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Autism spectrum disorder (ASD) is a neurodevelopmental disorder that lacks
clear biological biomarkers. Existing diagnostic methods focus on behavioral and
performance characteristics, which complicates the diagnosis of patients younger than
3 years-old. The purpose of this study is to characterize metabolic features of ASD
that could be used to identify potential biomarkers for diagnosis and exploration of
ASD etiology. We used gas chromatography-mass spectrometry (GC/MS) to evaluate
major metabolic fluctuations in 76 organic acids present in urine from 156 children
with ASD and from 64 non-autistic children. Three algorithms, Partial Least Squares-
Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), and eXtreme Gradient
Boosting (XGBoost), were used to develop models to distinguish ASD from typically
developing (TD) children and to detect potential biomarkers. In an independent testing
set, full model of XGBoost with all 76 acids achieved an AUR of 0.94, while reduced
model with top 20 acids discovered by voting from these three algorithms achieved
0.93 and represent a good collection of potential ASD biomarkers. In summary, urine
organic acids detection with GC/MS combined with XGBoost algorithm could represent
a novel and accurate strategy for diagnosis of autism and the discovered potential
biomarkers could be valuable for future research on the pathogenesis of autism and
possible interventions.

Keywords: autism spectrum disorder, biomarker, urine organic acids, Chinese, metabolomics, diagnosis

INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disorder characterized by impaired
communication and social behavior, as well as displays of restricted and repetitive behavior (Keller
and Persico, 2003). Although the pathogenesis of autism is uncertain, it is considered to involve an
interaction between multiple genetic and environmental risk factors that are present in the few first
years of life (Nair, 2000).

The diagnostic criteria for ASD require that symptoms become apparent in early childhood,
typically before age three (Dieme et al., 2015). Autism diagnosis currently relies on scales and
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professional surveyors using behavioral methods. For instance,
the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-4) is the 1994 version of the American
Psychiatric Association (APA) that provides a classification
and diagnostic tool for ASD. Early identification and early
intervention of autistic children are recognized as two of the
most crucial factors for improving outcomes for individuals
affected by ASD (Dawson et al., 2010, 2012; Warren et al., 2011;
Zwaigenbaum et al., 2013; Klin et al., 2015). However, due to the
challenges of early ASD diagnosis many older children miss the
best intervention period.

Metabolic abnormalities associated with ASD include:
phenylketonuria (PKU), disorders in purine metabolism, folate
deficiency in brain development, succinic semialdehyde dehydro-
genase deficiency, Smith-Lemli-Opitz syndrome (SLOS), organic
acidurias (e.g., pyridoxine dependency, 3-methylcrotonyl-
CoA carboxylase deficiency, and propionic acidemia), and
mitochondrial disorders (Manzi et al., 2008; Zecavati and
Spence, 2009; Ghaziuddin and Alowain, 2013). The presence of
psychiatric, behavioral, and developmental regression together
with metabolic disorders in autism (Wanders et al., 1999; Wang
et al., 1999; Cox et al., 2001; Kompare and Rizzo, 2008) requires
studies concerning the relationship between these pathological
states and whether metabolic products of amino acid and
lipid synthesis in urine or blood could be autism biomarkers
(Schain and Freedman, 1961; Hanley et al., 1977; Bull et al.,
2003; Kałużna-Czaplińska, 2011). After glomerular filtration and
tubular condensation, the macromolecular proteins in the blood
can be filtered and the urine becomes a concentrated organic
acid. The natural physiological role of the kidney makes urine
the best specimen for analyzing organic acid metabolism.

