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The aim of the present study was to investigate the

relation between neurogenesis, cell cycle reactivation

and neuronal death during tau pathology in a novel tau

transgenic mouse line THY-Tau22 with two frontotempo-

ral dementiawith parkinsonism linked to chromosome-17

mutations in a human tau isoform. This mouse displays

all Alzheimer disease features of neurodegeneration and

a broad timely resolution of tau pathology with hyper-

phosphorylation of tau at younger age (up to 6 months)

and abnormal tau phosphorylation and tau aggregation

in aged mice (by 10 months). Here, we present a follow-

up of cell cycle markers with aging in control and trans-

genic mice from different ages. We show that there is an

increased neurogenesis during tau hyperphosphoryla-

tion and cell cycle events during abnormal tau phosphor-

ylation and tau aggregation preceding neuronal death

and neurodegeneration. However, besides phosphoryla-

tion, other mechanisms including tau mutations and

changes in tau expression and/or splicing may be also

involved in these mechanisms of cell cycle reactivation.

Altogether, these data suggest that cell cycle events in

THY-Tau22 are resulting from neurogenesis in young

animals and cell death in older ones. It suggests that

neuronal cell death in such models is much more com-

plex than believed.
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Tau pathology is observed in several human neurodegenera-

tive disorders such as Alzheimer’s disease (AD), Pick disease,

frontotemporal dementia, corticobasal degeneration and pro-

gressive supranuclear palsy. In each of these disorders, called

tauopathies, the accumulation of the abnormally hyperphos-

phorylated tau is associated with neurofibrillary degeneration

and dementia. The discovery of mutations in the tau gene and

their cosegregation with the disease in the inherited fronto-

temporal dementia with parkinsonism linked to chromosome-

17 (FTDP-17) has established that abnormalities in tau protein

as a primary event can lead to neurodegeneration and

dementia (Hutton et al. 1998; Poorkaj et al. 1998; Spillantini

et al. 1998). Interestingly, these tauopathies can be biochemi-

cally differentiated by their pattern of hyperphosphorylated

isoforms, the so-called bar code (Buee et al. 2000; Sergeant

et al. 2005). Hyperphosphorylation of tau precedes its accu-

mulation into neurofibrillary tangle (NFT) in the affected neurons

in AD (Sahara et al. 2002). Among the kinases involved in tau

hyperphosphorylation, both cyclin-dependent kinase-5 (cdk5)

and glycogen synthase kinase-beta (GSK3b) are of particular

interest (Ahlijanian et al. 2000; Hamdane et al. 2003; Leroy et al.

2007; Patrick et al. 1999; Sengupta et al. 2006).
On one hand, cell cycle events were reported during

neurofibrillary degeneration and neuronal death (Busser

et al. 1998; Herrup & Busser 1995; Husseman et al. 2000;

Yang et al. 2003). CDK5-p25-mediated hyperphosphorylation

has been shown to be involved in reactivation of neuronal cell

cycle followed by neuronal death (Hamdane & Buee 2007;

Hamdane et al. 2005). On the other hand, cell cycle events are

also encountered in neurogenesis. Adult hippocampal

neurogenesis is not only involved in learning and the storage

of memory (Kempermann 2002; Kempermann et al. 2002,

2004) but also in postlesional remodeling (Dempsey & Kalluri

2007; Gray et al. 2002). In addition, there is an increase in

neurogenesis-related proteins in AD (Jin et al. 2004), but it is

not clear if these changes are not related to proliferation of

glial and vascular factors (Boekhoorn et al. 2006a).
The aim of the present study was to investigate the relation

between neurogenesis, cell cycle reactivation and neuronal

death during a sequential tau pathology. Lately, we generated

a novel tau transgenic mouse line THY-Tau22 with two FTDP-

17 mutations in a human tau isoform (Schindowski et al.

2006). This mouse displays the typical biochemical phosphor-

ylation pattern of human tau in AD, NFT-like inclusions,

neuropil threads (NT), paired haired filaments, ghost tangles,

neuronal loss, astrogliosis, loss of functional synapes and

impaired cognition. The THY-Tau22 mouse model displays

a broad timely resolution of tau pathology with hyperphos-

phorylation of tau at younger age (up to 6 months) and

abnormal tau phosphorylation and tau aggregation in aged

mice (by 10 months).
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Here, we present a follow-up of cell cycle markers with
aging in control and transgenic mice. We show that there is

an increased neurogenesis during tau hyperphosphorylation
and cell cycle events during abnormal tau phosphorylation and

tau aggregation preceding neuronal death and neurodegen-
eration.

