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Scalable mapping of myelin 
and neuron density in the human 
brain with micrometer resolution
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Optical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification 
of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has 
proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering 
in brain tissues are contributed by the myelin content, neuron size and density primarily; however, 
no quantitative relationships between them have been reported, which hampers the use of OCT in 
fundamental studies of architectonic areas in the human brain and the pathological evaluations of 
diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively 
links tissue scattering to myelin content and neuron density in the human brain. We report a strong 
linear relationship between scattering coefficient and the myelin content that is retained across 
different regions of the brain. Neuronal cell body turns out to be a secondary contribution to the 
overall scattering. The optical property of OCT provides a label-free solution for quantifying volumetric 
myelin content and neuron cells in the human brain.

The cells, dendrites, and axons in the human brain are structured into cytoarchitectonic and myeloarchitectonic 
areas, based on cell type, size, density, and the density of myelin sheath surrounding the axons. Those struc-
tural components are the substrate for cognitive competencies and the specific locations of neuropathological 
processes1–3. Despite significant advances in imaging technology in the past decades, our understanding of 
human brain structures at 1–100 μm scale, in which neurons are organized into functional cohorts, is still lim-
ited. Quantitative features such as cell and myelin density have only been reported in a small number of subjects 
and over a small region of the brain4–9. Currently, Gallyas Silver stain and Nissl stain are two of the standard 
histology methods to study myelin content and Neurons in the human brain10,11. Despite their ubiquity, complex 
procedures have to be taken to apply these methods. One needs to cut the brain into tens of micron thickness 
slices and mount the slice on a glass slide, which induces inevitable tissue damage and distortions. The slices 
need to be stained and excessive pigment needs to be washed, which is labor intensive and subject to error and 
variability. Strict control of digitization such as illumination power and camera exposure time are pivotal for 
downstream quantitative analysis. After imaging individual slices, tremendous efforts are paid to reconstruct 
the volume, making it challenging for large scale study.

Optical coherence tomography (OCT) has been widely used in imaging the brain, which allows volumetric 
reconstruction of multiple cubic centimeters of tissue with mesoscopic to microscopic resolution. OCT utilizes 
the backscattered light to acquire tissue microstructural information12, which has proven to be useful in revealing 
cancerous tissue boundaries13,14, 3D vascular structures15–17, fiber tracts, and individual neurons and laminar 
structures across the cerebral cortex in rat and human brain18,19. OCT also allows quantification of tissue scatter-
ing. Fitting the OCT depth profile to a nonlinear model allows the calculation of tissue optical properties such 
as the attenuation coefficient and the back-scattering coefficient20,21. Myelin and neuron scattering have been 
described as the origins of tissue scattering. Wang et al.20 found that the scattering coefficient is higher in white 
matter and subcortical nuclei regions with highly myelinated fibers, compared to less myelinated grey matter. 
Srinivasan et al.19 found that myelinated fiber tracts are highly scattering while cell bodies have a lower scattering 
coefficient. Despite these investigations, quantitative correlations between tissue optical properties and these 
structural components have yet to be investigated.
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Here, we report our work on quantifying the relationship between tissue optical properties and myelin content 
and neuron density in the human brain using automated serial sectioning OCT22. We established a computational 
model of the scattering coefficient with myelin content and cell density as the origins of scattering. By using 
the ground truth of Gallyas Silver stain and Nissl stain, we showed that the scattering coefficient has a strong 
linear relationship with the myelin content across different regions of the human brain. We also found that in 
grey matter, the cell body scattering serves as a secondary contribution to the overall tissue scattering and that 
the scattering coefficient has a moderate correlation with cell density. Our study provides a novel method for 
measuring myelin content and neuron density of the human brain tissues in a scalable sample size. The study 
also has important implications in evaluating brain diseases. As demyelination and neuron loss are two of 
the pathological hallmarks in neurodegenerative diseases such as Alzheimer’s disease and Chronic Traumatic 
Encephalopathy (CTE)23–28, characterization of the optical property in diseased and normal brains will advance 
our understanding of pathological evolutions and their impact on complex functions.