Several previous studies focused on organic acid biomarkers
in autistic patients. Emond et al. (2013) found that levels
of citrate, succinate, and glycolate were significantly increased
in the urine sample of ASD children, whereas Mavel et al.
(2013) found that β-alanine, glycine, taurine, and succinic
acid levels were increased in the urine sample. Another study
indicated that around 10 metabolites significantly differed
between an autism group and the control group (Kałużna-
Czaplińska, 2011). Some organic acids were highlighted by
multiple studies, while others were seen only in a specific
study. In general, microbial metabolites, niacin metabolism,
mitochondria-related metabolites, and amino acid metabolites
are the most common perturbations in autistic children. These
results illustrates the complexity of metabolic disorders and
etiology in autistic patients, leading to the exploration of building
models for multivariate analysis. A metabolomics study of
urine in 22 ASD children and 24 controls built an orthogonal
partial least-squares discriminant analysis (OPLS-DA) model
(AUROC = 0.91) (Hu, 2003), another one based on 14 ASD
and 10 controls obtained a Principal Component Analysis (PCA)
model (AUROC = 0.775) and identified a set of organic acids as
potential biomarkers (Kałużna-Czaplińska, 2011). These studies
do have some limitations, such as different races, limited regions,
single algorithm used, and limited sample size. Similar researches
with large sample size on Chinese children have rarely been
reported. Moreover, some recently developed machine learning

algorithms, such as XGBoost, have shown better performance
over traditional algorithms on many tasks beyond biomedical
domain. Therefore, we launched this representative study of a
Chinese population with a larger sample size and a few more
recent algorithms.

The aims of this study were to identify metabolic signatures
of ASD and to find potential biomarkers for autism diagnosis
and possible etiology. We used gas chromatography-mass
spectrometry (GC/MS) to assess major metabolic perturbations
in organic acid levels in urine from children with autism versus
non-autistic subjects. Considering the complexity of ASD, the rise
or fall of different organic acids is insufficient. A model using
classification analyses of collected data for multiple organic acids
that exhibit significant differences between healthy and autistic
individuals should be feasible and may allow autistic patients to
be distinguished.

MATERIALS AND METHODS

Participants
This prospective study involved children who had autism (AU)
and typically developing children (TD) over the period from
December 2014 through May 2018. Children in the autistic
group were enrolled from the Beijing Herun Clinic. This study
was approved by the Peking Union Medical College Hospital
(study #ZS-824), written informed consent was obtained from
the parents of the participants. All participants were examined
by experienced pediatricians.

Inclusion criteria for Autistic Disorder (AU) were as defined
by the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-4) (Hu, 2003). All autistic children were
assessed by specialized clinicians.

Exclusion criteria were: (1) presence of other diseases such
as diabetes or PKU; (2) presence of certain factors that
would interfere with the detection of urine organic acids (e.g.,
renal failure, hepatic insufficiency, dietary intervention therapy);
(3) diagnosis of other neuropsychiatric disorders; (4) parents who
could not complete the assessment.

Typically developing children were enrolled from primary
schools in Beijing.

Procedures
Several precautions were strictly followed both before and after
sampling to ensure specimen quality. The precautions and
sampling steps were:

Before sampling:

(1) The subjects could not have used antibiotics (oral or
infusion) in the previous month. Since some indicators
we detect are associated with the intestinal micro-
environment, antibiotic usage could affect the results by
altering the distribution of intestinal flora.

(2) Both groups were not allowed to take probiotics within
2 weeks of sample collection. Probiotics can also
perturb the intestinal micro-environment and affect the
accuracy of urine organic acid testing.
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(3) Study participants were not allowed to consume fruits
or tomatoes within 24 h of sample collection due to the
phenol or acid contents of these foods. For example,
apples contain polyphenols such as anthocyanins,
flavanols, phenolic acids, and catechins. Grapes are
also rich in polyphenols. Such compounds can affect
various metabolic pathways, and could affect the
consistency of our results.

Sampling Steps
Midstream urine from the first morning void was collected in
sterile tubes. The samples were placed on dry ice or in a freezer as
soon as possible to avoid bacterial growth.

Measures
Information concerning study population characteristics was
obtained from the Peking Union Medical College Hospital
electronic medical record system. Follow-up information was
collected through regular clinic and telephone communication.

All assessments of the children’s behavior and dietary habits
were provided by the parents and professional third-party
institutions. The forms were produced in strict accordance with
relevant standards and were completed following delivery of a
detailed introduction and description of the study. Samples were
collected either in the home or outpatient environment to ensure
that external factors did not affect the samples. The researcher
confirmed by phone that study guidelines were being followed.