Material and methods

Animals

THY-Tau22 mice were generated and characterized as recently
described with a construct containing human tau46 mutated at
G272V and P301S under the Thy1.2 promoter (Schindowski et al.
2006). As indicated in the original characterization work of the model, all
transgenic THY-Tau22 mice used in the present study were heterozy-
gous. Non-transgenic littermates were used as controls for all experi-
ments. Animals were housed in small social groups in standard cages
with free access to water and chow (rodent standard diet, Altromin,
Lage, Germany) and a 12 hours light–dark cycle. Some mice were
treated with 50 mg/kg 5-bromo-20-deoxyuridine (BrdU) (Sigma-Aldrich,
Lyon, France) intraperitoneal (i.p.) for 7 days and sacrificed 14 days
later. Animals were either killed by cervical dislocation, brains were
dissected and stored at �80 8C or sequentially perfused with 0.9%
NaCl and 4% paraformaldehyde in phosphate-buffered saline, the
dissected brains were postfixed overnight in 4% paraformaldehyde
and either dehydrated for paraffin-embedding or cryopreserved in 30%
sucrose for cryosections. All experiments on animals were performed
following the approval of the Institute of Laboratory Animal Resources
Committee, in accordance with standards for the care and use of
laboratory animals and with French and European Community rules.

Western blot analysis

Whole brains were dissected by separating the cortex from the
hippocampus and thalamus. Hippocampus-enriched preparations
were sonicated in Cell-Lysis Buffer (Cell Signaling Technology,
Danvers, MA, USA) and then boiled at 100 8C for 10 minutes. Ten
micrograms of total protein were resolved on sodium dodecyl
sulphate–polyacrylamide gel electrophoresis, blotted onto nitrocellu-
lose or polyvinylidene fluoride (PVDF) membranes (all from Invitrogen,
Cergy Pontoise, France), incubated with appropriate antibodies

(Table 1) and developed using the enhanced chemiluminescence kit
(Amersham, Orsay, France). Protein levels were visualized and quan-
tified using an imaging system (LAS-3000 2.0; Fuji Photo Film Co Ltd
[Clichy, France]). For the detection of apoptosis, we used SH-SY5Y
cells treated for 6 hours with 1 mM staurosporine (Sigma-Aldrich) as
positive control and untreated SH-SY5Y as negative control (Delobel
et al. 2003).

Immunohistochemistry and immunofluorescence

Cryosections were cut at 14 mm. 5-bromo-20-deoxyuridine and TdT-
mediated biotin–dUTP nick-end labeling (TUNEL) stainings (both from
Boehringer Mannheim-Roche, Mannheim, Germany) were performed
according to the manufacturer’s instructions. At 6 months of age,
THY-Tau22 exhibited changes in doublecortin (DCX), which were
significantly altered and therefore 6 months were also chosen for
BrdU experiments. DNAse I-treated sections were used as positive
controls for TUNEL staining. Primary antibodies (listed in Table 1)
were incubated overnight at 4 8C. All secondary antibodies including
biotinylated-, fluorescein- and Texas Red-coupled, ABC-kit and DAB/
Ni were from Vector Laboratories (Burlingame, CA, USA). Hematox-
ylin staining (Sigma-Aldrich) was performed according to standard
procedures. Paraffin sections (8 mm) were Gallyas silver-stained
according to Braak & Braak (1991).

Statistics

Data were quantified with NIH IMAGE software, and statistics were
analyzed by Student’s t-tests (Prism Graphpad, San Diego, CA, USA).