Results
Optical property maps resembling quantitative histology.  Figure 1 shows the histology and optical 
property maps for somatosensory cortex. Gallyas Silver stain (Fig. 1a) exhibits contrast among the supragranu-
lar layers which consist of pyramidal neurons, numerous stellate neurons and sparse axons (indicated by blue 
region), infragranular layers with large pyramidal neurons and axon bundles that connect to the subcortical 
structures (green region), and the white matter (red region), which mainly consists of highly myelinated axon 
bundles and glial cells. The Gallyas Optical Density (OD) map (Fig. 1b) demonstrates that the supragranular 
layers have the lowest OD value, followed by the infragranular layers which have intermediate amount of myeli-
nated axon bundles. The white matter exhibits the highest OD value due to the highly myelinated and densely 
packed axonal bundles. In addition, smaller features can be seen in the Gallyas OD map as well, such as the thin 
band of denser myelin content at the upper right region of layer IV (red arrow), possibly due to the high-density 
fibers in the outer band of Baillarger29. The Nissl stain and Cellular Occupation per Area (COPA) map (Fig. 1c,d) 
show contrast for cell bodies. The external granular layer (layer II) and the external pyramidal layer (layer III) 
exhibit the highest COPA value (red region), especially in the lower left part of the sample (black arrow), prob-
ably due to the higher neuron density. The internal granular layer (layer IV), internal pyramidal layer (layer V), 
and the fusiform layer (layer VI) present alternating contrasts (small green arrows). The white matter generally 
exhibits a low value of COPA, which is mainly attributed to the glia cells.

The µs map (Fig. 1e) strongly resembles the Gallyas OD map. The white matter shows highest µs because of 
the highly scattering myelin sheath. As the sparse axon branches into the cortex, µs decreases accordingly. The 
supragranular layer shows the lowest µs , due to the lack of myelin content. In addition, the thin band feature at 
the upper right region (red arrow) found in Gallyas OD map can also be seen in the µs map. Apart from that, 
the infragranular layers (IV, V, VI) show additional laminar structures (small green arrows) similar to the COPA 
map but not in Gallyas OD map. Overall, the µs map seems to be strongly correlated with myelin content and 
slightly modulated by the neuron scattering. The µ′

b map (Fig. 1f) offers another feature dimension to aid in 
discriminating tissue types. It is noticeable that µ′

b varies within the white matter, possibly highlighting fibers 
oriented within the image plane (green arrow). This is possibly because the fibers oriented within the imaging 
plane direct more back-scattered photons to the detectors than the fibers oriented through the imaging plane. 
Consequently, the µ′

b map offers potential information about fiber orientation. The ratio of µ′

b/µs map (Fig. 1g) 

Figure 1.   Histology and OCT optical property maps of the human somatosensory cortex. (a) Gallyas Silver 
stain shows contrast for myelin content. Red region: white matter. Green region: infragranular layers consist 
of layer IV, V and VI. Blue region: supragranular layers consist of layer I, II and III. Red arrow indicates a thin 
band of higher myelin content inside layer IV. (b) Optical density (OD) of Gallyas silver stain. The red arrow 
highlights the myelinated band inside the layer IV. (c,d) Nissl statin and COPA show contrast for cell bodies. 
The red region indicates the layer II and III with highest COPA value. The big black arrow highlights the high 
neuron density region. The small green arrows highlight the IV, V, VI layers within the infragranular layer 
with alternating contrasts. (e–g) Optical properties derived from the OCT images. (e) µs map. Small green 
arrows highlight the alternating contrasts in the infragranular layers similar to that in the COPA map, and the 
big red arrow indicates the myelinated band seen in Gallyas OD map. (f) µ′

b map. Green arrow highlights the 
fibers with high intensity, possibly oriented within the imaging plane. (g) Ratio map of µ′

b/µs . Green arrow 
highlights the fibers with high intensity, similar to that in the µ′

b map. The Blue arrow highlights the region with 
high signals in the supragranular layers. (h) OCT average intensity projection (AIP) image.
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provides another useful feature to distinguish structures in the brain. Similar to the µ′

b map, the ratio of µ′

b/µs 
map also highlights the region with fibers oriented within the imaging plane (green arrow). In addition, the 
ratio of µ′

b/µs map also highlights region of higher value in the superficial layers indicated by the blue arrow, 
the cause of such contrast requires further investigation. The AIP image (Fig. 1h) is a nonlinear function of the 
µs and µb maps, which provides an overall view of the tissue structure for reference.

The relationship of scattering coefficient and myelin content.  The similarity between the µs and 
Gallyas OD maps indicates that myelin is a crucial factor contributing to the brain tissue scattering. To quanti-
tatively inspect the relationship, we plot µs versus Gallyas OD in selective ROIs, which covered all the laminar 
layers as well as the white matter for the five brain regions. The scatter plots indicate a strong linear relationship 
between scattering coefficient and Gallyas OD, which is consistent with the Mie theory30. Therefore, we fit the 
data with a linear model and presented the results in Fig. 2a–e.