The urine samples were assayed at the Great Plains
Laboratory, Inc. (Lenexa, KS, United States). The GC/MS was
performed as described in a previous research (Shaw et al., 1995).
Due to the limitation of available data, only concentrations of 76
organic acids were reported from the spectrum analysis. Before
analyses, all sample concentrations were normalized with urine
creatinine as a way of minimizing variability due to differences in
urine concentration.

Data Processing and Modeling
The total processes of data processing and modeling are
illustrated in Figure 1. Sample data from GC/MS were first
standardized by creatinine to eliminate urine concentration
variabilities. Then the data were further processed with scaling
and centering. To avoid data contamination between model
building and model testing processes, we set aside an independent
testing set from the entire data set in advance. The independent
testing set would be strictly excluded from any model building
processes so that overfitting effect in testing stage could be
minimized. The splitting between testing set and training set were
through a random process, while the ratios of control and ASD
samples were kept approximately equal in these two sets.

During the model building process, we first trained our models
and adjusted algorithm parameters using the training set with
all 76 organic acids by maximizing AURs from leave-one-out
cross validations. The modeling algorithms included Partial Least
Squares Discriminant Analysis (PLS-DA, R mixOmics package),

FIGURE 1 | Workflow of data processing and modeling. After standardization, scaling, and centering, sample data were split into training and testing sets, while
testing set would be strictly excluded from any model building processes to minimize overfitting. Potential biomarkers were discovered by selecting top N acids from
an importance rank sum list generated by three different classification algorithms, while N was determined from testing results of different N-values. The discovered
biomarkers’ potential mechanisms were investigated through heatmap along with associated metabolic pathways.

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 April 2019 | Volume 13 | Article 150

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00150 August 21, 2019 Time: 16:21 # 4

Chen et al. Organic Acids Biomarkers for ASD

Support Vector Machine (SVM, R e1071 package), and XGBoost
(eXtreme Gradient Boosting, R XGBoost package). The generated
models with total 76 acids were designated as full models. Then,
full models’ classification performance was evaluated using the
independent testing set.

To identify potential biomarkers for ASD, we exploited a
voting mechanism from all three algorithms to avoid possible
biases. First, importance scores of all acids were determined by all
the three algorithms using R caret package (Gevrey et al., 2003).
Next, each algorithm provided a rank order of all acids according
to their importance scores. Then, a list of acids with each acid’s
sum of importance rank from the three algorithms in descending
order was generated. Last, we trained models with only top N
acids on the list and tested their classification performance on
the testing set to identify the possible biomarkers. The models
with top a few acids are referred as reduced models. Biomarkers
were determined by observing the testing results of these reduced
models on the testing set.

After the detection of biomarkers, to investigate possible
mechanism behind them, we produced a heatmap with hierar-
chical clusters of all sample data and mark these biomarkers
on the map after standardization processes. The heatmap was
split aligning two dimensions, sample groups, and related
metabolic pathways.

Classification algorithms were evaluated using AURs and their
confidence intervals were estimated using bootstrapping methods
with 2,000 bootstrap steps. Mann–Whitney U-test was used to
compare the values for important biomarker acids. Multiple
comparisons were adjusted using the false discovery rate (FDR)
method (Benjamini and Yekutieli, 2001). Part of evaluations of
PLS-DA algorithm was conducted using SIMCA-P Version 11.5
(Umetrics, Umeå, Sweden).

RESULTS

A total of 220 participants were enrolled including 156 autism
patients (ASD group) and 64 typically developing children
(TD group). The population characteristics of the ASD and TD
groups have been summarized in Table 1. Among the ASD
group, 80.13% were male. In TD group, 73.44% were male.
The ASD and TD groups showed no significant differences in
gender (P = 0.285).

Data Sets
Two sets, a training set (80%) and a testing set (20%), were
randomly separated from the total data set, and each had a similar
proportion of ASD children. The training set contained 124
(70.9%) ASD children and 51 TD children, whereas the testing
set had 32 (71.1%) ASD and 13 TD children.