Results

Tau pathology in THY-Tau22 mice

In THY-Tau22 transgenic mice, brain sections exhibit hyper-
phosphorylation of tau [AT8-immunoreactivity (AT8-ir) tau

phosphorylated at Ser202 and Thr205] and abnormal phos-
phorylation of tau [AT100-immunoreactivity (AT100-ir), tau

phosphorylated at Thr212 and Ser214], NFT-like inclusions

Table 1: Specificity, dilution and source of antibodies used in this study

Antibody Species Specificity or clone Dilution Source

AT8 Mouse Tau; pSer202/pThr205 1:10 000 Innogenetics

AT100 Mouse Tau; pThr212/pSer214 1:2000 Innogenetics

BrdU Mouse 5-bromo-20-deoxyuridine 1:10 Roche

b-tubulin Rabbit T3526 1:1000 Sigma

Caspase 3 Rabbit Full caspase 3 1:1000 Cell Signaling

Cyclin B Rabbit M-20 1:1000 SantaCruz Biotechnology

Cyclin D Rabbit 06-137 1:1000 (WB); 1:100 (IHC) Upstate

Cyclin D1 Rabbit H-295 1:100 (IHC) SantaCruz Biotechnology

DCX Goat Doublecortin C-18 1:1000 (WB); 1:100 (IHC) SantaCruz Biotechnology

NeuroD Rabbit H-76 1:1000 (WB); 1:100 (IHC) SantaCruz Biotechnology

p27KIP1 Rabbit C-19 1:1000 (WB); 1:100 (IHC) SantaCruz Biotechnology

p21CIP1 Rabbit C-19 1:250 (WB); 1:100 (IHC) SantaCruz Biotechnology

TUC-4 Rabbit ULIP1, CRMP4 1:5000 Chemicon

Innogenetics (Gent, Belgium); Roche (Mannheim, Germany); Sigma-Aldrich (Lyon, France); Cell Signalling Technologies (Danvers, MA, USA);

SantaCruz Biotechnologies (Santa Cruz, CA, USA); Upstate/Millipore (Billerica, MA, USA); Chemicon (Limburg, Germany); WB, western blotting;

IHC, immunohistochemistry.
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and NT (both Gallyas positive; Fig. 1) (Schindowski et al.

2006). In 3- to 6-month-old THY-Tau22 mice, tau hyperphos-
phorylation and NFTs are detected in the hippocampal forma-

tion and some cortical areas and their amount increases
rapidly in aging (data not shown). The cell bodies of the

dentate gyrus (DG) are relatively spared at young age, but their
neurites show clearly AT8-ir (Fig. 1a,b). Tau phosphorylation

and NFT-like inclusions were modest in the DG (Fig. 1c) but
massively detected in pyramidal neurons of the CA1 subfield

and the subiculum (Fig. 1d–f) in old animals.

Neurodegeneration in aged THY-Tau22

To investigate the links between tau pathology and neuronal

death, brain macroscopic and microscopic features were
analyzed.

Brain mass and size of 13- to 16-month-old tau transgenic
mice were mildly reduced by 6% compared with age- and

sex-matched non-transgenic littermate controls (Fig. 2a).
Lately, we had been shown a loss of pyramidal neurons in

CA1 and subiculum by over 30% at this age (Schindowski
et al. 2006). To investigate the presence of apoptosis in this

model, we analyzed brain homogenates for caspase 3 cleav-
age (Fig. 2b). However, no active caspase 3 as sign for

apoptotic cell death was found in brain tissues at any age in
tau transgenic animals. Nevertheless, if apoptosis is not

a main feature in this model, proteolytic products of caspase
3 may be diluted in brain homogenates. Thus, apoptosis

markers were investigated at the neuronal level by histolog-

ical procedures. Some TUNEL-positive pyramidal neurons
were sometimes found in old THY-Tau22 mice in the CA1

subfield (Fig. 2c), while TUNEL staining was undetectable in
control mice. Double staining with AT8 showed that apoptotic

neurons were colocalized with phospho-tau (AT8-ir). More-

over, staining with the nuclear dye, DAPI, decreased from
12 months onwards in the CA1 region, indicating a progres-

sive cell loss in THY-Tau22 mice. Therefore, apoptotic cell
death seemed to be rather limited in our tau transgenic

mouse, although the massive cell loss in CA1 and subiculum.