Remarkably, the five samples share similar linear relationship as indicated by the slope parameter ( k1 ) of 
the fitting results, although individual samples have distinct patterns of µs and Gallyas OD distributions. In the 
cerebellum (Fig. 2a), data points from the white matter, granular layer and molecular layer form three discrete 
clusters. However, they all follow a shared linear function ( k1 = 5.79) in which higher Gallyas OD is associated 
with higher µs . Similar patterns are observed in the somatosensory cortex (Fig. 2c), where the six cortical lay-
ers and the white matter group into three clusters and share a co-linear relationship ( k1 = 7.48). Supragranular 
layers (layer I, II and III) form a cluster with the lowest Gallyas OD and µs , infragranular layers (layer IV, V and 
VI) form a cluster with intermediate values, and the white matter cluster exhibits the highest values. The other 
two cortical regions of SupFrontal and BA21 (Fig. 2d–e) only present two discrete clusters. The supragranular 
layers and infragranular layers in both regions fall into a single cluster with low Gallyas OD and µs . The white 
matter tracts show high values close to those of somatosensory cortex. Interestingly, the SupFrontal displays a 
within-cluster trend in both grey matter and white matter, suggesting a myelin gradient across cortical layers. 
Regardless, the slope parameters ( k1 = 8.57 for SupFrontal and k1 = 6.24 for BA21) demonstrate a similar rela-
tionship as those revealed in the cerebellum and the somatosensory cortex. In the hippocampus (Fig. 2b), due 
to complex anatomical structures, data points from different layers form a continuous distribution. For example, 
the fimbria, white matter and fornix show gradually increasing Gallyas OD and µs values, while having large 
overlaps with the CA4 and dentate gyrus. Despite the different distribution pattern from other tissues, the fitting 
result is comparable with a slope parameter k1 = 8.26.

An extraordinary linear relationship between Gallyas OD and µs is revealed in all the samples (P < 10–10) with 
high correlation coefficients (PCC > 0.85 for all brain regions, see Fig. 3b). The slope between Gallyas OD and µs 
falls in a narrow range of 5.8 to 8.6. Slope variations are possibly due to different staining backgrounds, as well 

Figure 2.   (a–e) Linear regression of µs and Gallyas OD for 5 different regions in human brain samples. Red 
dots: white matter data points. Blue dots: grey matter data points. The inset figure shows the Gallyas OD map 
of the corresponding sample. The Red circles in the inset figure represent the ROIs in the white matter. The 
blue, green and yellow circles represent the ROIs in different layers of the grey matter, for example, the green 
ROIs in (c) represent infragranular layers and the blue ROIs represent the supragranular layers. (a) Cerebellum, 
(b) hippocampus, (c) somatosensory cortex, (d) superior frontal cortex (SupFrontal), (e) middle temporal 
Brodmann area 21(BA21), (f) linear regression of all data points from 5 samples. The six panels have the same 
range on the X and Y axes for easier comparison.
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as other scattering factors such as neuronal cell bodies. In Fig. 2f we combined all the data from the 5 samples 
and fit a single linear function, which reveals an average slope of 7.2 (correlation coefficient = 0.936, P < 10–60). 
These results provide evidence that the linear relationship between optical scattering and myelin content holds in 
different regions of the brain. Therefore, scattering coefficient may potentially be used as an objective measure-
ment of the myelin content in the human brain.

The relationship of scattering coefficient and joint myelin content and neuron density.  The 
results of the linear model in session 2.2 suggest that myelin is a strong predictor of scattering coefficient in both 
grey and white matter of the human brain. In the cortex, neuronal cell body is another factor that should be 
taken into consideration when interpreting the scattering coefficient of the brain tissue. In this section, we first 
re-evaluate the relationship of µs and Gallyas OD by including the factor of COPA. Next, we quantify the cor-
relation between µs and COPA to examine the cell body contribution in scattering.

Figure 3a compares the slopes for Gallyas OD ( k1 ) in univariate regression where only Gallyas OD was 
considered, and multivariate regression where COPA was included as well. We found that k1 values were highly 
comparable between these two models with differences less than 10% in all brain regions Besides, the PCC 
of Gallyas OD in the multivariate regression (Fig. 2d) was found higher than 0.9 for four out of five samples 
(P < 10–10 for all), with a slightly lower PCC of 0.6 in the hippocampus. Compared to the univariate regression, 
the partial correlation coefficient in the multivariate regression has only minor difference in most samples. The 
consistency of k1 in the two analyses reinforces that the linear relationship between µs and Gallyas OD largely 
preserves even when cell body scattering is taken into account. The high PCC in multivariate model consolidate 
the finding in session 2.2 that µs is strongly correlated with myelin content across brain regions. In addition, 
when evaluating the R2 of Pearson’s correlation and NRMSE (Fig. 3c,d) for the regression, we found that adding 
COPA into the model only results in small improvements, which indicates that myelin content is a dominant 
factor to scattering coefficient.