Model Building Using Training Set
Using training set, we fine-tuned parameters of the three
algorithms. For PLS-DA, the best major parameter, Ncomp, is 2.
For SVM, we obtained the best results using linear kernel. For
XGBoost, we optimized three major parameters, max_depth, eta,
and nrounds with optimal values of 2, 0.15, and 200, respectively.

TABLE 1 | Characteristics of ASD group and TD group.

ASD TD

n = 156 n = 64

Age, years 6 (4, 9.75)∗ 5 (4, 7)∗

No. of males (%) 125 (80.13%) 47 (73.44%)

No. of females (%) 31 (19.87%) 17 (26.56%)

All values are expressed as numbers (percentages) or median value (P25, P75).
A total of 220 participants (156 autism patients and 64 typically developing
children) were enrolled and divided into the ASD group and TD group. Among
the ASD group, 80.13% were male. In TD group, 73.44% were male. The ASD
and TD groups showed no significant differences in gender (P = 0.285). ∗median
values (P25, P75).

TABLE 2 | Potential marker metabolites found in GC/MS of urine samples.

Differentiation for p-value∗ after

No Metabolite autistic samples FDR adjustment

1 Phenylactic ↑ 0.000

2 3-Hydroxy-3-methylglutaric ↑ 0.004

3 Phosphoric ↓ 0.001

4 Fumaric ↓ 0.003

5 3-Oxoglutaric ↓ 0.001

6 Aconitic ↓ 0.000

7 N-Acetylcysteine (NAC) ↓ 0.056

8 Malonic ↓ 0.031

9 Tricarballylic ↓ 0.052

10 Glycolic ↓ 0.140

11 Creatinine ↑ 0.010

12 Malic ↓ 0.055

13 Oxalic ↑ 0.025

14 Tartaric ↓ 0.046

15 Pyruvic ↑ 0.013

16 4-Cresol ↑ 0.030

17 Carboxycitric ↓ 0.001

18 3-Hydroxyglutaric ↓ 0.071

19 2-Hydroxybutyric ↑ 0.330

20 2-Oxoglutaric ↓ 0.408

A voting mechanism from all three algorithms was applied to generate the most
important 20 organic acids as potential biomarkers for ASD. We performed
U-Mann–Whitney test to determine whether there were significant differences in
the levels of these 20 organic acids between ASD and TD children. ∗p-values
were calculated using Mann–Whitney test; ↑, increased level compared with TD; ↓,
decreased level compared with TD.

The model building process employed leave-one-out cross
validation as guidance for parameter tuning. The final results
of the full models in this process were shown in Table 2. The
AURs for these three algorithms were 0.864 (PLS-DA), 0.833
(SVM), and 0.931 (XGBoost) in training set with leave-one-out
cross validation.

The PCA result on training set with all acids is on Figure 2A.
From the figure, we see that PCA could not distinguish between
ASD and TD groups, since the new components variables
generated with maximal variances might not be aligned with
the outcome groups. However, it does identify some outliers.
To make models more robust, we did not remove these outliers
in the following analyses.
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FIGURE 2 | PCA and PLSDA score plots. (A) The Principal Component Analysis (PCA) score plot on training set with all 75 acids. (B) The PLS-DA score plot on
training set with selected 20 biomarker acids. With first two components, R2X (cum) = 0.26, R2Y (cum) = 0.535, Q2 (cum) = 0.386.

FIGURE 3 | (A) ROCs of final models on independent testing set based on all 76 organic acids. (B) ROCs of final models on independent testing set based on top
20 organic acids. (C) ROCs of final models on independent testing set based on top five organic acids. (D) Curves of AURs against selected top acids. Top 20 acids
represent the best collection of possible ASD biomarkers, while adding more will make AURs for SVM and PLS-DA decrease and make AUR for XGB
appear platformed.

Model Testing Using Independent
Testing Set
To avoid any possible overfitting, we tested the full model
on the independent testing set and obtained AURs of
0.863 (PLS-DA), 0.791 (SVM), and 0.94 (XGBoost). These
results had shown similar values with those in training stage

showing that training stage has generated little overfitting to
the training set.