Increase of cell cycle-related proteins during tau

aggregation

It had been shown that cell cycle re-entry results in neuronal
death in differentiated neurons (Greene et al. 2004), and

several reports observe regulation of cell cycle-related pro-
teins during the pathogenesis of AD (Andorfer et al. 2005;

Busser et al. 1998; Herrup & Busser 1995). Recently, we
showed tau pathology, neuronal death and reactivation of cell

cycle in differentiated neuroblastoma cells overexpressing
the CDK5 activator p25 (Hamdane et al. 2005). However, no

change in p35 cleavage into p25 was observed in the THY-
Tau22 model (data not shown).

To link the effects of tau pathology caused by a FTDP-17
mutation on cell cycle events, major cell cycle-related pro-

teins were investigated. Cyclin D1 is a protein that is required
to leave the G0 phase and enter the G1 phase of the cell cycle

and has been shown to be an early event leading to
retinoblastoma (Rb) phosphorylation and the onset of neuro-

nal death (Greene et al. 2004; Hamdane et al. 2005). In aged
THY-Tau22 mice, during the stage when abnormal tau

phosphorylation and tau aggregation occur, cyclin D1 was
detected in brain homogenates, while it remained undetect-

able in young THY-Tau22 and control mice at any age (Fig. 3a).
The hippocampal formation and cortical areas of tau trans-

genic animals contained cyclin D1-immunoreactive pyramidal

Figure 1: Tau pathology in aged THY-Tau22. (a) AT8-ir in the DG in a 3-month-old THY-Tau22 mice. Tau hyperphosphorylation is

restricted to axons but absent in cell bodies. (b) AT8-ir in the DG in a 6-month-old THY-Tau22mice.Mossy fibers andmolecular layer show

tau hyperphosphorylation. (c) AT8-ir in the DG in a 15-month-old THY-Tau22 mice with massive degeneration of AT8-positive fibers and

extensive AT8-ir of cell bodies fibers. Rare Gallyas-positive stained NFT-like inclusionswere found in DG at this age (inset). (d) AD-specific

AT100-ir indicative for abnormal tau phosphorylation in CA1 pyramidal neurons in THY-Tau22 at 12 months. (e) NFT-like inclusions

(Gallyas positive) were found numerously in the CA1 and subiculum of THY-Tau22 at 12 months. (f) In 12-month-old THY-Tau22 mice, NT

(Gallyas positive) occurred frequently in the subiculum (arrows). Representative photos are shown.
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neurons – with a nuclear localization (Fig. 3b). However, the

total amount of detectable pyramidal neurons was rather low.
Although several sections from non-transgenic age-matched

control mice were analyzed, no cyclin D1 labeling was
observed (Fig. 3b). The appearance of cyclin D1 is an early

event in the normal cell cycle and a marker for G1 phase (for
review, see Maller 1991; Nurse 1990; Pines 1993, 1995;

Pines & Hunter 1994). In addition, levels of cyclin B1, the
regulatory subunit of the cdc2-kinase, a relevant marker for

G2 phase, were also increased in aged THY-Tau22 (Fig. 3a).

Increased neurogenesis during tau

hyperphosphorylation

Interestingly, p21CIP1 and p27KIP1, both inhibitors of the cyclin
D-CDK4 complex (Gartel & Radhakrishnan 2005; Kwon et al.

1996), were also elevated in the tau transgenic mice (Fig. 3
a,b). Interestingly and similar to what is described in AD

(Busser et al. 1998), the localization of p27KIP1 was mainly
cytoplasmic, indicating that it was not active (Fig. 3b).

Because presence of cell cycle events may be related to

neurogenesis, levels of DCX, TUC-4 and NeuroD, all being
markers for neuronal differentiation (von Bohlen Und Halbach

2007), were analyzed in tau transgenic and control mice at
different ages. First, DCX, a protein involved in neuronal

differentiation and neurogenesis (Gleeson et al. 1998), was
studied by immunohistochemistry. It was present in the DG

of littermate control mice at 3 months but was significantly
decreased at 6 months and undetectable by 12 months

(Fig. 4a). The DCX-immunoreactivity (DCX-ir) in the DG of
THY-Tau22mice was increased at 3 months, and its decrease

with age was delayed. At 6 months, the DCX levels were 2.2-
fold higher than in the controls (Fig. 4a). Moreover, TUC-4

(also known as ULIP1 or CRMP4), a protein that is involved in

neuronal maturation and differentiation (Cameron & McKay
2001), was also present at 3 months in both control and THY-

Tau22 mice. In control mice, the levels of TUC-4 were
decreased at 6 months and almost undetectable at 10–

14 months, whereas surprisingly, the levels of TUC4 remained
elevated in THY-Tau22 mice at 10 and 14 months (Fig. 4c).