Figure 4 elaborates the correlation between µs and COPA in the multivariate regression model. The slope for 
COPA ( k2 ) exhibits large variations across the 5 different samples (Fig. 4a). In somatosensory cortex, Supfrontal 
and BA21, a positive k2 was found, while in cerebellum and hippocampus, k2 was negative. Two-sided t-test 
reveals a significant positive correlation only in the somatosensory region (P < 0.01, PCC = 0.45). The correlations 

Figure 3.   Multivariate regression of µs vs Gallyas OD and COPA (black bars), compared against univariate 
regression where only Gallyas OD is considered (grey bars). (a) Gallyas OD slope k1 of 5 brain regions 
resulted from univariate regression and multivariate regression. From left to right: cerebellum, hippocampus, 
somatosensory, SupFrontal and BA21. (b) Correlation coefficient with Gallyas OD in univariate and partial 
correlation coefficient (PCC) in multivariate regression. (c) R2 of Pearson’s correlation in univariate and 
multivariate regressions. (d) Normalized root mean square error (NRMSE) of univariate and multivariate 
regressions.
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in SupFrontal and BA21 are moderate (Fig. 4b), but further statistical test fails to find a significance (P = 0.11 for 
SupFrontal and P = 0.35 for BA21). These results suggested that the neuronal scattering is a small contribution to 
the overall scattering coefficient and the effect varies across the brain. The negative correlation in the cerebellum 
and hippocampus was counterintuitive. However, it should be noted that the size of neurons in densely packed 
layers such as the granular cells in the cerebellum and the dentate gyrus in the hippocampus is much smaller 
than that of the other layers, which leads to a reduced scattering coefficient. The intercept in the multivariate 
regression exhibits large variation as well (Fig. 4c). As the intercept in the regression encompasses the unmod-
eled components to the tissue scattering, such as the extracellular matrix, the small intercepts in hippocampus, 
somatosensory, and BA21 indicate a negligible contribution from these remaining components. However, in 
cerebellum and SupFrontal cortex, we found a significant intercept (P < 0.001), indicating substantial scattering 
components remained. Overall, the fitting results for COPA in the model are coherent with findings in session 
2.2 and 2.3 that µs is dominant by the myelin factor. Neuronal cell body, however, only plays a secondary con-
tribution to tissue scattering in the human brain.

Scattering coefficient differentiating neocortex from allocortex.  As shown in Fig.  2, µs and 
Gallyas OD exhibit distinctive cross-layer patterns among the 5 samples. As both metrics are strong predictors 
of myelin content, we examined the mean µs and Gallyas OD in the white matter (red ROIs and red dots on 
scatter plots of Fig. 2) for all the samples. We found that µs distribution exhibits a similar pattern as in Gallyas 
OD (Fig.  5a,b). Hippocampus and cerebellum have significantly lower Gallyas OD and µs compared to the 
other three samples in the cortex, indicating a lower myelin content in the two regions of the brain. Anatomi-
cally, cerebellum and hippocampus belong to the allocortex while somatosensory, SupFrontal and BA21 belong 
to the neocortex. The two types of cortices possess different developmental trajectories of myelination (Miller 
et al.36). The mean COPA in the grey matter (blue dots on scatter plots of Fig. 2) of the allocortex is significantly 
higher than that of the neocortex (Fig. 5c). Our results suggest that in addition to histology, the optical property 
obtained by OCT serves as a viable tool to differentiate the neocortex from the allocortex, with a distinction 
resulting from underlying myelin content.

The relationship of back scattering and joint myelin content and neuron density.  We analyzed 
the relationships of µ′

b and µ′

b/µs with respect to the COPA and Gallyas OD, respectively. For cerebellum, 
somatosensory cortex, BA21 and SupFrontal, there is a strong linear relationship between µ′

b and Gallyas OD 
(Supplemental Figs. 5, 8), which is likely a result of the strong dependency between  µs and µ′

b . However, there 
is no clear relationship between the ratio map of µ′

b/µs and Gallyas OD or COPA (Supplemental Figs. 6, 7).

Figure 4.   Evaluation of µs with COPA and remaining factors in multivariate regression. (a) COPA slope k2 in 
the five brain regions. Regions with stars indicate significant k2 . (b) Partial correlation coefficient of COPA with 
respect to µs . (c) Intercept b of the multivariate regression in the five brain regions.

