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Previous genetic studies on hereditary Parkinson’s disease (PD) have identified a

set of pathogenic gene mutations that have strong impacts on the pathogenicity

of PD. In addition, genome-wide association studies (GWAS) targeted to sporadic

PD have nominated an increasing number of genetic variants that influence PD

susceptibility. Although the clinical and pathological characteristics in hereditary PD

are not identical to those in sporadic PD, α-synuclein, and LRRK2 are definitely

associated with both types of PD, with LRRK2 mutations being the most frequent

cause of autosomal-dominant PD. On the other hand, a significant portion of risk genes

identified from GWAS have been associated with lysosomal functions, pointing to a

critical role of lysosomes in PD pathogenesis. Experimental studies have suggested

that the maintenance or upregulation of lysosomal activity may protect against neuronal

dysfunction or degeneration. Here we focus on the roles of representative PD gene

products that are implicated in lysosomal pathway, namely LRRK2, VPS35, ATP13A2,

and glucocerebrosidase, and provide an overview of their disease-associated functions

as well as their cooperative actions in the pathogenesis of PD, based on the evidence

from cellular and animal models. We also discuss future perspectives of targeting

lysosomal activation as a possible strategy to treat neurodegeneration.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s
disease, affecting about 10 million people worldwide. PD is clinically characterized by bradykinesia,
tremor, rigidity, and postural instability as well as olfactory abnormalities and sleep disturbances.
The motor symptoms of PD are mainly attributable to the selective loss of dopaminergic (DA)
neurons in the substantia nigra pars compacta (SNpc), causing dopamine deficiency (1). An
important pathological hallmark in PD lesions is the intraneuronal inclusions called Lewy bodies
that consist of aggregated α-synuclein phosphorylated at Ser129 residue (2–4). It is widely accepted
that α-synuclein aggregates or oligomeric species spread to interconnected brain regions in a
prion-like manner, although the processes are not fully understood (5).

Although the majority of PD cases (∼90%) are sporadic, some forms of PD are hereditary and
the responsible genes have been identified. SNCA encoding α-synuclein was the first gene identified,
and the mutations in other genes such as leucine-rich repeat kinase 2 (LRRK2) and vacuolar protein
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sorting-associated protein 35 (VPS35) are also established as
the cause for autosomal-dominant PD. On the other hand,
genes associated with autosomal-recessive PD include PRKN,
PINK1, and ATP13A2 (6). Importantly, accumulating evidence
has pointed to a greater contribution of genetic determinants in
sporadic PD (7, 8). Especially, past meta-analyses of genome-
wide association studies (GWAS) targeting sporadic PD have
repeatedly identified two of the above familial PD genes—
LRRK2 and SNCA—as major risk factors, indicating that the
impact of these two genes is more common in the general
population (9–11). These GWAS for sporadic PD have succeeded
in nominating a number of additional genes that were not
identified from linkage analyses of familial PD cases, and GBA1
in particular is the most representative of such genes.

Importantly, a significant proportion of PD-associated genes
(e.g., LRRK2,GBA1,ATP13A2,VPS35, and TMEM175) have been
functionally implicated in the endolysosomal system in cells (12–
16). Especially, GBA1 is well-known as a responsible gene for
Gaucher disease, the most common lysosomal storage disorder.
Moreover, the recent expansion of genetic, transcriptomic, and
epigenetic studies in sporadic PD has nominated an increasing
number of lysosomal pathway genes as a risk factor for PD (17–
19). Endolysosomal dysfunctions are also frequently described
in other neurodegenerative diseases such as Alzheimer’s disease
(AD), Huntington’s disease (HD), frontotemporal dementia
(FTD) and amyotrophic lateral sclerosis (ALS), all of which
accompany neuronal accumulation of misfolded proteins (20,
21).

In addition to the evidence from genetics, the involvement
of lysosomal dysfunction in PD has been implicated from
pathological and biochemical studies using postmortem disease
samples. The reduction in the immunoreactivity of lysosomal
markers, such as LAMP1 and cathepsin D, was detected in PD
and Lewy body disease (22, 23), and lysosomal breakdown,
autophagosomal accumulation and the colocalization of
autophagosomal markers with Lewy bodies were also detected in
PD brains (24). Cathepsin D immunoreactivity has been shown
to colocalize with α-synuclein pre-aggregates in nigral neurons
in PD (25). The levels of lysosomal enzymes have been reported
to be altered in cerebrospinal fluid and blood samples from PD
patients (26–28). Thus, the role of lysosomes in PD pathogenesis
is receiving increasing attention.

However, the detailed mechanisms on how lysosomal
dysfunction leads to the neurodegeneration in PD remain largely
elusive. There is a wide range of functions of PD-causative genes
that are related to lysosomes, andmuch research has been focused
on the elucidation of disease-related functions as well as the
relationship among these genes. A commonmechanism assumed
by many researchers is that lysosomal dysfunction ultimately
leads to α-synuclein accumulation and propagation in neurons.
In fact, the role of lysosomes in α-synuclein degradation has long
been attracted attention, and many studies on PD genes have also
examined their effects on α-synuclein intracellular dynamics (i.e.,
metabolism, aggregation, secretion, and internalization).

