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Abstract

Cephalopods (nautiluses, cuttlefishes, squids and octopuses) exhibit direct development

and display two major developmental modes: planktonic and benthic. Planktonic hatchlings

are small and go through some degree of morphological changes during the planktonic

phase, which can last from days to months, with ocean currents enhancing their dispersal

capacity. Benthic hatchlings are usually large, miniature-like adults and have comparatively

reduced dispersal potential. We examined the relationship between early developmental

mode, hatchling size and species latitudinal distribution range of 110 species hatched in

the laboratory, which represent 13% of the total number of live cephalopod species

described to date. Results showed that species with planktonic hatchlings reach broader

distributional ranges in comparison with species with benthic hatchlings. In addition, squids

and octopods follow an inverse relationship between hatchling size and species latitudinal

distribution. In both groups, species with smaller hatchlings have broader latitudinal distri-

bution ranges. Thus, squid and octopod species with larger hatchlings have latitudinal dis-

tributions of comparatively minor extension. This pattern also emerges when all species

are grouped by genus (n = 41), but was not detected for cuttlefishes, a group composed

mainly of species with large and benthic hatchlings. However, when hatchling size was

compared to adult size, it was observed that the smaller the hatchlings, the broader the lati-

tudinal distributional range of the species for cuttlefishes, squids and octopuses. This was

also valid for all cephalopod species with benthic hatchlings pooled together. Hatchling size

and associated developmental mode and dispersal potential seem to be main influential

factors in determining the distributional range of cephalopods.
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Introduction

The early life of marine organisms is a decisive phase as it determines survival and recruitment
success dictating many aspects of the species population dynamics. The varying synchrony
between hatching of larvae and plankton production means that hatching in the right place
and time will be decisive for first feeding success and thus, survival and growth. Dispersal of
the hatchlings away from their parent source will have an imperative role in this process. In
fact, as noted by R. Nathan [1]: “dispersal is a fundamental biological process with important
implications at multiple scales of organization: for the survival, growth and reproduction of indi-
viduals; for the composition, structure and dynamics of populations and communities; and for
the persistence, evolution and geographical distribution of species”. Multiple biotic and abiotic
factors regulate dispersal and geographical distribution of marine species. Among them, the
hatchling mode of life, benthic or planktonic, can be of notable influence on dispersal [2, 3].
However, few studies have addressed this topic, particularly for marine carnivores. Cephalo-
pods play an important role as predators and prey in marine ecosystems [4] and their relative
abundances have increasedworldwide in recent years [5]. For adult cephalopods, both latitude
and depth range have a significant effect on maximum body size, and temperature seems to be
the most important factor in determining the distribution of adult body size along the conti-
nental shelves of the Atlantic Ocean [6]. These molluscs have both planktonic and benthic
hatchling modes of life depending on the species. For this reason they may be used as models
to improve our understanding of the factors that influencemarine species distributional ranges.
Most of the cephalopod species that have small hatchlings are planktonic during their early life,
while those that produce larger hatchlings are usually benthic, with some exceptions.

Depending on the environment in which they live and their early mode of life, cephalopods
can be divided into the following groups: holobenthic, when the full life cycle is associated with
the benthos (e.g. most cuttlefishes); holopelagic, when the full life cycle is associated with the
pelagic environment (e.g., all squids); and merobenthic, when hatchlings are planktonic fol-
lowed by a benthic life from juvenile to adult (e.g., some octopuses). All three types of life cycle
are observed in the octopods, a group with holopelagic, holobenthic and merobenthic repre-
sentative species [7]. In comparison with other molluscs, cephalopods have direct develop-
ment, thus hatchlings are essentially miniature of the adults and there are no marked
morphological changes during ontogeny [4]. Nevertheless, the term paralarva is used on an
ecological context to refer to planktonic hatchlings that have a different mode of life than the
adults [8] and, the term juvenile is commonly used to refer individuals after the end of the
planktonic phase, as well as for benthic hatchlings

Planktonic hatchlings are transported by currents and an inverse relationship should be
expected between hatchling size and dispersal potential. In fact, transport by currents has been
shown to be a powerful dispersal mechanism for planktonic squid [9–14] and octopus paralar-
vae [15, 16]. In addition to this passive transport, the swimming capacities recorded in the lab-
oratory for planktonic cephalopod hatchlings are within the range or higher than those found
for the larval fishes [17–22], which could enhance their dispersal potential. In contrast, mark
and recapture experiments with hatchlings of large, benthic cuttlefish, showed limited shallow
water dispersal, as the individuals remain in the same or adjacent bays to those in which they
hatched [23]. Molecular studies revealed some low-scale geographic population structure in
cuttlefish species [24], supporting the suspected low dispersal abilities of this group.

As a working hypothesis, we aim to evaluate if hatchling size and early mode of life, plank-
tonic or benthic, are related to the extent of the species distribution. To understand the possible
influence of the early mode of life on the geographic distribution of cephalopods, we studied
three parameters for each species: the mean hatchling size, their mode of early life (planktonic
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or benthic) and the latitudinal distribution range of the species.We also selected species with
known hatchling size to obtain additional information on the duration of the planktonic phase
and on the relative hatchling size in relation to adult size. These parameters are subject to rela-
tive variability, both at spatial and temporal scales. However, they can offer interesting insights
to understanding early life history strategy, species dispersal potential and biogeography in this
group of marine invertebrate predators.