Figure 5.   (a) Average µs , (b) average Gallyas OD in white matter and (c) average COPA in grey matter 
differentiating brain regions. The error bars represent the standard error from the ROIs.
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Discussion and conclusions
Previous studies have demonstrated the ability of OCT to differentiate cortical laminar structures and to identify 
fiber tracts and subcortical nuclei20,31. Here, by using serial sectioning OCT, we have quantitatively investigated 
the contribution of structural components to the optical property in human brain samples and established a 
model of the scattering coefficient with regard to myelin content and neuron density. We have found that the 
scattering coefficient is strongly correlated with the myelin content (P < 10–10, PCC > 0.85) and that linear rela-
tionship is retained across different regions of the brain. The domination of myelin content in tissue scattering 
is reasonable considering the high index of refraction of myelin (n = 1.47) with respect to the surrounding aque-
ous environment (n = 1.35).  The results from our study suggest that the optical property can be used a robust 
predictor for myelin content of the human brain. This strong correlation between scattering coefficient and 
myelin content has important implications in neurodegenerative diseases. It has been shown that the breakdown 
of myelin sheath is an indication of pathological abnormality and can result from several neurodegenerative 
diseases such as multiple sclerosis32–34, Alzheimer’s disease25,35 and chronic traumatic encephalopathy23,24. The 
quantitative measurement of myelin content could potentially be useful in characterizing the degree of demy-
elination in pathological brain samples. In addition, we have shown that scattering coefficient enabled the dif-
ferentiation of various brain regions, such as neocortex and allocortex that have distinct myelination trajectories 
in development36. Previous studies have revealed that the degree of myelination and the order of maturation in 
the brain is associated with the vulnerability to psychiatric disorders37–39. Systematic characterization of myelina-
tion in the brain may provide a new avenue to map out the regional vulnerability to a range of brain disorders.

Neuronal cell body turns out to be a secondary contribution to the overall scattering, and the correlation var-
ies across different brain regions. In somatosensory cortex we found a significantly positive correlation (P < 0.01), 
indicating a strong laminar structure with differed neuron density and size, while in other brain regions we 
observed negative or moderately positive correlations. The lack of major contribution made by cell bodies to scat-
tering in brain tissues have been reported in previous studies. Kalashnikov et al.40 found light scattering from the 
neuron body contributes less than 10% of the observed backscattering signal when using cultured Hela neurons. 
Besides, Magnain et al.41 found out that myelin density and fiber orientation could disrupt the identification of 
neuron cell bodies by using an optical coherence microscopy (OCM). As a result, the weak correlation revealed 
by the current linear model is not unexpected. Indeed, most of the OCT studies on brain cancer samples have 
reported difficulties in differentiating cancer of various stages from normal grey matter merely by scattering 
coefficient42,43. Our studies might provide an explanation for those challenges because cell body contribution is 
only a minor factor for light scattering in the brain. Further improvement of our scattering model may increase 
the sensitivity to neuron scattering. In our model, we assumed the same k1 and intercept between the grey matter 
and white matter (Fig. 2 and Supplementary Fig. 9). However, as the refractive index of the extracellular space 
in grey and white matter could be different, allowing parameter tuning might result in a better fitting. When 
formulating the relationship between scattering coefficient and COPA, we assumed the phase function Qs to 
be constant for all neuron bodies (Eq. 4, “Method”), which bears a drawback if there’s a large variation in the 
neuron size. Considering the dependency between phase function and scatterer size, a nonlinear model might 
improve the performance for correlating scattering coefficient with neuronal cell bodies.

Compared to histological methods, serial sectioning OCT offers a new window for quantifying myeloarchi-
tecture and neuroarchitecture in human brain. Histological stains have been standard methods for studying 
myelin content and cell density. However, the outcome of histology heavily depends on the concentration of the 
contrast agent, the pH and temperature, and bleaching procedure for undesired pigment, which may vary across 
studies. Histology also requires a series of manual processes that are prone to human errors. Consequently, vari-
ations from slice to slice are inevitable44. In addition, sample must be cut into thin slices before being stained and 
imaged, which introduces tissue damage and distortions that are challenging to correct during 3D reconstruction. 
Serial sectioning OCT, on the contrary, uses intrinsic optical properties of tissue that does not depend on external 
contrast agents. The scattering coefficient is insensitive to system setup, incident power, and acquisition param-
eters. In volumetric imaging, the images are acquired on block-face prior to slicing, avoiding the vast majority 
of distortions incurred by tissue cutting and mounting. As a result, serial sectioning OCT generates images with 
consistent qualities across slices and samples. The technique, being automated and robust, is favorable to expand 
to larger sample size. Thus, serial sectioning OCT provides an attractive solution for quantifying volumetric 
myelin content and neuron cells in the human brain.