Figure 2: Neurodegeneration and apoptosis in old THY-Tau22. (a) Brain weight was significantly reduced (P < 0.014) in old THY-

Tau22 mice compared with littermate controls (13–16 months) by 6%. Representative photographs of freshly prepared brains show

a mild reduction in brain size. THY-Tau22: 463.4 � 7.576 mg, n ¼ 15; WT: 493.0 � 8.025 mg, n ¼ 12. (b) No cleavage of caspase 3 – as

sign of apoptosis – was detectable in tau transgenic mice or in controls, indicating the absence of massive synchronized apoptotic cell

death. Negative control, untreated growing SH-SY5Y cells; positive control, growing SH-SY5Y treated 1 mM staurosporine for 6 hours.

n ¼ 2 per genotype and age (c) TUNEL staining of the CA1-formation: TUNEL-positive cells (green, marked with arrows), AT8-positive

cells (red) and the nuclear stain DAPI (blue) in control (12 months, n ¼ 3) and THY-Tau22 mice at 6 months (n ¼ 4), 12 months (n ¼ 3)

and 17 months (n ¼ 1). Although TUNEL-positive cells were very rare, all of them colocalized with AT8-ir. The number of TUNEL-positive

cells and AT8-ir increased in aged tau transgenic mice.

*P < 0.05; WT, wildtype.
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NeuroD is a basic helix-loop-helix transcription factor and is
expressed at the time of the terminal differentiation into

mature neurons (Lee et al. 1995). The levels of NeuroD were
mildly increased in aged THY-Tau22 compared with age-

matched littermate controls (Fig. 4c).
To determine if these increased levels of neurogenesis-

related protein resulted also in increased amounts of newborn
cells, 6-month-old mice were treated with the base-analog

BrdU during 7 days and sacrificed 14 days later. The amount
of BrdU-positive cells was nearly three times higher in the

granule DG cell layer of THY-Tau22 mice compared with

controls, indicating that the increase of de novo DNA synthe-
sis resulted in viable cells (Fig. 4b). 5-bromo-20-deoxyuridine
staining was also observed in the subventricular zone and
exceptionally in other brain areas.

Discussion

Tau hyperphosphorylation and tau aggregation appear to have

differential effects on differentiation and cell death. While
more and more reports propose a protective role of tau

hyperphosphorylation (Hamdane et al. 2005; Lee et al.
2005), tau aggregation is supposed to contribute to neuronal

death (Ramsden et al. 2005). Hyperphosphorylation had been

shown to be reversible, while tau aggregation is not (Santacruz
et al. 2005).

The aim of this study was to link tau pathology to cell cycle
events and differentiation subsequent to neurogenesis.

In AD brains, there is an increase in proteins that are
involved in neuronal differentiation and maturation (Jin et al.

2004; Yang et al. 2003). An important finding of this report

Figure 3: Upregulation of cell cycle-related proteins in old THY-Tau22. (a) Differential regulation of cell cycle-related proteins in

hippocampal homogenates of THY-Tau22 and age-matched controls. Occurrence of cyclin D1 was the most notable change in tau

transgenic mice, while protein levels of cyclin D2 did not change. p21CIP1 and p27KIP1 were also elevated in aged THY-Tau22. Cyclin B1

was mildly elevated. b-tubulin levels show that equal amounts of protein were loaded. Representative blots were shown; similar results

were obtained with n ¼ 3–6 mice per genotype and band intensities quantified. Mean optical densities are shown in the table.

Significance was calculated with two-way analysis of variance and Bonferroni’s post-test. (b) In 13-month-old THY-Tau22 mice (n ¼ 4),

hippocampus and cortex stained for cell cycle markers cyclin D1 (CA1) and p27KIP1 (frontal cortex) were visualized with DAB (brown),

counterstained with hematoxylin (blue) and similar field in an age-matched control mouse. Arrows indicate cells positive for the

respective cell cycle marker. p27KIP1 was observed in controls and THY-Tau22, but the number of positive cells was increased in the

latter. The cytoplasmic localization was identical. Cyclin D1 in nuclear localization was only found in old tau transgenics but not in age-

matched controls.