In this article, we first summarize the current knowledge about
the mechanisms of α-synuclein degradation in lysosomes, and
then focus on the roles of other well-analyzed PD gene products,

namely LRRK2, VPS35, ATP13A2 and GBA, in terms of their
individual and co-operative regulations of endolysosomes and
α-synuclein dynamics. Finally, we will discuss the potential
of targeting endolysosomal system, especially the strategies to
enhance lysosomal activity, in the future treatment of PD.

α-SYNUCLEIN: THE CENTRAL EFFECTOR
DEGRADED IN LYSOSOMES

Missense mutation in SNCA gene encoding α-synuclein was first
identified in 1997 as a cause of autosomal-dominant PD (29).
Later on, more mutations in SNCA gene have been identified
to date, including A53T, A30P, E46K, H50Q, G51D, and A53E
(29–34). Furthermore, gene triplication and duplication of SNCA
locus without missense mutations have also been reported as a
cause of familial PD (35–37). This means that the increase of α-
synuclein level by itself is sufficient to develop PD, and therefore
proper clearance of α-synuclein is required for the prevention
of disease onset. Multiple lines of evidence have suggested that
α-synuclein is degraded in two major proteolytic pathways:
the ubiquitin-proteasome system (UPS) and the autophagy-
lysosomal pathway (ALP) (38, 39). The metabolism in ALP has
been the focus of much attention, especially in relation to the
clearance of aggregated α-synuclein species.

Previous studies have shown that both extracellular and
intracellular α-synuclein species are transported into lysosomes
via the endosomal system or autophagy (40). It has been reported
that α-synuclein is mainly degraded by cathepsins, especially
cathepsin D, in lysosomes (41, 42). Cathepsin D level is shown
to influence α-synuclein aggregation and toxicity in vivo (43).
Treatment of cells with a lysosomal inhibitor bafilomycin A1 has
been reported to not only affect α-synuclein metabolism but also
to promote its propagation (44, 45).

Conversely, it has also been shown that the aggregated α-
synuclein itself inhibits the function of lysosomes as well as
other organelles. For example, α-synuclein pre-formed fibrils
(PFFs) act on lysosomal membranes and cause its rupture (46–
48). Another study has reported that α-synuclein impedes the
lysosomal stress response mediated by the SNARE protein ykt6
(49). ykt6 is known as a regulator of ER-Golgi trafficking that
is also reported to be disrupted by accumulated α-synuclein
(50, 51), suggesting the possibility that the effect of α-synuclein
on lysosomes is not necessarily direct. Collectively, it is assumed
that lysosome inhibition exacerbates α-synuclein toxicity and α-
synuclein accumulation in turn inhibits lysosomes, forming a
vicious cycle that leads to the development of the disease.

Autophagy has also been established as a key
mechanism regulating α-synuclein metabolism and toxicity.
Macroautophagy is a major autophagy machinery that processes
the degradation of a large portion of the cytoplasmic components
through the formation of double-membrane structures called
autophagosomes. The autophagosomes fuse with primary
lysosomes to form autolysosomes where their contents are
degraded and then either disposed or recycled back to the
cell (52, 53). Inhibition of autophagosome-lysosome fusion
by treatment with bafilomycin A1 or chloroquine enhanced
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α-synuclein release and transfer in human neuroglioma cells and
rat primary cortical neurons (54, 55). In a mouse model of PD
expressing human α-synuclein, impairment of macroautophagy
under DA neuron-specifc knockout of Atg7 gene caused the
aggravation of neuropathology, although the behavior of mice
was paradoxically improved (56). In humans, it has been reported
that the majority of Lewy bodies (∼80%) composed of α-syuclein
in the SNpc of PD patients were strongly immonoreactive for
LC3 (24), and similar observation for LC3 immunoreactivity was
observed in Lewy bodies of dementia with Lewy bodies (DLB)
patients (57). These reports collectively implicate the impaired
macroautophagy in the pathogenetic processes involving α-
synuclein, although we should note that there is little direct
evidence of α-synuclein degradation by macroautophagy.

On the other hand, another type of autophagy called
chaperone-mediated autophagy (CMA) has been considered as
a possible mechanism of PD (58). CMA mediates the lysosomal
degradation of a specific subset of soluble cytosolic proteins
containing a KFERQ-like motif, which can be recognized by
the cytosolic chaperone heat shock cognate protein 70 (Hsc70).
Proteins targeted by Hsc70 are directly transported into the
lysosomes for degradation through association with lysosome-
associated membrane protein 2A (LAMP2A). It has been shown
that wild-type α-synuclein can be degraded in CMA whereas
mutant α-synuclein interferes with the lysosomal transport
process in CMA, suggesting a possible link between defective
CMA activity and PD (59).

Accumulating evidence has suggested that these ALP
machineries may be modified by several PD-associated gene
products, including LRRK2, VPS35, ATP13A2, and GBA. In the
following sections, we will discuss the possible roles of these
proteins in ALP and α-synuclein metabolism, focusing on the
pathological relevance in PD (Figure 1).