Materials and Methods

Hatchling and adult size

The hatchling size data were obtained through an extensive literature review, selecting only lab-
oratory studies that examined: egg masses spawned in the laboratory from females properly
identified at the species level, in vitro fertilization experiments and laboratory-hatched individ-
uals from properly identified egg masses collected from the wild (see Table 1). These criteria
were necessary to avoid possible taxonomic misidentifications, size variations and unknown
age determination from wild-collectedhatchlings. Hatchling size was measured as mantle
length (ML; mm) of fresh individuals.

For each species and publication source, the hatchling ML (mm) was obtained as the mean
value provided by the study. When the hatchling ML of a species was obtained from more than
one study, the mean of each study was pooled to obtain the mean value representative of that
particular species. The hatchling ML of a genus was obtained as the mean ML of all the species
from that genus, following the FAO taxonomic criteria [25–27]. Hatchling ML from fresh indi-
viduals was selectedwhen possible. When only preservedmaterial existed for a species (n = 10
species, see Table 1), a shrinkage correction factor of 25.8% was applied to estimate the fresh
ML. This correction factor was obtained as the average shrinkage percentage from five species
whose fresh and preserved hatchling ML was known from the same individuals. These species
were: Sepietta oweniana [28], Callistoctopus macropus [29], Eledone moschata [30], Granele-
done boreopacifica [31] and Scaeurgus unicirrhus [32], with respective shrinkages of 37.5, 25.0,
10.0, 34.6 and 22.0%. Thus, when only measurements from preservedmaterial was available,
25.8% of the preservedML was added to estimate the fresh ML.

Some species with well-known hatchling size were excluded from the analysis for different
reasons. This applied to species currently considered as a species complex, consequently, hav-
ing uncertain taxonomic and latitudinal distribution such as Sepia pharaonis [33, 34], Sepio-
teuthis lessoniana [35–37], Loligunculla brevis [38] and Sthenoteuthis oualaniensis [39], as well
as species with uncertain taxonomic status like Pinnoctopus cordiformis [40]. Ommastrephes
bartramii is thought to represent at least three different species [41]. However, the hatchlings
previously described in the literature are from one of this species, with a known distribution
range in the North Pacific [42]. Hatchlings from species recently described and that have not
been recorded outside the type locality were also excluded from the analysis, such as Octopus
laqueus [43]. The particular characteristics and anatomy of the nautiluses, which possess very
large hatchlings of 26–30 mm [44, 45], are measured through the shell diameter and not by
with standard ML, as in other cephalopods. Thus, they were also excluded from the general
comparative analysis.

The duration of the planktonic phase (in days, d) in cephalopod species obtained from cul-
ture experiments was recorded from the literature (Table 2). For comparisons between species,
the maximum duration of the planktonic phase was selected for each species. The hatchling
size in relation to the adult size was also explored as an indicator of the relative hatchling size
for each species. Here we defined the species hatchling size index (SHSI, %) as: [(mean hatch-
ling ML of the species)/(maximumadult ML of the species)]x100. The maximum adult ML
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Table 1. Summary of data and literature references of hatchling mantle length (ML) and latitudinal distribution range for the 110 cephalopod spe-

cies analyzed in the present study.

Group/Species Hatchling mode

of life

Hatchling ML (mm) Maximum adult

ML (mm)

SHSI

(%)

Southern and northern

latitudinal distribution

Latitudinal

range (km)

Sepioids

Euprymna berryi P 2.6 [48] 50 5.3 20˚51’N, 41˚38’N [49] 2311

Euprymna hyllebergi P 2.2 [50] 35 6.3 00˚17’N, 16˚41’N [51] 1824

Euprymna scolopes P 1.8 [52] 30 5.8 18˚47’N, 25˚47’N [53] 779

Euprymna tasmanica B 5.0 [54] 40 12.5 43˚42’S, 24˚40’S [49] 2116

Idiosepius biserialis P 1.0 [55] (as I.thailandicus) 10.5 9.5 26˚00’S, 33˚25’N [56] 6607

Idiosepius paradoxus P 1.2 [57] 16 7.4 21˚51’N, 42˚87’N [56, 58] 2478

Idiosepius pygmaeus P 1.0 [59] 20 5.0 25˚11’S, 13˚32’N [60, 61] 4306

Metasepia pffeferi B 4.0 [62] 60 6.7 04˚04’S, 32˚33’S [63] 3166

Metasepia tullbergi B 4.7 [64] 70 6.7 00˚01’S, 38˚58’N [63] 4335

Rossia macrosoma B 5.5 [65] 85 6.5 12˚36’N, 70˚03’N [49] 6387

Rossia mollicella B 7.8* [66] 36 21.7 30˚57’N, 45˚37’N [67] 1630

Rossia pacifica B 6.0 [68] 90 6.7 28˚00’N, 65˚57’N [49] 4219

Sepia apama B 12.1 [69] 500 2.4 22˚55’S, 39˚27’S [63] 1839

Sepia bandensis B 8.0 [70] 70 11.4 08˚48’S, 15˚18’N [63] 2681

Sepia esculenta B 5.2 [48, 71] 180 2.9 06˚48’N, 40˚16’N [63] 3723

Sepia latimanus B 14.1 [72–74] 500 2.8 25˚04’S, 40˚22’N [63] 7325

Sepia lycidas B 8.7 [48] (as S. subaculeata) 380 2.3 07˚50’S, 40˚23’N [63] 5363

Sepia officinalis B 6.3 [75, 76] 490 1.3 15˚04’N, 61˚28’N [63] 5160

Sepia orbignyana B 6.0 [77] 120 5.0 17˚49’S, 54˚21’N [63] 8024

Sepiadarium kochii B 1.5 [78] 30 5.0 25˚25’S, 36˚05’N [79] 6840

Sepiella inermis P 4.3 [80] 125 3.4 19˚43’S, 29˚30’N [63] 5474

Sepiella japonica P 4.3 [48] (as S. maindroni),

[81]