Potential Marker Metabolites
We used the testing resulting of reduced models to identify
potential markers. The results of these reduced models are shown
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in Supplementary Table S1 and Figure 3. Figure 3D the curves
of AURs against different N selected top acids on testing set.
Clearly, top 20 acids represent the best collection of possible ASD
biomarkers, while adding more acids to the model will make
AURs for SVM and PLS-DA decrease and make AUR for XGB
appear platformed (The ensemble mechanism of XGBoost might
make it more robust to irrelevant features). Actually, XGBoost
achieved an AUR of 0.93 which was very close to the value of
0.94 in full model, and this suggest that these top 20 acids could
capture most of the features of ASD. Even top 5 acids could get
an AUR of 0.899.

The 20 identified potential marker metabolites are listed in
Table 2. Their levels compared with TD group are also shown
in Table 2. Using these 20 identified marker metabolites, we
draw the score plot of PLA-DA of training set on Figure 2B.
There is a separation between TD and ASD groups with R2X
(cum) = 0.26, R2Y (cum) = 0.535, Q2 (cum) = 0.386, p-value of
CV-anova = 1.26183e-006.

Heatmap Analysis of Metabolic Pathway
We tried to use heatmap with hierarchical clustering to discovery
possible related metabolic pathways (Supplementary Figure S1).
Rows of the heatmap represent different samples from TD
and ASD groups, while columns represent different metabolites
grouped in different metabolic pathways. The pathway names
are listed in the figure legend. The heatmap shows that the
identified biomarker metabolite acids are distributed across
a wide variety of pathways: Intestinal Microbial Overgrowth,
Amino Acid Metabolism, nutritional, Krebs Cycle, Oxalate
Metabolism, Glycolytic Cycle, and Mineral Metabolism. This
diverse distribution suggests that these organic acids may act on
a variety of metabolic pathways and reflects the complexity of
metabolic abnormalities in autism.

DISCUSSION

To identify metabolic signatures of ASD and find organic
acids in urine that could act as potential biomarkers for
diagnosis and disease treatment, three algorithms (PLS-DA,
SVM, and XGBoost) were used to analyze GC/MS data for
urine samples. The results showed the effectiveness of this
method in distinguishing ASD children from TD children.
XGBoost model produced the best results (AUROC = 0.94)
among the three algorithms. The modeling was performed
on the basis of all 76 organic acids, among which the
top 20 acids were identified as potential biomarkers with
a voting mechanism from all three algorithms. To go a
step further, we selected top 5 acids as strong biomarkers.
The amount of phenylactic acid was significantly higher
in the ASD group, whereas the amounts of aconitic acid,
phosphoric acid, 3-oxoglutaric acid, and carboxycitric acid were
significantly lower in the ASD group. These organic acids are
involved in a variety of metabolic pathways including amino
acid metabolism, intestinal flora, energy metabolism (Krebs
Cycle), and bone salt metabolism. Although a total of 76
organic acids contributed to modeling, we just involved the

top 5 ones in discussion part since they made significant
contributions in modeling, which may indicate the major
metabolic abnormality of autism.

Complex Relationships Among Urinary
Organic Acids and ASD Pathogenesis
The heatmap generated from GC/MS analysis of urinary
organic acids showed the complex relationship among these
compounds in ASD. Several organic acids were in the same
pathway, whereas others are involved in multiple pathways.
To date, the metabolites that have been explored as possible
ASD biomarkers include: nutritional markers, microbiome
metabolites, amino acid metabolites, Krebs cycle metabolites,
pyrimidine metabolites, neurotransmitter metabolites, products
of ketone, and fatty acid oxidation and mineral metabolism,
as well as indicators of detoxification and fluid intake
(e.g., creatinine) (Kałużna-Czaplińska, 2011).

These organic acids may affect the function of intestinal flora.
In our study, we also collected stool specimens from the study
participants. Analysis of stool samples and the intestinal flora is
underway, and the abundance of intestinal flora combined with
findings for urinary organic acid metabolism should strengthen
the diagnostic potential of these compounds.