LRRK2: A MULTIFACETED KINASE IN THE
ENDOLYSOSOMAL SYSTEM

Mutations in LRRK2 gene have been identified as the most
common cause of autosomal-dominant PD (60, 61). LRRK2 is
a large ∼280 kDa protein and is widely expressed in human
tissues including brains, although the expression is higher in the
kidney, lung and immune cells (61–64). LRRK2 protein consists
of multiple enzymatic and protein interaction domains including
armadillo repeats (ARM), ankyrin repeats (ANK), leucine-rich
repeats (LRR), Ras of complex (Roc), C-terminal of Roc (COR),
kinase, and WD40 domains (61, 65, 66), suggesting that LRRK2
has diverse binding partners in distinct cellular pathways. LRRK2
has an ability to bind GTP through its ROC domain, and
PD-associated mutations in LRRK2 have been shown to cause
alterations in GTP binding and/or GTPase activity (64, 67, 68).
A number of mutations in LRRK2 gene have been reported so
far (69), and the followingmutations are well-validated: N1437H,
R1441C/G/H, Y1699C, G2019S, and I2020T. Thesemutations are
located either in the ROC domain (N1437H, R1441C/G/H), COR
domain (Y1699C) or kinase domain (G2019S, I2020T). Among
these, G2019S is the most prevalent, followed by R1441C/G/H

(60, 61, 69–72). It has been shown that G2019S mutation
in LRRK2 increases its intrinsic kinase activity (73), whereas
ROC/COR domain mutants affect GTPase activity or GTP
binding (64, 68). These findings implicate the important roles
of both GTPase/GTP binding and kinase activities of LRRK2 in
PD pathomechanisms. Recent structural analyses of LRRK2 on
microtubules using cryo-electron tomography/microscopy have
shown that the kinase andGTPase domains are in close proximity
(74, 75), suggesting that the activities of both domains are not
independent but influence each other.

Recent studies have accumulated evidence that LRRK2
phosphorylates a subset of Rab family GTPases, including Rab3,
Rab8, Rab10, Rab29, and Rab35, in their switch-II regions
(76–80). Rab GTPases are the major regulators of intracellular
membrane trafficking (81). It has been shown that LRRK2
and its substrate Rab GTPases, especially Rab8 and Rab10, are
readily recruited onto lysosomes that are stressed by lysosomal
overload (82, 83) or by membrane damage (84, 85). Under
lysosomal overload stress, LRRK2 and Rab8 act against lysosomal
hypertrophy, whereas LRRK2 and Rab10 facilitate the release
of lysosomal contents. Under lysosomal membrane-damaging
stress, LRRK2 recruits the ESCRT-III component CHMP4B via
Rab8a (85) or the motor adaptor protein JIP4 via Rab10/Rab35
(84) to damaged lysosomes for membrane repair. The lysosomal
recruitment of LRRK2 is further regulated by Rab29 (also known
as Rab7L1), another interactor and substrate of LRRK2 (82, 83).
Studies in C. elegans neurons have suggested that the orthologs of
LRRK2 and Rab29 both regulate axon termination, and double
mutant analysis has revealed their functions in a same genetic
pathway that involves the clathrin adaptor protein complex 3
(AP-3), an important regulator of Golgi-lysosome transport of
lysosomal membrane proteins (86).

A variety of studies have also reported the relationship
between LRRK2 and autophagy. Studies of Lrrk2 KO mice
have demonstrated the altered autophagic markers such as the
autophagosome marker LC3-II and the autophagy substrate p62
(87, 88). The levels of these autophagic markers were changed in
age-dependent and bi-phasicmanners; LC3-II level was increased
at 7 months of age but decreased at 20 months in Lrrk2 KO
mice, whereas p62 was decreased at 7 months and increased at
20 months (87). In vitro studies have shown that the knockdown
of LRRK2 in neuroblastoma SH-SY5Y cells caused a marked
increase in LC3-II and p62 levels (89). In contrast, another
study has shown that the knockdown of endogenous LRRK2
in macrophage or microglial cells decreased LC3-II levels and
autophagy flux (90). Thus, although these changes in the levels
of autophagic markers indicate the important role of LRRK2 in
the proper regulation of autophagic flux, the effects of LRRK2
on autophagy depend on the conditions such as cell type and
experimental methodology, and the mechanism of how LRRK2
regulates autophagy still remains unclear.

As for the relationship between LRRK2 and CMA, it has
been reported that LRRK2-G2019S inhibits CMA by affecting
LAMP2A-mediated internalization of the substrate proteins
like α-synuclein into lysosomes, which results in α-synuclein
accumulation in neurons (91). Consistently, a significant
reduction in CMA or lysosomal markers such as LAMP1,
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FIGURE 1 | The roles of PD-associated proteins in endolysosomal pathways responsible for α-synuclein degradation. Extracellular and intracellular α-synuclein

species (both soluble and aggregated) are transported into lysosomes for degradation through several pathways, including endocytosis, phagocytosis, and

autophagy. PD-associated proteins VPS35, LRRK2, and Rab29 influence multiple steps of these degradation pathways, both individually and cooperatively. The

retromer complex component VPS35 regulates the recycling of cathepsin D (CATD), the main lysosomal hydrolase responsible for α-synuclein degradation, by

retrieving the lysosomal hydrolase receptor CI-MPR from endosome to the TGN. VPS35 pathogenic mutation may affect the recycling of CATD and thus impair