A few future directions in this field can be pointed out. First, another optical property named birefrin-
gence may directly relate to myelin content in the brain45. With polarization-sensitive OCT, we can measure the 
birefringence of myelinated fibers in addition to the scattering coefficient46. Inclusion of both parameters will 
enable a model for predicting and synthesizing myelin content in the human brain. Second, the local index of 
refraction may serve as another optical property to quantify neuronal characteristics19. Besides, high-resolution 
OCM has proven to be able to visualize neurons in brain tissue. Magnain et al.41 used OCM to identify neurons 
that were validated by co-registered Nissl stain images in human entorhinal cortex. In addition to OCT, other 
imaging techniques such as two photon microscopy (2PM) could be useful to quantify neuron density as well. 
With elongated depth of profile, 2PM is able to cover a volume of tissue with high volume rate and generates 
an  AIP of autofluorescence signals47–50. Hence, one of the future directions is to use multimodal techniques to 
obtain accurate measurement of cell and myelin content in scalable human brain samples. Lastly, the scattering 
coefficient measurement and correlation with myelin content could potentially provide valuable information 
in in vivo applications such as imaging guided neurosurgery. In a few related studies, Ben Arous et al.51 have 
applied deep optical coherence microscopy in post-surgery mouse brain imaging for fiber tracking. Almasian 
et al.52 have used the attenuation coefficient extracted from OCT to differentiate normal and glioma tissue during 
human brain surgery. OCT imaging of fresh brain tissues has revealed the intricate architecture of the underlying 
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microstructure18,53. Future investigation of quantitative OCT with fast fitting algorithm will allow us to measure 
scattering coefficients of the brain in real time that has great potential in neurosurgical and neuromodulation 
guidance.

Several empirical considerations ought to be clarified in this study. First, in the effort of correlating to histol-
ogy, we thoroughly examined the quality of histological images and used the slices that have consistent staining 
intensity as ground truth. Yet there might be minor variations of staining that were not normalized among dif-
ferent samples, which could be one of the reasons for the variations of the slope and intercept values observed in 
the fitting results. Second, we formulated COPA based on the assumption that neuron bodies do not overlap on 
Nissl images, which may result in an underestimation in regions with high neuron populations. As an alterna-
tive, we also calculated the OD of Nissl stain and correlated it with the optical properties. The results were not 
significantly different from using COPA. Third, to obtain COPA we used an empirical thresholding method to 
segment the neuron body while excluding the smaller glia cells, the accuracy of which may depend on brain 
regions and staining quality. In the future, a deep learning based classifier may improve the segmentation9. 
Lastly, we acknowledge that there are more sources of scatterers in addition to myelin content and neuron that 
contribute to the tissue scattering. In this study, we used a simplified two-regressor linear model to include only 
myelin content and neuron and left the other factors as residuals of the model. Although our results showed 
strong evidence that myelin content is a major contributor, the intercepts that indicated the secondary source 
contribution varied with brain regions. The regions with larger secondary contributions such as the cerebellum or 
SupFrontal cortex will benefit from a model that accounted for contributions from other scattering components. 
A more complete model incorporating multiple variables into the scattering model, including contributions from 
protein, lipid bubbles, fiber structures, and extracellular space is a promising future direction to further improve 
accuracy. This type of multivariate Mie scattering model can be built by integrating refractive index, size and 
concentration of the various components into the existing model. For example, the water content of the fibers 
is associated with fiber density. Scattering changes when light travels from myelin sheath to water or vice versa 
where the index of refraction changes. Alternation of water content due to pathology changes the local density 
of axonal pack and may reflect on scattering coefficient. In addition, the geometry of fibers including the ratio 
of myelin sheath wrapping and thickness with respect to the total axonal diameter may affect the scattering coef-
ficient. Further investigation of a Mie scattering model incorporating the layout of cylindrical scatterers can help 
to better understand this mechanism54. The orientation of fibers may affect the backscattering coefficient, which 
could be simulated by constructing the scattering model with off-axis fiber bundles. The release or accumulation 
of proteins, lipids, and other molecules may contribute to the overall scattering coefficient. Precise quantification 
of molecular concentration, index of refraction, and size is needed to build a molecule-specific Mie scattering 
model, which may be obtained by histological staining and super-resolution imaging44,55,56.

In conclusion, we have demonstrated the use of optical scattering obtained by serial sectioning OCT to 
measure myelin content and neuron density of human brain tissues. The scattering coefficient has a strong 
linear relationship with the myelin content across different brain regions, which promotes a robust label-free 
measurement for myelin with substantially reduced labor efforts comparing to traditional histology. The scat-
tering coefficient was also moderately modulated by the neuronal cell bodies, the precise measurement of which 
requires complementary quantification or imaging techniques. Our approach has great potentials for enabling 
large-scale investigation of myeloarchitecture in various brain regions as well as studies of neurodegenerative 
processes in pathological brain sample.