180 2.4 21˚31’N, 40˚18’N [63] 2087

Sepietta neglecta B 2.5 [82] 33 7.6 25˚16’N, 62˚07’N [49] 4099

Sepietta obscura B 2.2 [82] 30 7.3 32˚00’N, 45˚31’N [49] 1501

Sepietta oweniana B 4.0 [28] 50 8.0 14˚37’N, 71˚15’N [49] 6296

Sepiola affinis B 3.0 [83] 25 12.0 35˚46’N, 45˚33’N [49] 1089

Sepiola atlantica P 1.7 [84, 85] 21 8.1 26˚15’N, 65˚50’N [49] 4401

Sepiola ligulata B 2.3 [82] 25 9.2 35˚17’N, 45˚33’N [49] 1142

Sepiola robusta B 2.2 [82, 86] 28 7.9 30˚38’N, 45˚39’N [49] 1668

Sepiola rondeleti B 3.7 [82] 60 6.2 12˚39’N, 62˚21’N [49] 5527

Squids

Neritic squids

Doryteuthis gahi P 3.0 [87, 88] 400 0.8 57˚04’S, 03˚48’S [26] 5923

Doryteuthis opalescens P 2.7 [89–91] 305 0.9 22˚42’N, 57˚48’N [26] 3902

Doryteuthis pealeii P 1.7 [20, 89, 92] 465 0.4 08˚47’N, 46˚47’N [26] 4226

Doryteuthis plei P 1.5 [89] 370 0.4 35˚00’S, 36˚46’N [26] 7979

Heteroligo bleekeri P 3.3 [71, 93, 94] 380 0.9 25˚26’N, 45˚41’N [26] 2252

Loligo forbesii P 4.2 [95, 96] 937 0.4 19˚58’N, 62˚15’N [26] 4701

Loligo reynaudii P 2.4 [97–100] 400 0.6 36˚58’S, 28˚00’S [26, 101] 997

Loligo vulgaris P 3.3 [102–105] 640 0.5 19˚10’S, 61˚45’N [26] 8998

Lolligunculla diomedeae P 1.3 [106] 115 1.1 31˚37’N, 18˚31’S [26, 107] 5573

Loliolus japonica P 2.3 [103] 150 1.5 06˚02’N, 40˚25’N [26] 3824

Loliolus sumatrensis P 1.5 [78] 120 1.3 09˚08’S, 40˚28’N [26] 5515

Uroteuthis duvaucelii P 1.1 [78] 330 0.3 25˚51’S, 28˚58’N [26] 6095

(Continued )
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Table 1. (Continued)

Group/Species Hatchling mode

of life

Hatchling ML (mm) Maximum adult

ML (mm)

SHSI

(%)

Southern and northern

latitudinal distribution

Latitudinal

range (km)