*P < 0.05; **P < 0.01; ***P < 0.001.
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was the presence of these proteins in young tau transgenic
mice. The major site of adult neurogenesis, besides the

subventricular zone, is the DG. It should be emphasized that
at the age of 3–6 months, fibers of the granular cell layer of

the DG were immunoreactive for tau phosphorylation, but
their cell bodies were relatively spared from tau pathology.

Abnormal phosphorylated tau (AT100) and NFTs were mostly
absent at this age (Schindowski et al. 2006). Therefore, early

molecular events, likely involved in the regulation of neuro-
genesis and plasticity, were detected even before the onset

of somatic hyperphosphorylated tau deposits (Boekhoorn
et al. 2006b).

From our data, it is difficult to conclude that these changes
are only related to tau phosphorylation. On one hand, tau

expression and/or mutation may also have an impact on
neuronal physiology, such as maturation and splicing. For

instance, it was described that 4-repeat tau isoforms regulate
hippocampal neurogenesis and promote neuronal differenti-

ation (Sennvik et al. 2007). Conversely, the neonatal 3-repeat
isoform is present in proliferating progenitor cells and asso-

ciated with DCX expression and BrdU incorporation during
adult neurogenesis in the rat hippocampus (Bullmann et al.

2007; Mosch et al. 2007). TUC-4 regulation is observed in tau-
positive stem cells during neuronal differentiation (Munoz-

Elias et al. 2003). Moreover, TUC-4 is also involved in F-actin
bundling (Rooslenbroich et al. 2005). Recent data from

experimental models of tauopathies suggest some relation-
ships between actin-binding proteins and tau pathology (Blard

et al. 2007; Fulga et al. 2007). Thus, some links may exist
between TUC-4 and tau pathology through actin network and

increased phase of neuronal differentiation. Nevertheless,
more work is needed to find the exact relationships. On the

other hand, we cannot exclude that neurogenesis, an event
that is predominantly present in young adults, is dependent

on factors that are mainly present in young brains, and it
should be emphasized that in the present model, tau hyper-

phosphorylation correlates with an increased neurogenesis.
Nevertheless, it had been shown that even aged brains are

able to increase neurogenesis in response to an environmen-
tal enrichment (Kempermann et al. 2002) or cerebral lesions

(Dempsey & Kalluri 2007; Gray et al. 2002; Kokaia & Lindvall
2003). Neurogenesis-related proteins have also been

observed in mice expressing non-mutant human tau (Andorfer
et al. 2005) and tau mutations (Kuhn et al. 2007).

Figure 4: Increased and delayed neurogenesis in adult THY-Tau22. (a) DCX-ir in the DG of THY-Tau22 mice compared with WT at

3 months (n ¼ 2), 6 months (n ¼ 3 WT and n ¼ 4 Thy-Tau22) and 12 months (n ¼ 3). Representative images are shown. Note the age-

related decay of DCX levels in control mice, while in THY-Tau22, increased numbers of DCX-ir cells were also observed at 6 months.

Quantification of DCX-ir cells in the DG showed a significant increase at 6 months (*P < 0.05 at 6 months, n ¼ 6 per genotype). Cell

density is number of cells per field (photo taken with 10 � 10 magnification, approximately 190 � 100 mm). A coronal section (14 mm)

showing the hippocampus around bregma�1.6 to�1.7 was used per animal. (b) 6-month-oldmice were treatedwith BrdU i.p. for 7 days

and sacrificed 14 days later. The number of BrdU-positive cells in the DG is significantly increased (*P < 0.05) in THY-Tau22 mice (n ¼ 4)

compared with littermate controls (n ¼ 3). (c) Immunoblot analysis from hippocampal brain homogenates of proteins involved in

neurogenesis and neuronal differentiation: TUC-4 is highly significantly and NeuroDmildly elevated in old THY-Tau22mice comparedwith

controls. Representative blots were shown and equal amounts loaded; similar results were obtained with n ¼ 3–6 mice per genotype

and band intensities quantified. Mean optical densities are shown in the table. Significance was calculated with two-way analysis of

variance and Bonferroni’s post-test.
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By contrast, the CA1 subfield, which is the brain region with
the highest density of tau phosphorylation and NFT load in aged