α-synuclein degradation. LRRK2 and Rab29 further interact with VPS35 and regulate its function cooperatively. In endocytosis pathway, LRRK2 regulates

AP-3-mediated intracellular recycling of lysosomal membrane proteins, whereas LRRK2 modulates the phagocytic activity by interacting with actin-cytoskeletal

regulator WAVE2. VPS35 has been shown to function in macroautophagy pathway together with its interactors WASH complex and ATG9a, thereby regulating the

transport of LC3-positive compartments. LRRK2 also regulates the autophagic flux, and ATP13A2 influences the clearance of autophagosomes. The perturbation of

macroautophagy pathway is thought to contribute to the impaired degradation of α-synuclein, especially those of aggregated species.

LAMP2A, Hsc70, and cathepsin D has been described in whole
brains or SNpc of PD patients (22, 24, 92, 93). LRRK2 may
additionally regulate the phagocytic activity in myeloid cells,
where LRRK2 binds and phosphorylates the actin remodeling
protein Wiskott-Aldrich syndrome protein family verprolin-
homologous protein 2 (WAVE2), which is important for the
efficient promotion of phagocytosis (94).

In neurons, LRRK2 physically and functionally interacts
with the retromer complex component VPS35, which is also
known as a causative gene product for hereditary PD. Retromer
complex functions on endosomes to selectively transport cargo
proteins to the trans-Golgi network (TGN) or plasmamembranes
(95), and intirectly regulates lysosomal functions, as described
later. The LRRK2-VPS35 functional interaction in various
experimental context was further modulated by a LRRK2-
binding protein Rab29 (96). Another report has demonstrated
that a pathogenic VPS35 mutation (D620N) influences LRRK2
kinase activity with unknownmechanism; that is, LRRK2 activity
to phosphorylate its substrate Rab GTPases was significantly
enhanced in VPS35[D620N] knock-in cells compared to those
without VPS35 mutation (97). Collectively, there is considerable
evidence that LRRK2 acts on endolysosomal system, although
further analysis is needed to determine which of these functions
is particularly important in PD pathogenesis.

VPS35: AN INDIRECT REGULATOR OF
LYSOSOMES

Mutations in vacuolar protein sorting-associated protein 35
(VPS35) gene are the genetic cause in PARK17, a locus for
autosomal-dominant familial PD. Two independent groups have
investigated Austrian and Swiss kindreds that develop PD and
identified D620N mutation in VPS35 as the cause of the disease
(98, 99). Patients with VPS35 D620N mutation have a mean age
of onset in the 50s, and their clinical manifestations are similar
to those of sporadic PD, such as resting tremor, bradycardia and
L-DOPA reactivity (100, 101). Thus, although the presence of
Lewy bodies in patient brains has not been confirmed, PD with
VPS35 mutation and sporadic PD are thought to share some
common pathogenetic mechanisms.

The VPS35 gene encodes a 796 amino acid protein that
acts as a crucial component of the retromer complex, a
mediator of the retrograde transport of endosomal proteins to
TGN or plasma membranes (102–104). Retromer contains two
subprotein complexes: a cargo recognition complex composed of
VPS26–VPS29–VPS35 heterotrimer and a membrane-targeting
dimer of sorting nexins (SNX1, SNX2, SNX5, SNX6, and SNX32)
(105–108). VPS35 is located at the center of the complex and
is important for the recognition and binding of the cytoplasmic

Frontiers in Neurology | www.frontiersin.org 4 June 2021 | Volume 12 | Article 681369

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Abe and Kuwahara Targeting Lysosomes in Parkinson’s Disease

domain of cargoes for retrograde transport (109). Particularly,
retromer is responsible for the retrograde transport of cation-
independent mannose 6-phosphate receptor (CI-MPR), a sorting
receptor of lysosomal hydrolases including cathepsin D (110).
Therefore, the dysfunction of VPS35 or retromer is thought to
affect lysosomal activity through impaired delivery of lysosomal
hydrolases, and this may also affect α-synuclein clearance,
as cathepsin D is one of major enzymes responsible for the
degaradation of α-synuclein (41, 43). In relation to PD, it has
been reported that PD-associated D620N mutation in VPS35
causes defects in sorting of CI-MPR (111). Also, D620Nmutation
in VPS35 has been shown to affect retromer binding to the
actin-nucleating Wiskott-Aldrich syndrome and SCAR homolog
(WASH) complex, an important functional partner of retromer
(16, 112).