Uroteuthis edulis P 2.0 [71] 502 0.4 25˚48’S, 53˚33’N [26] 8823

Sepioteuthis australis P 6.8* [108, 109] 394 1.7 43˚46’S, 20˚13’S [26] 2618

Sepioteuthis sepioidea P 5.0 [110] 200 2.5 13˚08’S, 28˚21’N [26] 4613

Oceanic squids

Dosidicus gigas P 1.1 [111, 112] 1200 0.1 55˚40’S, 58˚08’N [42] 12650

Gonatus madokai P 7.2* [113] 470 1.5 59˚58’N, 40˚35’N [114] 2156

Gonatus onyx P 3.4 [115] 150 2.3 30˚01’N, 60˚00’N [116] 3335

Illex argentinus P 1.6 [117] 400 0.4 55˚24’S, 21˚24’S [42] 3781

Illex coindetii P 1.4 [118] 379 0.4 19˚26’S, 61˚18’N [42] 8978

Illex illecebrosus P 1.2 [119, 120] 340 0.3 25˚06’N, 67˚14’N [42] 4686

Ommastrephes

bartramii

P 1.3 [121] 600 0.2 20˚00’N, 55˚00’N [42] 3892

Thysanoteuthis

rhombus

P 1.4 [122] 1000 0.1 43˚51’S, 51˚45’N [123] 10630

Todarodes pacficus P 1.3 [124] 500 0.3 20˚27’N, 62˚29’N [42] 4674

Todarodes sagittatus P 1.8 [125] 750 0.2 10˚45’N, 72˚20’N [42] 6848

Todaropsis eblanae P 2.2 [125] 290 0.8 43˚59’S, 73˚34’N [42] 13070

Watasenia scintillans P 1.4 [126] 70 2.0 22˚54’N, 50˚48’N [127] 3103

Octopods

Bolitaena pygmaea P 2.5* [128] 60 4.2 42˚32’S, 37˚12’N [129] 8866

Vitreledonella richardi P 2.8* [130] 110 2.6 31˚24’S, 48˚55’N [129] 8930

Tremoctopus violaceus P 1.9* [130] 250 0.8 36˚01’S, 45˚37’N [131] 9076

Argonauta argo P 1.0* [130] 97 1.1 41˚06’S, 45˚28’N [132, 133] 9625

Argonauta hians P 0.6 [134] 40 1.5 17˚27’S, 45˚36’N [133] 7012

Amphioctopus aegina P 2.9 [135, 136] 90 3.2 03˚03’S, 26˚21’N [137] 3270

Amphioctopus burryi P 1.5 [138] 70 2.2 13˚00’S, 34˚00’N [139, 140] 5227

Amphioctopus fangsiao B 2.9 [141–143] 80 3.6 22˚12’N, 42˚33’N [137] 2262

Amphioctopus

neglectus

P 2.8 [144] 64 4.4 01˚19’N, 25˚52’N [137] 2730

Amphioctopus rex P 2.3 [145] 76 3.0 13˚40’S,16˚52’N [137, 146] 3394

Bathypolypus bairdii B 7.7 [147] 70 11.0 27˚01’N, 74˚27’N [148] 5275

Callistoctopus

macropus

P 4.0 [29] 155 2.6 16˚02’S, 45˚28’N [149] 6838

Callistoctopus ornatus P 2.7* [150] 130 2.1 34˚06’S, 34˚49’N [151] 7662

Cistopus indicus P 2.6 [144] 180 1.4 02˚15’N, 07˚44’N [137] 609

Eledone cirrhosa P 4.5 [152] 250 1.8 30˚32’N, 68˚100N [153] 4184

Eledone moschata B 10.5 [30, 154] 140 7.5 30˚32’N, 45˚28’N [154] 1660

Enteroctopus dofleini P 5.4 [155] 600 0.9 32˚32’N, 62˚31’N [156, 157] 3335

Enteroctopus

megalocyathus

P 8.4 [158] 190 4.4 56˚10’S, 34˚20’S [158] 2428

Graneledone

boreopacifica

B 28.0 [31] 145 19.3 40˚28’N, 50˚00’N [31, 159] 1061

Hapalochlaena lunulata P 2.3 [160] 50 4.6 16˚12’S, 18˚28’N [137] 3854

Hapalochlaena

maculosa

B 4.0 [161] 57 7.0 41˚09’S, 38˚06’S [60, 161] 339

Octopus maorum P 4.6 [162, 163] 300 1.5 52˚25’S, 31˚40’S [163] 2307

Octopus berrima B 4.5 [163] 105 4.3 43˚41’S, 32˚18’S [163] 1266

Octopus bimaculoides B 6.5 [164] 85 7.6 22˚32’N, 35˚31’N [137] 1442

(Continued)
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was selected instead of the mean adult ML due to the high intraspecific variability of the latter
in the literature. The maximum adult ML (in mm) was recorded in most cases based on recent
FAO reviews [25–27], except for Octopus vulgaris type II [46] and type IV [47] (Table 1).

The number of species used in the present study (n = 110) represents 13% of the 845 living
cephalopod species described to date [216] and can be considered as a representative sample
for this group of molluscs. The number of genus (n = 41) and families (n = 14) analysed here
represents 24% and 28% respectively of the 174 genus and 50 families described to date for
cephalopods [216]. Nevertheless, some groups may be over-represented in this sample, for

Table 1. (Continued)

Group/Species Hatchling mode

of life

Hatchling ML (mm) Maximum adult

ML (mm)

SHSI

(%)

Southern and northern

latitudinal distribution

Latitudinal

range (km)

Octopus bimaculatus P 2.6 [165] 200 1.3 22˚51’N, 34˚30’N [137] 1295

Octopus briareus B 6.3 [164, 166] 120 5.2 02˚49’S, 27˚28’N [167] 3368

Octopus chierchiae B 3.5 [168] 25 14.0 08˚58’N, 29˚33’N [169] 2288

Octopus cyanea P 2.1* [150] 160 1.3 24˚26’S, 22˚15’N [170] 5192

Octopus fitchi P 2.5* [130] 45 5.6 24˚00’N, 32˚00’N [171] 890

Octopus hubbsorum P 1.2 [172] 220 0.6 04˚00’N, 31˚51’N [173] 3097

Octopus huttoni P 2.5 [130, 174] (as

Robsonella australis),[175]

57 4.3 50˚45’S, 31˚31’S [132] 2140

Octopus insularis P 1.7 [176] 120 1.4 25˚320S, 00˚56’N [177, 178] 2945

Octopus joubini P 2.5 [179] 45 5.6 18˚13’N, 30˚03’N [179] 1317

Octopus sp. "joubini"

