based on the MetS criteria
used in CHAIDmodels had no violations of multicollinearity
with themodel reaching significance. Compared to proposed
CHAID model, this logistic regression model had a lower
overall classification accuracy of 89.4% with its ability to
detect MetS at 61.7%.

4. Discussion

The current study aimed to generate a model for the early
detection of MetS in young adults. This model was derived
using a CHAID algorithm based on the presence of MetS
as the target variable and the MetS classification criteria as
its predictors whose values were obtained from 2009-2010
NHANES data. MetS is classified by the presence of 3 of 5
criteria defined by either the NCEP or IDF guidelines. The
novelty of this study is that the pathways derived from this
model show promise in accurately detecting MetS with an
easily obtained measurement.

The CHAID model illustrates multilevel interactions
among risk factors to identify stepwise pathways to detect
MetS. The five variables (waist circumference, TG, HDL,
FPG, and blood pressure) were included as predictors of
the target variable, MetS. Interestingly, the proposed CHAID
model with the user-specified first split on waist circumfer-
ence outperformed the CHAID algorithm without first-level
split specification and the logistic regression model in both
overall accuracy and ability to detect MetS.

The user-specified first split on waist circumference in
the decision tree was based on the current literature showing
that high waist circumference is the most frequent risk
component in people with metabolic syndrome [6] and
is highly correlated with diabetes and cardiovascular risks
[2, 5]. The IDF guidelines use waist circumference as the
first criteria followed by two or more other cardiometabolic
abnormalities [16]. However, in these guidelines, the waist
circumference criteria would be met for MetS if BMI was
greater than 30 kg/m2 [1]. In the current study, the mean
BMI was 29.2 ± 6.8, suggesting that user-specified waist
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Table 2: Decision rules for the prediction of the incidence risk of MetS from the CHAID algorithm.

Node number Level 1 Level 2 Level 3 Level 4 MetS probability
29 94 < waist circumference ≤ 103 TG > 162 HDL ≤ 38 FPG > 94 94.4
11 Waist circumference > 103 HDL ≤ 38 ∗ ∗ 82.1
17 86 < waist circumference ≤ 94 TG > 138 FPG > 92 ∗ 52.2
12 Waist circumference > 103 38 <HDL ≤ 49 ∗ ∗ 45.3
28 94 < waist circumference ≤ 103 TG > 162 HDL ≤ 38 FPG ≤ 94 40.0
21 94 < waist circumference ≤ 103 TG > 162 HDL > 38 ∗ 31.8
27 Waist circumference > 103 HDL > 49 FPG > 103 ∗ 26.7
19 94 < waist circumference ≤ 103 TG ≤ 162 FPG > 99 ∗ 18.5
15 86 < waist circumference ≤ 94 TG ≤ 138 FPG > 103 ∗ 16.7
5 Waist circumference ≤ 86 HDL ≤ 38 ∗ ∗ 4.9
26 Waist circumference > 103 HDL > 49 FPG ≤ 103 ∗ 2.1
6 Waist circumference ≤ 86 HDL > 38 ∗ ∗ 0.0
14 86 < waist circumference ≤ 94 TG ≤ 138 FPG ≤ 103 ∗ 0.0
16 86 < waist circumference ≤ 94 TG > 138 FPG ≤ 92 ∗ 0.0
18 94 < waist circumference ≤ 103 TG ≤ 162 FPG ≤ 99 ∗ 0.0
∗represents not significant. Growing method: exhaustive CHAID; dependent variable: MetS: metabolic syndrome, TG: triglyceride, HDL: high-density
lipoprotein cholesterol, and FPG: fasting plasma glucose.

circumference in the decision tree resulted in findings similar
to those used by IDF in MetS classification. Two recent
studies by Worachartcheewan et al. [20] and Kawada et al.
[21] identified the optimal waist circumference cutoff for
prediction of MetS. The optimal waist circumference cutoff
in the study by Worachartcheewan et al. [20] and Kawada
et al. [21] was in the range of 85–88 cm in male and females
and 83–85 cm in males, respectively, compared with 86 cm
in men and women in the current study. The comparability
of these results supports the validity of our findings showing
that the CHAID algorithm waist circumference cutoffs could
accurately detect MetS.

Central adiposity has been identified as a strong pre-
dictor of MetS and a strong contributor to BMI and waist
circumference. Després et al. [22] demonstrated a strong
correlation between BMI and waist circumference (r = 0.91,
𝑃 < 0.05) that is comparable to the current study (r =
0.93, data not shown). Furthermore, BMI did not take into
consideration the actual body composition, although waist
circumference andBMI have been shown to be a strong proxy
of visceral adiposity [23]. However, large variances of girth
measurements in epidemiological samples weaken the clini-
cal interchangeability between BMI and waist circumference.
Waist circumference as compared to BMI might therefore
be a more sensitive predictor of MetS, especially in the at-
risk young adult population. Awaist circumference screening
could more readily and easily alert health providers to the
increased metabolic risks associated with excessive visceral
fat accumulation over other MetS classification criteria that
require fasting, blood draws, and analysis. Therefore waist
circumference shows promise as an initial predictor in the
detection of MetS prior to further testing.

Interestingly, blood pressure did not reach significance to
be included in the final model. One possible explanation is
that elevations in blood pressure are less prevalent in younger
adults [13].Within our sample, the blood pressure criteria had

the lowest prevalence of all the MetS classification criteria for
subjects with and without MetS (10.1% and 0.8%, resp.).

4.1. Limitations. The current study was intended as a pilot
study meant to explore and test the CHAID algorithm’s
utility in creating pathways to detect MetS in young adults.
Although this model had an overall accuracy of 92.3%, its
ability to accurately detect MetS was only 71.8%.The CHAID
algorithm requires large sample sizes to operate effectively.
Given that the parent and child nodes were set to split at
small sizes (20 and 5, resp.) and that there was no validation
of the model, the derived pathways for MetS detection from
this study are not intended for clinical use. Furthermore, the
MetS diagnosis in this analysis was not a clinical diagnosis but
was rather determined by the presence of three ormore of the
NCEP criteria based on their prevalencewithin the secondary
data set. Additionally, this analysis did not account for the
use of medications to control blood pressure, lipids, and/or
plasma glucose.

The CHAID analysis did not identify any significant
differences in MetS based on sex or ethnicity in this sample
although previous studies have shown differences in MetS
risk based on sex and ethnicity [24, 25]. Considering the
limitation of the current study, future investigations warrant
utilizing sufficiently large sample sizes, considering the differ-
ence in MetS based on the sex and ethnicity and performing
model validation.

5. Conclusion

In summary, these preliminary findings suggest that young
adults at risk for MetS, who are not routinely screened for
fasting blood lipids or FPG, could be identified for further
follow-up testing based on their waist circumference. Future
research warrants the investigation of other anthropometric
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measures, simple point-of-care techniques, and validation of
these decision tree methods to create a strong algorithm for
predicting and/or the early detection ofMetS in young adults.
There are no clinically established criteria for premetabolic
syndrome. Decision tree methods are promising regarding
preliminaryMetS detection and can aid in the development of
a formal definition of premetabolic syndrome. If established,
premetabolic syndrome diagnostic criteria could improve
outcomes associated with the development of MetS or could
halt the progression of MetS and its relative consequences.
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