VPS35 has also been associated with other cellular processes
such as autophagy (102). It has been shown that VPS35 regulates
macroautophagy by controlling the endosomal localization of
WASH complex as well as ATG9a, a multipass transmembrane
protein that is considered to regulate the early steps of
autophagosome formation (16). Specifically, the transport of
ATG9a is affected by D620N mutant VPS35, which then causes
the impairment of autophagosome formation. Another study
has suggested the role of VPS35 in CMA, where VPS35
mediates endosome-to-Golgi retrieval of LAMP2A receptor
(113). Mice with reduced Vps35 level or D620N mutation
showed alterations in lysosomal morphology with a decrease in
the level of LAMP2A. This may be due to impaired recovery
of LAMP2A from the endosome to the Golgi, which then
leads to the enhanced degradation at the lysosomes. This
reduction in LAMP2A level is expected to cause a decrease
in CMA-mediated α-synuclein degradation. Actually, Vps35-
deficient mice showed multiple PD-like phenotypes such as the
accumulation of α-synuclein in DA neurons, reduced level of the
catecholamine-synthesizing enzyme tyrosine hydroxylase (TH)
andDA transmitters, dystrophic TH-positive neurites/axons, and
impaired motor behaviors (113). Another group has reported
that lentivirus-mediated overexpression of human wild-type
VPS35, but not PD-linked P316S mutant, rescues α-synuclein
accumulation as well as α-synuclein-mediated neuronal loss and
astrogliosis in α-synuclein transgenic mice (114). In humans, the
alterations in the protein levels of CMA markers (LAMP2A and
Hsc70) are documented in SNpc and amygdala of PD patients
(115). These findings collectively suggest the role of VPS35 as
an indirect controller of lysosomes through the regulation of
intracellular trafficking of lysosomal enzyme adaptors or multiple
autophagic regulators.

ATP13A2: A UNIQUE CATION
TRANSPORTER ON LYSOSOMES

Recessive mutations in ATP13A2 (polyamine-transporting
ATPase 13A2), a gene located in a PD-associated locus PARK9,
have been identified as the genetic cause for Kufor-rakeb
syndrome (KRS), which is a type of Parkinsonian syndromes.
KRS is clinically characterized by L-DOPA-responsive juvenile

parkinsonism as well as cognitive impairment and myoclonus
(116), and pathologically characterized by diffuse cerebral
and cerebellar atrophy (117). Loss-of-function mutations in
ATP13A2 have additionally been reported to cause neuronal
ceroid lipofuscinosis (118, 119). ATP13A2 is a lysosomal P5-type
transport ATPase that is involved in the transport of divalent
metal cations as well as polyamines on lysosomal membranes
(120). Loss of ATP13A2 causes lysosomal accumulation of
polyamines (e.g., spermine) and lysosomal rupture, leading to
cell toxicity (121). ATP13A2 has also been suggested to regulate
multiple cellular functions related to lysosomes, including heavy
metal homeostasis and mitochondrial homeostasis (15, 122).
For example, a recent study using SH-SY5Y cells, patient-
derived fibroblasts and the nematode C. elegans has identified a
conserved cell protective pathway that counters mitochondrial
oxidative stress via ATP13A2-mediated lysosomal spermine
export (123).

A number of previous studies have pointed to the essential
role of ATP13A2 in the homeostasis of lysosomal function
(124). Studies with PD patient-derived mutant ATP13A2
fibroblasts and ATP13A2-knockdown DA neurons have shown
that PD-linked mutations in ATP13A2 lead to several lysosomal
alterations, including impaired lysosomal acidification, decreased
activity of lysosomal enzymes, reduced degradation of lysosomal
substrates and defective clearance of autophagosomes (125).
Conversely, overexpression of wild-type ATP13A2 in ATP13A2-
deficient cells restores lysosomal function and prevents cell death
(125). Other studies have demonstrated that ATP13A2 regulates
endolysosomal cargo sorting through its cytosolic N terminal
domain, independent of its catalytic activity (126), and ATP13A2
regulates mTORC1-TFEB pathway together with another PD-
associated gene product synaptotagmin 11 (SYT11) to induce
autophagy as well as α-synuclein clearance (127). ATP13A2
deficiency and mutation have also been shown to cause the
reduction in the level of cathepsin D, a main α-synuclein-
degrading enzyme in lysosomes, in human neuroblastoma SH-
SY5Y cells and in medaka fish (128).

The relevance of ATP13A2 defects to α-synuclein
accumulation has been more directly demonstrated from other
studies. Depletion of ATP13A2 in primary cortical neurons using
a short hairpin RNA promoted the aggregation of α-synuclein
by reducing lysosomal activity, which ultimately led to cell death
(15, 129). On the other hand, overexpression of ATP13A2 in α-
synuclein-stable SH-SY5Y cells lowered intracellular α-synuclein
levels and instead promoted extracellular secretion of α-
synuclein (130). Another study has reported that overexpression
of ATP13A2 rescued DA neuron degeneration caused by
overexpressed α-synuclein in rat primary midbrain cultures and
in C. elegans (131).

In vivo, Atp13a2 knockout mice exhibit a neuronal ceroid
lipofuscinosis-like phenotype, accumulation of mitochondrial
ATP synthase subunit C (132), α-synuclein accumulation,
dopaminergic pathology and late-onset sensorimotor deficits
(133, 134). More specifically, ATP13A2 deficiency causes
dysfunctions in the fusion of autophagic vacuoles with lysosomes
as well as the impairment of lysosome-mediated degradation of
proteins including α-synuclein (135). Analyses of postmortem
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PD patient brains have shown the presence of ATP13A2 in
the Lewy bodies and a decrease in the levels of lysosomal
components including ATP13A2 in DA neurons (125, 136).
Although the mutations in ATP13A2 are rare in humans,
these studies have collectively pointed to the important
roles of ATP13A2 in ALP that may be involved in the
neurodegenerative processes.