undescribed

B 5.5 [180] (as O.joubini) 40 13.8 10˚05’N, 30˚03’N [179] 2221

Octopus maya B 7.0 [164] 120 5.8 17˚59’N, 21˚32’N [137] 1268

Octopus mimus P 1.9 [181] 190 1.0 33˚54’S, 03˚27’S [137] 3387

Octopus minor B 10.0 [182] 80 12.5 21˚57’N, 46˚42’N [137, 183] 2752

Octopus oliveri P 1.3* [184] 70 1.8 29˚16’S, 27˚06’N [185] 6267

Octopus pallidus B 6.5 [163, 186] 150 4.3 44˚00’S, 31˚40’S [163] 1372

Octopus rubescens P 1.9 [130] 100 1.9 22˚51’N, 61˚06’N [156] 4255

Octopus salutii P 3.8 [187] 165 2.3 30˚21’N, 50˚00’N [137, 188] 2185

Octopus tehuelchus B 6.6 [189] 200 3.3 44˚01’S, 20˚00’S [137, 190] 2670

Octopus tetricus P 1.5 [191] 140 1.1 40˚00’S, 28˚12’S [137, 192] 1313

Octopus superciliosus B 4.5 [163] 26 17.3 47˚11’S, 33˚14’S [163] 1552

Octopus vulgaris sensu

stricto

P 2.1 [193, 194] 250 0.8 07˚04’N, 53˚03’N [137] 5113

Octopus vulgaris type II P 2.2 [195] 210 1.1 31˚05’S, 02˚00’N [137] 3679

Octopus vulgaris type IV P 2.1 [196] 168 1.3 21˚28’N, 45˚20’N [137] 2654

Octopus warringa P 2.5 [163] 35 7.1 47˚20’S, 33˚33’S [163] 1531

Octopus conispadiceus B 12.0 [197] 210 5.7 41˚43’N, 45˚37’N [198] 435

Paroctopus digueti B 5.3 [164, 199] 74 7.2 22˚48’N, 31˚27’N [200] 963

Robsonella fontanianus P 2.9 [201–203] 70 4.1 55˚00’S, 06˚00’S [204] 5449

Scaeurgus unicirrhus P 2.0 [32] 90 2.2 26˚10’S, 45˚28’N [149, 205] 7965

Wunderpus

photogenicus

P 2.3 [206] 36 6.4 16˚15’S, 14˚34’N [207] 3428

Hatchling mode of life as benthic (B) or planktonic (P) are indicated.

Hatchling mantle length (ML) are from fresh individuals, except for 10 species indicated by an asterisk (*), showing the estimated fresh ML from fixed

individuals (see Methods for details). When the hatchling ML of a species was obtained from more than one study, the mean of each study was pooled to

obtain the mean value representative of that particular species. Maximum adult ML, species hatchling size index (SHSI), the southern and northern

latitudinal distribution as well as the latitudinal distribution range are also indicated for each species.

doi:10.1371/journal.pone.0165334.t001
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example, the number of octopod species analysed here (n = 53) represents nearly half of the
total number of species considered in the present study (n = 110), while the total number of
octopod species represents nearly one-third of cephalopod species. This fact illustrates that this
group is relatively easy to maintain and reproduce in aquaria, making it easier to collect egg
masses and hatchlings in comparison with squids, which are more difficult to rear, spawn and
consequently, to obtain hatchlings under laboratory conditions [217–219].

Latitudinal distribution

Systematics and geographical distribution of the species were determined at first instance
according to recent FAO reviews [25–27]. Then, for each species, an extensive literature review
on its distributional range was conducted. The literature references used to obtain latitudinal
distribution assigned to each species are found in Table 1. The maximum and minimum
latitudinal distribution ranges obtained for each species was introduced in Google Earth1 to
determine the latitudinal range of the species in degrees of latitude [220]. This range was trans-
formed into distance (d) in km by applying the haversine formula to calculate the great-circle dis-
tance between two points; that is, the shortest distance over the earth’s surface. The haversine

Table 2. Size at hatching and at the end of the planktonic phase, rearing temperature and duration of planktonic phase for 15 cephalopod species

cultured in the laboratory.

Group/Species Size at hatching (ML,

mm)

Size at the end of planktonic phase (ML,

mm)

Temperature (˚C) Duration of planktonic phase

(d)

Sepioids

Sepiella inermis 4.3 6.5 28 5 [80]

Sepiola atlantica 1.9 2.4 14.4 ± 0.3 6 [84]

Euprymna hyllebergi 2.2 Nd 28.2 ± 1.6 0.3 [50]

Euprymna scolopes 1.6–1.9 Nd 21–25 20–30 [52]

Squids

Doryteuthis opalescens 2.3–2.8 15.0 15 60–80 [90]

2.5–2.7 6.0–8.0 16±1 35–45 [208]

Doryteuthis pealeii 1.8 4.0–6.0 13–19 50–60 [92]

Loligo forbesii 3.4–4.9 5.3–9.0 12–15 40–50 [96]

Sepioteuthis lessoniana 5–6 12.0–30.0 24.5–25.5 30–60 [209]

5.4 10.8 28 10 [210]

Octopods

Amphioctopus aegina 2.7 6.3 29.7±0.6 20–25 [136]

Enteroctopus dofleini 5.3–5.5 13.5 10.8 100–117 [155]

Nd Nd Nd 88 [211]

Nd Nd 11–11.5 150–180 [212, 213]

Enteroctopus

megalocyathus

8.4 [158] Nd 12 90–114 [214]

Octopus joubini 2.5 3.0–4.0 24 21 [179]

Octopus vulgaris sensu

stricto

2.0 8.6 21.2 47–54 [193]

Nd Nd 22.5 40 [215]

2.2 6.5 21.2 52–60 [194]

Octopus vulgaris type IV 2.1 6.3 24.7 33 [196]

Robsonella fontanianus 2.2 5.7 11 72 [202]

For squids, the end of the planktonic phase was considered to occur when schooling behaviour was first observed. ML, mantle length; Nd, no data; d, days.

doi:10.1371/journal.pone.0165334.t002
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formula was usedwas: d = R�c; where, R = the earth’s radius (mean radius = 6371 km);
c = 2�atan2(

p
a,
p

(1−a)); a = sin2(Δφ/2) + cos(φ1)�cos(φ2)�sin2(Δλ/2); φ, latitude; λ, longitude.

Data treatment

Values were compared using analysis of variance (ANOVA) and differences were considered
significant when P< 0.05. Linear regressions were used for the graphics. Data were assessed
using the JMP statistical package.