Method
Sample.  Two human brains (mean age 53.5 ± 12.0 year old, 1 male and 1 female) were obtained from the 
Massachusetts General Hospital Autopsy Suite. The brains were neurologically normal without a previous diag-
nosis of neurological deficits. The tissues were fixed by immersion in 10% formalin for at least two months57. The 
post-mortem interval did not exceed 24 h. The samples in the study consisted of five anatomical regions from 
the two human brains, including the cerebellum, hippocampus, somatosensory cortex, superior frontal cortex, 
and middle temporal area 21. Each sample was embedded in 4% melted oxidized agarose and cross-linked with 
a borohydride-borate solution for block-face imaging58.

Serial sectioning OCT system.  The serial sectioning OCT system was previously described22. Briefly, 
the system consists of a spectral-domain OCT system to measure the optical properties of the sample as well 
as a customized vibratome for tissue slicing. The light source was a broadband super-luminescent diode with a 
center wavelength of 1300 nm and full width half maximum bandwidth of 170 nm, yielding an axial resolution 
of 3.5 μm in tissue. The spectrometer consisted of a 1024-pixel InGaAs line scan camera operating at an A-line 
rate of 47 kHz. The total imaging depth was estimated to be 1.5 mm. The sample arm used a 10 × water immer-
sion objective (Zeiss, N-Achroplan), yielding a lateral resolution of 3.5 μm. The volumetric imaging covered a 
field of view (FOV) of 1.5 × 1.5 × 1.5 mm3. The voxel size, which was defined by the stepping size of galvo mirror 
scanning laterally and obtained by the total imaging depth divided by the number of pixels axially, was 2.9 μm 
isotropic. The sensitivity of the system was 105 dB. Consecutive image tiles were obtained to cover the entire 
area of the sample and a 50% overlap was used between adjacent tiles. A customized vibratome was mounted 
adjacent to the OCT to cut off a 50 μm thick slice of the tissue upon completion of the full area scan. The slices 
were retrieved for histological staining. It is noted that the comparison of OCT and histology images in this 
study was not conducted on the same slices but slices nearby, as OCT slices have been preserved for other uses.

Quantification of optical properties.  Optical property maps of the five samples are estimated from the 
data, by using a nonlinear model to fit the OCT depth profile as described in20,59. We used the Beer-Lambert 
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Law to model light propagation in tissue, which is a negative exponential function parameterized by scattering 
coefficient µs and back-scattering coefficient µb (Eq. 1). The OCT depth profile is also confined by a confocal 
function h(z) imposed by the objective lens and a system sensitivity function H(z)20 imposed by the spectrom-
eter as below:

Note that µ′

b is the relative back-scattering coefficient, which includes OCT system parameters such as power 
and spectrometer configuration and efficiency. Light absorption is ignored due to its small contribution in the 
near-infrared spectral range. We used a simplified Gaussian PSF function, which depends on the focus depth Zf  
and the effective Rayleigh range ZRs of the objective:

We fit the measured OCT profile using a nonlinear optimization tool with the least-square error in Matlab60 
to obtain the optimal solutions for parameters of µs and µb . In general, the fitting process tries to find the optimal 
value for four parameters:µs , µ′

b , Zf  and ZRs for each A-line. Without any fitting constraints there is a strong 
inter-dependency between these parameters20. To reduce this inter-dependency and to make the fitting more 
stable and robust, we spatially parameterized the Zf  and ZRs following the procedure described in Yang et al. 2020. 
The Zf  and ZRs values were pre-calibrated using an Intralipid phantom with a comparable scattering coefficient 
as the tissue sample. As a result, we have reduced the number of unknowns in our fitting model to two:  µs and 
µ′

b . To reduce the noise and errors in estimating these optical properties, the OCT A-lines were averaged over a 
30 × 30 μm2 area before fitting. A ratio map of µ′

b/µs was obtained afterward.
In reconstruction, we used ImageJ to stitch the AIP of each OCT image tile to generate the XY coordinates 

for overlapping tiles. The tiles were then blended using a customized Matlab code to remove artifacts caused 
by intensity non-uniformity across the field of view. The down-sampled (30 × 30 μm2, same as the volumetric 
averaging in fitting) stitching coordinates were used to stitch the µs and µ′

b results from previous fitting steps.

Quantitative histological analysis.  Selected slices from the serial block-face scanning were processed 
with Nissl stain61,62 for neuron body identification and Gallyas stain10,36 for characterizing myelin content. The 
stained slices were digitized by an 80i Nikon Microscope (Micro- video Instruments, Avon, Massachusetts) with 
a 4 × objective. The pixel size was 1.9 μm.