GLUCOCEREBROSIDASE: THE
LYSOSOMAL ENZYME LINKED TO
SPORADIC PD

Homozygous or compound heterozygous mutations in GBA1
gene are well-known to cause Gaucher disease (GD), a lysosomal
storage disorder, whereas heterozygous mutations that in the
homozygous state lead to GD have been reported to increase the
risk for developing PD (137–139). Also, a higher incidence of
Parkinsonism in patients with GD harboring GBA1 homozygous
mutations has been reported (140, 141). Moreover, a number
of genome-wide association studies (GWAS) have identified
GBA1 as a most common genetic risk factor for idiopathic PD
(9, 11, 142). Compared to non-GBA1-associated PD, GBA1-
associated PD shows an earlier onset of the disease and a
higher prevalence of non-motor symptoms, such as cognitive
decline. They also tend to have a family history of dementia,
and non-motor symptoms often manifest before the onset of
motor symptoms (143, 144). GBA1 mutations are also a risk
factor for dementia with Lewy bodies (DLB) (145, 146), and PD
patients with GBA1 mutation have about a 3-fold higher risk
of progressing to dementia than those without mutation (147).
They also exhibit a faster progression of visual hallucinations,
dysautonomia and motor symptoms, with a resultant decrease in
survival rate (143, 145, 148).

GBA1 gene encodes the lysosomal enzyme glucocerebrosidase
(GCase) that hydrolyzes glucosylceramide (GlcCer) to ceramide
and glucose. GBA1 mutations have been shown to cause
the reduction in the enzymatic activity of GCase (149, 150)
and prevent GCase from reaching the lysosome, causing the
accumulation of GlcCer in neurons (151–153). The significant
correlation between the severity of the specific GBA1 mutation
and that of clinical phenotypes (e.g., odds ratios for PD, age
at onset, risk for dementia) has been reported (145, 147, 154),
suggesting major impact of GCase activity in the pathogenetic
processes. Importantly, idiopathic PD patients without GBA1
mutations also showed lower enzymatic activity and levels of
GCase in brain tissue samples (155–157) and in dried blood spots
(149). The reduction in GCase activity was further demonstrated
in PD patient-derived DA neurons without GBA1 mutations
(158, 159). These observations suggest that GCase dysfunction
is a common pathogenic mechanism in idiopathic PD.

The reduced function of GCase are expected to contribute
to the accumulation of α-synuclein in PD lesions (160).
Indeed, treatment with a GCase inhibitor Conduritol B epoxide
(CBE) caused a large increase in the levels of α-synuclein,
without increasing α-synuclein mRNA, in human neuroblastoma
SH-SY5Y cells and in mice (161). The association between

reduced GCase and increased α-synuclein is further implicated
in human PD postmortem brains (157). The accumulation of
GlcCer in neurons as a result of GCase deficiency is thought
to promote the formation of toxic α-synuclein aggregates (162),
as lipids like GlcCer may strongly interact with α-synuclein
and accelerate its fibril formation (163, 164). Another study
has suggested a model where α-synuclein deposition and
reduced GCase activity may influence each other and form a
positive feedback loop that leads to a vicious cycle of disease
progression (156).

On the other hand, the activity and function of GCase in
microglia or related phagocytic cells have also been focused,
as GCase is highly expressed in monocyte lineage cells. In
mice, genetic depletion or pharmacological inhibition of GCase
caused microglial activation (165, 166). Lower GCase activity
was detected in monocytes, but not lymphocytes, from PD
patients, when compared with those from healthy subjects (167).
Importantly, such reduction in GCase activity was detected in
those from patients without GBA1 mutations. As monocyte
lineage cells contain a large number of well-developed lysosomes,
it is possible to assume that the dysfunction of lysosomal GCase
in these cells greatly influences α-synuclein metabolism.

Recently, much attention has been paid to the relationship
between GBA1 and LRRK2. An increasing number of patients
harboring both GBA1 and LRRK2mutations have been reported,
and these patients tend to develop PD at an earlier age
than carriers of LRRK2 or GBA1 mutation alone (168–170).
These reports suggest the cooperative effect of GBA1 and
LRRK2 mutations for the development of PD. In experiments
using DA neurons derived from PD patients, reduced GCase
activity was observed in cells with LRRK2 mutations, and the
inhibition of LRRK2 kinase activity restored GCase activity (171).
Furthermore, treatment of GBA1 mutant knock-in astrocytes
with LRRK2 kinase inhibitor rescued the lysosomal abnormalities
such as pH increase and the reduction in cathepsin B activity
(172). These observations collectively suggest that the functions
of LRRK2 and GCase in terms of lysosomal regulation are
closely interrelated.