Results

Hatchling size was recorded for 110 species of cephalopods (30 sepioids, 27 squids, 53 octo-
pods), ranging from 0.6 (Argonauta hians) to 28.0 (Graneledone boreopacifica) mm ML, with
an average size of 3.9±3.5 mm ML. Species from 14 families and 41 genera are listed (Table 1).
Of these, 38 species have benthic hatchlings and 72 species have planktonic phase of variable
duration (Table 2). Sizes and ranges of planktonic and benthic hatchlings are shown in Table 3.
The distribution of sizes for species with planktonic hatchlings showed a maximum for Enter-
octopus megalocyathus (8.4 mm ML) and a minimum for A. hians. For species with benthic
hatchlings, the smallest size was found in Sepiadarium kochii (1.5 mm ML) and the distribution
of sizes was highly right-skewed due to the G. boreopacifica hatchling (Fig 1). There was a con-
siderable overlap between the hatchling sizes of benthic and planktonic species for intermediate
sizes classes, although the frequency of planktonic hatchlings in these classes was very low (Fig
1). Maximum adult size of the species analysed ranged from 10.5 (Idiosepius biserialis) to 1200
mm (Dosidicus gigas) ML, with an average size of 201±217 mm ML. The species hatchling size
index (SHSI) ranged from 0.1 (Thysanoteuthis rhombus) to 21.7% (Rossia molicella), with an
average of 4.3±4.2% (Table 1).

In relation to the latitudinal distribution ranges, Hapalochlaena maculosa registered the
smallest range (339 km) for a benthic species and the oceanic ommastrephid squid Todaropsis
eblanae reached the broadest range for the planktonic species (13070 km) (Table 1). Species
with a planktonic phase have significantly smaller hatchling sizes than species that hatched as
benthic individuals. In addition, species with planktonic hatchlings display significantly
broader latitudinal distribution compared with species that have benthic hatchlings (Table 3).

When all species were pooled together, a significant inverse relationship was observed
between hatchling size and latitudinal distributional range, with species with large hatchlings
showing smaller latitudinal distribution ranges (ANOVA, F = 7.17, p = 0.009, n = 110) (Fig
2A). The same relationship is observedwhen grouping all species at the genus level (F = 5.86,
p = 0.02, n = 41). This inverse relationship was also significant when analysing all the plank-
tonic species together, where species with smaller planktonic hatchlings reach broader distribu-
tions (F = 5.94, p = 0.017, n = 72) (Fig 2C). In contrast, no relationship between hatchling size
and latitudinal distribution was found when all the benthic species were analysed together

Table 3. Hatchling size in mantle length (ML) and latitudinal distribution ranges of 110 cephalopod species according to their hatchling mode of

life as planktonic or benthic.

Hatchling mode Hatchling ML (mm) Latitudinal distribution (km)

mean±SD min max mean±SD min max

Planktonic (n = 72) 2.5±1.5a 0.6 8.4 4684±2820a 609 13070

Benthic (n = 38) 6.5±4.6b 1.5 28.0 3105±2098b 339 8024

Values are mean±SD and different superscript letters denote statistical differences between planktonic and benthic (P<0.05).

doi:10.1371/journal.pone.0165334.t003
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(F = 0.10, p = 0.76, n = 38) (Fig 2E). When the data were analysed between different major
cephalopod groups, this relationship was not found for the major benthic cephalopod group,
the sepioids (F = 2.61, p = 0.12, n = 30) (Fig 3A). For squids, a group with only planktonic
hatchlings, an inverse relationship exists between hatchling size and latitudinal distribution,
the smaller the paralarval size the broader the distributional range of the species (F = 4.36,
p = 0.047, n = 27) (Fig 3C). For octopods, a cephalopod group with both planktonic and ben-
thic hatchlings, an inverse relationship between hatchling size and species distributional range
was also observed (F = 6.90, p = 0.01, n = 53) (Fig 3E).

When the SHSI is plotted against the latitudinal distribution range of species, the inverse
relationship obtained was stronger than when using the mean hatchling size, showing a signifi-
cant inverse relationship between the relative hatchling size and the latitudinal distribution
range for all species (ANOVA, F = 21.45, p = 0.0001, n = 110) (Fig 2B) and for all genera
(F = 8.09, p = 0.007, n = 41) pooled together. The same inverse relationship was also observed
for all planktonic (F = 8.11, p = 0.006, n = 72) and all benthic (F = 6.51, p = 0.015, n = 38) spe-
cies (Fig 2D and 2F). In relation to sepioids (F = 6.09, p = 0.02, n = 30), squids (F = 6.16,
p = 0.02, n = 27) and octopods (F = 7.88, p = 0.007, n = 53), the same inverse relationship was
found (Fig 3B, 3D and 3F).

The duration of the planktonic phase extended from less than a day (8h for Euprymna hylle-
bergi) to 180 d in Enteroctopus dofleini, with a mean of 53±47 d (Table 2). This duration
increasedwith hatchling size (ANOVA, F = 6.74, p = 0.02, n = 15) (Fig 4A) and no relationship

Fig 1. Size-frequency distribution from hatchlings of 110 species of cephalopods hatched in the laboratory. Empty columns represent

planktonic hatchlings; black columns, benthic hatchlings.

doi:10.1371/journal.pone.0165334.g001
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Fig 2. Relationship between hatchling size in mantle length (ML) and species hatchling size index (SHSI) with the latitudinal distribution range of

cephalopod species hatched in the laboratory. a), c) and e) shows relationship between hatchling size and latitudinal distribution range of the species;

b), d) and f), relationship between the SHSI and the latitudinal distribution range of the species. Data from a) and b) are based on all the 110 cephalopod

species analysed in this study; data from c) and d) are based on 72 cephalopod species with planktonic hatchlings; data from e) and f) are based on 38

cephalopod species with benthic hatchlings. Logarithmic scale is used for the X-axis. Empty circles represent planktonic species; black circles benthic

species.

doi:10.1371/journal.pone.0165334.g002
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Fig 3. Relationship between hatchling size in mantle length (ML) and species hatchling size index (SHSI) with the latitudinal distribution range of

cephalopod species hatched in the laboratory for the major cephalopod groups. a), c), e), relationship between hatchling size and latitudinal

distribution range of the species; b), d), f), relationship between the SHSI and the latitudinal distribution range of the species. Data from a) and b) are based

on 30 species of sepioids, data from c) and d) are based on 27 species of squids, and data from e) and f) are based on 53 species of octopods. Logarithmic

scale is used for the X-axis. Empty circles represent planktonic species; black circles benthic species.

doi:10.1371/journal.pone.0165334.g003
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was found between duration of the planktonic phase and latitudinal range (F = 0.08, p = 0.78,
n = 14) (Fig 4B). Sepioteuthis lessoniana was excluded from the latter comparison because it is
considered a species complex [35–37].