THY-Tau22 mice, shows later massive neurodegeneration and
cell loss. Cyclin D1, a marker of neuronal cell death that is

elevated in AD brain (Busser et al. 1998), was significantly
increased by 10 months when tau phosphorylation and the

formation of NFT are quite advanced in THY-Tau22. Interest-
ingly, cyclin D1 is a key molecule of neurons leaving G0 and

entering G1 (Greene et al. 2004). p21CIP1 and p27KIP1 are
related proteins that inhibit cell cycle progression by interacting

with cyclin D-CDK4 complex in the nucleus (el-Deiry et al. 1993;
Gu et al. 1993; Harper et al. 1993; Polyak et al. 1994; Xiong et al.

1993). Moreover, p27 is essential for the translocation of cyclin
D from the cytosol to the nucleus and is increased in tau

models (Delobel et al. 2006) and AD brain and colocalized with
NFT (Ogawa et al. 2003). The increase in p21 that is consistent

with findings from different tau models (Delobel et al. 2006)
and AD patients (Zhu et al. 2004). Figure 5a shows an overview

of the regulation of cell cycle-related proteins during tau
pathology: markers of G1 and G2 were significantly elevated

during the stage of abnormal tau phosphorylation and tau
aggregation and preceded neuronal loss.

It was suggested that failure in synaptic plasticity may lead
to cell cycle dysfunction (Arendt & Bruckner 2007). However,

cell cycle events had been linked so far to Ab toxicity in AD
(Copani et al. 2002). Here, reactivation of cell cycle and

neuronal death are described in a model of tauopathy,
emphasizing the impact of tau pathology on neuronal cell

cycle re-entry. Moreover, phosphorylation of the cell cycle
protein Rb triggered by the tau kinase p25/Cdk5 and activation

of E2F-responsive genes occur in neuronal death (Hamdane
et al. 2005). Excitingly, here, we detected neuronal cell cycle

re-entry during the stage of abnormal tau phosphorylation and
tau aggregation but preceding neuronal death.

Cell death and neuronal loss (Schindowski et al. 2006) were
detected by 12 months or later in our mouse model. There-

fore, the re-entry of cell cycle is preceding neuronal death in
THY-Tau22 as we have shown recently in a cell model

(Hamdane & Buee 2007). A short summary with time lines
for tau pathology, cell cycle events and neurodegeneration of

our mouse model is sketched in Fig. 5b. Neurodegeneration
and cell loss have also been observed in other tau transgenic

mouse models with tau mutations at sites P301S (Allen et al.
2002), P301L (Gotz et al. 2001; Lewis et al. 2000), V337M

(Tanemura et al. 2002) and R406W (Ikeda et al. 2005; Lim
et al. 2001; Zhang et al. 2004). However, evidence of

apoptosis was only observed in P301L-mutated tau mice
(Gotz et al. 2001; Santacruz et al. 2005) and in mice express-

ing non-mutated human tau (Andorfer et al. 2005).

Consistent with findings of AD brain material and tau
transgenic mice (Colurso et al. 2003), we observed few

TUNEL-positive cells in THY-Tau22 mouse brain, although
the number of TUNEL-positive cells was significantly

increased compared with age-matched controls. The levels
of cleaved caspase 3 remained undetectable, but it should be

taken into consideration that cleavage of caspases is a rather
short event, and therefore, their detection is difficult in

a dynamic not-synchronous system such as the brain. Excit-
ingly, cytoplasmic p21CIP1 has been reported to prevent

apoptosis by inhibiting activation of caspase 3 (Asada et al.
1999; Suzuki et al. 1998). Our data are comparable with

reports about the absence of active caspase 3 in AD brain and
tau mouse models (Andorfer et al. 2005).

Altogether, these data suggest that cell cycle events in
THY-Tau22 are resulting from neurogenesis in young animals

and cell death in older ones. It suggests that neuronal cell
death in such models is much more complex than believed.
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