PERSPECTIVES ON THE THERAPEUTIC
STRATEGIES TARGETING LYSOSOMES

As described above, ALP can be regulated by PD-associated
genes LRRK2, VPS35, ATP13A2, and GBA1 not only individually
but also cooperatively. Especially, cooperative maintenance of
lysosomes by these genes is considered as one of key mechanisms
related to PD (Figure 2). For example, lysosomal morphology
under lysosomal overload stress is maintained by LRRK2 kinase
activity (82) that is enhanced in cells harboringVPS35 pathogenic
mutation, although the mechanism of enhancement is unclear
(97). As lysosomes apparently play important roles in the
accumulation and toxicity of α-synuclein, a number of studies
have focused on enhancing ALP as a possible therapeutic strategy
for α-synucleinopathies (173).

Enhancement of lysosomal activity is one of plausible
approaches to facilitate α-synuclein degradation. Among the
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FIGURE 2 | Maintenance of lysosomes by PD gene products and its relevance to PD. Lysosomal homeostasis is regulated by several PD genes such as ATP13A2,

LRRK2, GBA, and VPS35. Deficiency in ATP13A2, a P5-type ATPase localized to the lysosomal membranes, is expected to affect lysosomal functions via

dysregulated transport of several divalent metal cations and polyamines. LRRK2 functions in the maintenance of stressed lysosomes by facilitating the exocytic

release of lysosomal contents together with its substrate Rab10 under lysosomal overload stress. LRRK2 may also negatively regulate the activity of lysosomal

hydrolase glucocerebrosidase (GCase). Decreased activity of GCase causes the accumulation of its substrate glucosylceramide (GlcCer), which stabilizes toxic

α-synuclein species. Accumulation of α-synuclein has been shown to block ER-to-Golgi trafficking of GCase, causing a further decrease in lysosomal GCase. The

retromer component VPS35 mediates the retrieval of a CMA receptor LAMP2A on endolysosomal membranes, and mutation in VPS35 leads to the enhanced

degradation of LAMP2A at the lysosomes, causing CMA defects and α-synuclein accumulation. VPS35 mutation also causes the enhancement of LRRK2 kinase

activity, which may then affect the lysosomal maintenance and GCase activity.

PD-associated gene products introduced above, GCase has
been the most well-studied as a target that contributes to
lysosomal activation and α-synuclein metabolism. It has been
shown that lysosomal GCase activity can be enhanced by
treatment with ambroxol hydrochloride, a clinically used
expectorant drug and an effective pharmacological chaperone
for GCase (174–176). Oral administration of ambroxol to
wild-type and α-synuclein transgenic mice caused the increase
in brain GCase activity as well as the reduction in the
levels of total and phosphorylated α-synuclein (177). Amboxol
administration in rats also resulted in the restoration of decreased
GCase activity and the decrease of α-synuclein pathology that
were induced by 6-hydroxydopamine (6-OHDA) treatment
(178). Additionally, oral administration of another molecular
chaperone for GCase, AT2101 (afegostat-tartrate, isofagomine),
to α-synuclein transgenic mice improved motor and non-
motor function, abolished microglial response in the substantia
nigra, and reduced the number of small α-synuclein aggregates
(179). Adeno-associated virus (AAV)-mediated overexpression

of GCase in hippocampus ameliorated α-synuclein accumulation
as well as cognitive impairment in transgenic mice expressing
mutant GCase (D409V/D409V) or A53T α-synucein (180,
181). Using the same mice models, the researchers have also
shown that the administration of a brain-penetrant inhibitor
of GlcCer synthase (GCS), GZ667161, ameliorated α-synuclein
accumulation and cognitive deficits (182). These reports
indicated that proper GlcCer metabolism is important to control
α-synuclein accumulation.

Farnesyltransferease inhibitors (FTIs) are recently attracting
significant attention as a promising lysosomal activator. It has
been reported that FTI treatment in α-synuclein transgenic mice
enhanced GCase activity and rescued pathological α-synuclein
aggregation (49). FTI treatment has also been reported to reduce
tau pathology in tauopathy model mice by activating lysosomes
(183). Importantly, one of FTIs, lonafarnib, has been approved
by FDA very recently for the treatment of Hutchinson-Gilford
progeria syndrome, a rare and fatal premature aging disease
(184). Thus, it will be of particular interest to see if such
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TABLE 1 | Strategies to enhance lysosomal activity for the modulation of PD-related phenotypes in vivo.

Target Strategy Effects Reference

GCase Oral administration of GCase

chaperones (ambroxol,

AT2101)

Reduction of total- and phospho-α-synuclein

Decrease of 6-OHDA-induced α-syn pathology

Reduction of small α-syn aggregates (AT2101)

(177)

(178)

(179)

GCase Overexpression of GCase Amelioration of α-syn accumulation and cognitive impairment in

Gba1-D409V or α-syn-A53T Tg mice

(180)

(181)

GlcCer synthase GlcCer synthase inhibitor

(GZ667161) administration

Amelioration of α-syn accumulation and cognitive impairment in

Gba1-D409V or α-syn-A53T Tg mice

(182)

Farnesyltransferase Farnesyltransferase inhibitor

(FTI) treatment

sReduction of pathological α-synuclein in Tg mice

Increase of GCase activity

Reduction of tau pathology

(49)

(183)

TFEB Overexpression of TFEB Protection of DA neurons from α-syn toxicity in Tg rats (185)

mTOR Rapamycin treatment Reduction of α-synuclein accumulation (2 weeks)