Discussion

Our results revealed that cephalopodswith early planktonic developmental modes hatch at
smaller sizes and reach broader distributional ranges in comparison with species with large, ben-
thic hatchlings. In addition, for the cephalopod groups with high numbers of species with plank-
tonic hatchlings (squids and octopods), the smaller the hatchling, the broader the latitudinal
distributional range of the species. These facts suggest that the developmental mode (planktonic
or benthic) along with the hatchling size may influence the distributional range of cephalopods.
Furthermore, when the hatchling size index (SHSI) was used for all species with benthic hatch-
lings, the smaller the hatchlings, the broader the latitudinal distributional range of the species.
This also held for the main benthic group, the sepioids. The chances of dispersal by driftingwill
tend to be greatest in smaller hatchlings. A positive relationship between the presence of a plank-
tonic larval phase and geographic distributional range has been found for prosobranch gastropod
species [221], and the present study shows a similar trend for cephalopods.

Lester and Ruttenberg [222] examined the relationship between distributional range and
planktonic larval duration of tropical reef fishes and found that this relationship is positively
correlated only in the largest ocean basin (the Indo-Pacific). They found that the spatial distri-
bution of habitats and dispersal barriers are of great importance for the dispersal of reef fishes.
The authors also noted that the duration of the larval phase is the best quantitative estimate of
the dispersal potential of many species. It is conceivable to expect that the smaller the hatchling
size, the longer the duration of the planktonic phase. The duration of the planktonic phase in
cephalopods has been determined for only 15 species (Table 2), and our results have shown
that duration of the planktonic phase increases as hatchling size increases. It is important to
stress, however, that this result was strongly influenced by the presence of cold-water octopod
species with larger planktonic hatchlings, such as Enteroctopus dofleini and E.megalocyathus
(Table 2, Fig 4). Hence, the duration of the planktonic phase in cephalopods seems to be
mainly dependent on the species and temperature [7]. Temperature will have a domineering
influence, with the potential to increase or decrease the duration of the planktonic phase for a
single species. Octopods of the genus Enteroctopus have the largest planktonic cephalopod at
hatching and the duration of their planktonic phase extends to 4–6 months, influenced by the
relatively cold-water temperatures (11°C) where they develop (Table 2). In addition, E.megalo-
cyathus hatchlings are larger than other octopods at the end of their planktonic phase and settle
as juveniles on the bottom, as in Amphioctopus aegina, Octopus joubini, O.vulgaris and Robso-
nella fontanianus (see Table 2). It would be highly informative to evaluate the factors regulating
the duration of the planktonic phase for many species under controlled conditions. Such infor-
mation could improve our understanding of the influence of the duration of the planktonic
phase on the geographical distribution range of cephalopods.

Cephalopods have a relatively short life cycle, around 1–2 years or less in medium-sized
coastal species [4], which implies that the time for dispersal is relatively short in comparison
with other long-lived marine groups like fishes. Therefore, the planktonic and juvenile phases
last relatively longer in relation to the whole life cycle in cephalopod species and must exert a

Fig 4. Relationships between (a) hatchling size in mantle length (ML) and duration of the planktonic phase for 15

cephalopod species; and (b) duration of planktonic phase versus latitudinal distribution range for 14 cephalopod species.

See Table 2 for details.

doi:10.1371/journal.pone.0165334.g004
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major influence on their dispersal potential, when compared with other marine animals with
longer life cycles. The locomotion capacity of the adults is also closely related to species dis-
persal, although it has only been studied in a few cephalopod species [223]. In this regard, the
short life cycle of coastal cephalopods and their relatively brief adult period suggest again the
importance of planktonic and juvenile phases for dispersal.

In marine invertebrates, the offspring size variation can arise from different factors such as
maternal size and nutrition, habitat quality and stress [224]. The intraspecific variation in
hatchling size has the potential to influence the population dynamics. In cephalopods, this
intraspecific variability in hatchling size has been reported for several species (see also Table 1)
and attributed mainly to egg incubation temperature [91, 104, 225–227] and the consequent
duration of the embryonic phase [228], seasonality [108] as well as maternal influence [229–
233]. The effect of temperature on the duration of embryonic development is well known in
cephalopods [234]; as temperature increases, the duration of embryonic development
decreases, producing smaller hatchlings. On the other hand, at lower temperatures, embryonic
development is longer and hatchlings are larger. This temperature effect can occur at seasonal
and latitudinal gradients. Moreover, for a single species, larger hatchlings should be expected at
higher latitudes [235].

Other factors influencing dispersal that were not considered here include geological history
and oceanographic currents. The latter have a domineering effect on dispersal of marine spe-
cies. For Mediterranean littoral fish species, inshore larvae showed shorter planktonic larval
duration than species with offshore larvae. As a result, mean geographic range was smaller for
species with inshore larval distribution than for species with offshore larval distribution [236].
These results indicated that planktonic larval duration is certainly not the only factor control-
ling geographical range, as the main circulation in the inshore-offshore larval habitat as well as
the season of planktonic life play important roles in dispersal.