The Gallyas stain images were normalized in each channel and converted to mean Optical Density (OD)44 
to directly represent the myelin content:

where I is the RGB vector of the histology image with Ii representing the intensity of the red, green, or blue chan-
nel, respectively. Each RGB channel was normalized separately before converting to OD in log scale. Then the 
average of three channels was used as the mean OD that represents the myelin content. Based on Mie scattering 
theory, assuming the same myelin architecture generating a constant phase function in the brain, scattering 
coefficient is expected to be proportional to myelin density which is represented by Gallyas OD.

For the cellular scattering, according to Mie theory63, the scattering of sphere particles is related to the phase 
function Qs , the number density of the sphere Ns , and the cross-section area of the sphere As:

Assuming that the phase function Qs is constant for all neuron bodies, the scattering coefficient becomes pro-
portional to the product of cellular density Ns and cellular cross-sectional area As , which we define as the cellular 
occupation per area (COPA). We constructed the COPA map in Nissl stain images by calculating the total area 
occupied by cell bodies and divided it by the total area of the tissue in a small neighborhood. The computation 
was conducted in two steps: (1) we segmented the cell bodies in the Nissl stain image using a threshold-based 
method, which converts the pixels values inside cell body to be 1 and the others in extracellular space to be 0; 
(2) by calculating the ratio of number of pixels with value equal to 1 to the total number of pixels within a small 
neighborhood (a 200 × 200 µm box), we obtained the percentage of that local area occupied by cell bodies. The 
box moved across the entire image to form the COPA map.

Generalized linear model.  Taking both myelin and neuronal cell bodies into account, we examined the 
quantitative relationship between the optical properties and the Gallyas OD and COPA to reveal the sources of 
tissue scattering. OCT block-face and the histology images were acquired on slices from the same brain region 
that were a few millimeters apart. We manually drew 60 to 90 Region of Interests (ROIs) on corresponding slices 
from both modalities for linear regression analysis. The area of ROIs ranges from 200 to 500 pixels. In larger 
areas with more uniform intensity, such as the grey matter in hippocampus, the area of ROIs were expanded to 
a few thousand pixels to get more precise measurement. The total number of ROIs depends on the number of 
distinct cortical layers or subdivisions. On average we drew 20 evenly distributed ROIs for each layer in the µs , 
Gallyas OD and COPA maps, respectively.

(1)R(z) = µ′

b · exp(−2µsz) · h(z) ·H(z)

(2)h(z) =
1

1+ (
z−Zf
ZRs

)
2

(3)OD =

−1

3

∑

i=R,G,B

log10(Ii/255)

(4)µs = QsNsAs
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We built a multivariate, generalized linear model (GLM) for µs to include Gallyas OD and COPA as predictors. 
In the grey matter, we included both Gallyas OD and COPA as contributing factors, whereas in white matter, we 
only considered Gallyas OD since contribution from neuronal cell bodies was neglectable. The GLM relationship 
can be mathematically described as,

where the matrix X contains the measured Gallyas OD and COPA values and β contains the linear coefficients 
that will be estimated:

where n is total number of ROIs, k1 is the slope corresponding to the myelin contribution to the tissue scatter-
ing, k2 is the slope corresponding to the neuronal contribution to the tissue scattering, and b is the contribution 
from other components, such as scattering from the extracellular matrix. The coefficients were calculated by a 
pseudoinverse solution as,

We used R2 of Pearson’s correlation and Normalized Root Mean Square Error (NRMSE) for examining the 
goodness of the fitting. Partial correlation coefficient (PCC), two sided t-tests and multiple comparisons were 
conducted to reveal the significance of the contributions from Gallyas OD and COPA, respectively.

It should be noted that we set COPA in the white matter of all tissue types to be 0 before regression, as there 
are only glia cells and a few interstitial neurons64 in the white matter, which won’t contribute to scattering signifi-
cantly. Leaving it unchanged, however, will bias the regression. In the multivariable regression, we also assumed 
that k1 and b to be the same in grey and white matter, as we assume that the contribution from myelin and other 
extracellular components behave similarly, and thus use the same coefficients k1 and b to describe them jointly.

Lastly, we also investigated the origins of contrast in the µ′

b map and ratio of µ′

b/µs . Four linear models were 
used, namely, fitting µ′

b as a linear function of Gallyas OD and COPA, respectively, and fitting the ratio of µ′

b/µs 
as a linear function of Gallyas OD and COPA, respectively. Due to the lack of strong correlation of µ′

b or ratio 
of µ′

b/µs with respect to Gallyas OD and COPA (see session 2.4 and supplementary figures), no multivariate 
investigation was further performed.

Data availability
The datasets and analysis code generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.
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