Improvement of motor function (24 weeks)

(189)

(190)

Autophagy-AMPK Trehalose treatment Reduction of insoluble α-synuclein (1 week)

Attenuation of motor deficits, degeneration and α-syn deposition (6-weeks)

(197)

(198)

Autophagy-AMPK Nilotinib treatment Reduction of α-syn levels, suppression of DA neuron loss and motor deficits

in α-syn-A53T Tg mice

(200)

CMA Overexpression of LAMP2A Complete restoration of α-syn-mediated nigrostriatal degeneration in

AAV-α-syn rats

(201)

CMA Geniposide treatment Decrease of α-syn levels and increase of LAMP2A in MPTP-treated mice (204)

therapeutic strategies are actually effective in the treatment of PD
or related neurodegenerative disorders.

Another plausible approach to activate lysosomes is the
expression of transcription factor EB (TFEB), a master
transcriptional regulator of ALP. Overexpression of TFEB has
been shown to rescue midbrain DA neurons from α-synuclein-
induced toxicity in transgenic rat models (185). In addition
to α-synuclein, overexpression of constitutively active TFEB
has been shown to reduce protein aggregates in old quiescent
neural stem cells (qNSCs) (186) and in p53-induced senescent
fibroblast cells (187). Nuclear translocation of TFEB is induced
by inhibition of mammalian target of rapamycin (mTOR) (188), a
well-known negative regulator of macroautophagy and ALP, and
therefore mTOR inhibition has also been focused as a promising
strategy. Intra-cerebral infusion of anmTOR inhibitor rapamycin
for 2 weeks in α-synuclein transgenic mice resulted in reduced
accumulation of α-synuclein (189), and long-term feeding a
rapamycin diet (∼24 weeks) improved motor performance in
A53T α-synuclein transgenic mice (190). However, due to the
side effects of rapamycin that have been noted to be problematic
with long-term use (191), the use of rapamycin in the treatment
of PD is expected to be challenging.

On the other hand, an mTOR-independent activator
of autophagy, trehalose, has been shown to activate
macroautophagy and enhance the clearance of wild-type or
mutant forms of α-synuclein (192–195). Mechanistically,
trehalose has been shown to activate macroautophagy by
inhibiting the glucose transporter SLC2A, which ultimately
leads to the activation of an energy-sensing kinase AMPK that
stimulates autophagy (196). Oral administration of trehalose
to A53T α-synuclein transgenic mice for 1 week induced
macroautophagy and reduced the level of insoluble α-synuclein

in the brain (197). Similarly, oral administration of trahalose
to AAV-based rat model expressing A53T α-synuclein for 6
weeks caused a significant attenuation in α-synuclein-mediated
motor deficits and DA neurodegeneration as well as α-synuclein
accumulation (198). In addition to trehalose, a tyrosine kinase
inhibitor nilotinib is another drug that stimulates autophagy by
activating AMPK (199); chronic administration of nilotinib for
3–6 weeks in human A53T α-synuclein transgenic mice resulted
in the decrease of α-synuclein levels, suppression of DA neuronal
loss and improvement of motor behavior (200).

Activation of the CMA pathway is considered as an alternative
strategy to increase the clearance of α-synuclein. Overexpression
of LAMP2A has been shown to upregulate CMA, decrease α-
synuclein accumulation and protect against α-synuclein toxicity
in human neuroblastoma SH-SY5Y cells, rat primary cortical
neurons, and nigral dopaminergic neurons in vivo (201).
Inhibition of signaling through retinoic acid receptor α (RARα),
a negative regulator of CMA, has also been focused; treatment
with the RARα inhibitor all-trans-retinoic acid and its synthetic
derivatives has been shown to activate CMA and protect against
oxidative stress and proteotoxicity in cells (202). A specific subset
of miRNAs that downregulate CMA has also been identified
(203), and treatment with Geniposide, a bioactive iridoid
glycoside that acts as a down-regulator of miRNAs especially for
miR-21, increased LAMP2A expression and reduced α-synuclein
levels in SH-SY5Y cells and MPTP-treated PD model mice (204).

In conclusion, a variety of strategies that aim to activate
ALP have been developed and shown to modulate α-synuclein
accumulation as well as PD-related phenotypes. The strategies
that were tested for in vivo phenotypic modulation are
summarized in Table 1. Several of the compounds used in these
strategies are now being examined in clinical trials for PD and
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related disorders [e.g., ambroxol (205) and nilotinib (206, 207),
see ClinicalTrials.gov]. These compounds or related products
with similar mechanisms is expected to be available in the
future as disease-modifying therapies. Moreover, as overviewed
above, ALP is regulated in various ways by PD gene products—
including LRRK2, VPS35, ATP13A2, GCase, and other risk
factors not mentioned in this review—and among these, not
only GCase (activator, ambroxol) but also LRRK2 (inhibitor)
are being targeted in clinical trials (208). Further clarification of
the functional relationships among PD-causing genes and their
regulation to ALP may lead to the proposal of new therapeutic
targets. It is hoped that further basic analysis of cellular and
animal models, such as those described in this review, will
accelerate the development of fundamental therapeutic agents.
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