The results of the present study also indicate that hatchling size is related to dispersal poten-
tial and display a phenotypic association with the presence of a planktonic phase and develop-
mental mode. Small hatchling size in marine invertebrates is often associated with planktonic
developmental mode, high mortality rates, large dispersal potential and likely gene flow. On
the other hand, large hatchling size is linked with benthic development and limited dispersal
[237]. Genetic data have given general support to the association between developmental mode
and intrapopulation variation, with low genetic differentiation being commonly found in
planktonic populations, although there are exceptions [238, 239].

Genetic studies in populations of holobenthic octopods showed that individuals are unable
to disperse between sites separated by tracts of deep ocean, which apparently present a major
physical barrier to dispersal, such as depths> 1000 m for Pareledone turqueti [240]. This isola-
tion, mediated by the limited movement of benthic adults, seems to promote the population
differentiation pattern in continuous habitats as in the holobenthicOctopus pallidus [241]. In
contrast, merobenthic octopuses showed less consistent patterns, with interactions of multiple
factors, such as oceanic currents, duration of the planktonic phase and fitness with settlement
areas influencing species dispersal and connectivity [241]. For Octopus vulgaris type II, micro-
satellite data have revealed significant genetic differentiation in four populations from the SW
Atlantic, however, no relationship between geographic distance and genetic differentiation was
found [242]. The combination of morphological and microsatellite data, has provide evidences
of phylogeographic boundaries for Loligo reynaudii in southern Africa [243], despite its narrow
distribution range with no obvious physical boundaries.Many topics remain to be investigated,
such as the interactions between paralarval swimming behaviour and wind-driven circulation,
which may strongly affect dispersal and retention patterns, leading to many possible explana-
tions for genetic and morphologic diversity.

Early Mode of Life and Species Distributional Ranges

PLOS ONE | DOI:10.1371/journal.pone.0165334 November 9, 2016 14 / 27



According to Strahmann and Strahmann [244], the recruitment variability inherent to spe-
cies with small-sized hatchlings and planktonic development seems to be incompatible with
short life cycles and low fecundity of small-sized species. Planktonic developmental mode plays
both the role in feeding and dispersal. Thus, a greater incidence of planktonic development
should be expected in large animals with longer life spans. Interestingly, though, a study that
correlated adult size with oocyte size and inferred developmental mode in shallow water ben-
thic octopuses suggested that oocyte size is negatively related to body size and thus, species
with larger body sizes tend to have smaller oocytes (and likely planktonic hatchlings) compared
to smaller body sized species [171]. It should be noted that octopus species with considerably
large body sizes such as Enteroctopus dofleini and E.megalocyathus, have planktonic hatch-
lings, in agreement with the suggestions of both Guzik [171] and Strahmann and Strahmann
[244]. On the other hand, polar regions seem to have selected for the production of large ben-
thic hatchlings as there is abundant food during the productive summers months minimizing
post-settlement competition [245]. This appears to apply particularly to polar and deep-sea
octopus species, which have very large hatchlings that are produced over long to exceptionally
long incubation periods, as in Graneledone boreopacifica, the species with the longest egg
brooding period (53 months) ever registered for an animal [246].

The deep-sea and polar octopuses show a clear tendency for large hatchlings. Phylogenetic
evidence suggests that polar and deep-sea octopuses, all with benthic hatchlings, have shallow
water ancestors with planktonic paralarvae [247, 248]. In the deep-sea, the main incirrate octo-
pods such as Bathypolypus, Benthoctopus and Graneledone, have very large eggs, suggesting
benthic hatchlings [249–251]. In this bathyal and abyssal environment, the suborder of the cir-
rate octopods probably represents an exception to the rule. These typical deep-sea cephalopods
with a gelatinous consistency and well-developed fins, spawn very large eggs suggesting direct
developing juveniles [252]. However, the cirrate octopod family Cirroteuthidae (Cirrothauma,
Cirroteuthis, Stauroteuthis) are essentially pelagic, but live generally close to the sea floor, and
are characterized by very large fins and swimming behaviour [253–255]. The Cirroteuthidae
morphology suggests a possible planktonic or benthopelagicmode of development for large
hatchlings in the deep-sea, because very large fins were observed in advanced cirrate embryos
of 9 mm ML [256]. This exception could also be extended to the old cephalopod lineage of the
nautiluses, with very large and pelagic hatchlings [44, 45, 257]. Increased dispersal capacity has
the potential to impact recruitment variability and thus, may have several consequences for the
whole life cycle. It is important to emphasize, however, that dispersal is not only achievable
during the larval phase of the life cycle, but that other factors such as adult body size and loco-
motion capacities also play a role. There may be interesting insights to be gained from explor-
ing the importance of developmental mode and dispersal with gene flow in cephalopod
populations.

Conclusions

Cephalopod species with smaller planktonic hatchlings seem to reach larger distributional
extensions in comparison with species with large, benthic hatchlings. This seems evident for
squids and octopods,where species with larger hatchlings have geographical distributions of
comparatively minor extension. This general tendency was not detected for sepioids, a more
homogeneous group composed mainly of species with large and benthic hatchlings. However,
when observing the relative size of the hatchlings in comparison with the adults, the smaller
the hatchlings, the broader the latitudinal distribution range of sepioids. This was also valid for
all species with benthic hatchlings pooled together, thus confirming the influence of hatchling
size on dispersal potential. The duration of the planktonic phase is also believed to be an
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important factor influencing the species geographical distribution. However, this has been
determined only for a few cephalopod species to date and future research is needed on this
topic.
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