The organic acids we identified may affect nervous system
development and thus we included assessments of neurological
symptoms (e.g., unexplained excitability or mania) on the
study scales. We will examine whether the severity of these
symptoms in ASD and the CARS and ABC scores are relevant
in a future study.

The Diagnostic Potential of the
Established Model
Calibration and optimization of parameters is a critical step in
model building. Three algorithms (PLS-DA, SVM, and XGBoost)
were examined to achieve this task. Among them, the first two
algorithms, PLS-DA and SVM, were previously described (West
et al., 2014; Dieme et al., 2015). To our knowledge, application
of the XGBoost algorithm in a model of urine organic acids to
distinguish children with ASD from TD children has not been
previously reported.

Among the three algorithms, XGBoost had an AOC of 0.94.
Use of the XGBoost algorithm is an innovation in autism-
related research (Chen and Guestrin, 2016), and the efficiency
of this model differs from that described in earlier studies.
XGBoost has been proved to have better performance than
other more traditional models in many machine learning
tasks outside biomedical domains. This is largely due to its
built-in ensemble mechanism and its ability to capture non-
linear features. In contrast, traditional linear algorithm for
metabolite analysis, PLS-DA, is limited in capturing non-
linear relations. This has also been observed in this study.
In addition, XGBoost also shows more robustness to adding
more irrelevant features than SVM and PLA-DA. Conclusively,
the establishment of this model increases the possibility
of early diagnosis of autism. The examination of organic
acids in urine is non-invasive and relatively inexpensive, the
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requirements for sample collection are not strict and the
operability is very high.

Notable Changes in Urinary Organic
Acid Levels in ASD Patients
The PLS-DA score plot shows a clear distinction among the
distribution of metabolite profiles between TD and ASD children.
Our analyses showed that 5 urinary organic acids had significant
differences between ASD and TD children and thus could have
diagnostic potential as ASD biomarkers.

The ASD group had higher levels of phenylactic acid
but decreased amounts of aconitic acid, phosphoric acid,
3-oxoglutaric acid, and carboxycitric acid compared to TD
children. These metabolites are associated with multiple
biochemical processes (Koulman et al., 2009). Phenylactic acid is
a byproduct of amino acid metabolism, and the higher levels seen
for ASD children could indicate abnormalities in the function
of enzymes involved in amino acid metabolism. Moreover,
phenylactic acid can inhibit the growth of Gram-negative and
Gram-positive bacteria, as well as some fungi. Thus, elevated
phenylactic acid levels could inhibit the normal function of
the intestinal microflora and exacerbate metabolic disorders.
Intestinal microbes can affect neurotransmitter production in
the central nervous system and in turn affect the induction of
endogenous sensations, production of bacterial metabolites,
and mucosal immune-related activity (Carabotti et al., 2015).
Moreover, phenylactic acid is a metabolite of phenethylamine,
which acts as a monoaminergic neuromodulator and as a
neurotransmitter in the human central nervous system to
promote neuron excitation (Sabelli et al., 1976).

Also in the context of intestinal flora, levels of carboxycitric
acid and 3-oxoglutarate acid were significantly decreased in the
ASD group relative to the TD group. Carboxycitric acid can be
a marker of intestinal microbial overgrowth, particularly yeast
and fungi. Certain strains of the mold Aspergillus niger have
efficient citric acid production and can be used for industrial-
scale citric acid production (Lotfy et al., 2007). Although to
our knowledge, this study is the first to report a significant
decrease of carboxycitric acid in urine samples from ASD
children, other studies identified intestinal microbe metabolites
as potential agents that can affect nervous system function.
Meanwhile, carboxycitric acid, a product of the Krebs Cycle,
showed decreased levels in our assays and may be indicative
of energy metabolism disorders in children with autism. We
also found that 3-oxoglutarate, a common metabolite of yeast
and fungi (Thomas et al., 2010; MacFabe et al., 2011; Kocovska
et al., 2012), was significantly lower in children with autism.
The low concentrations of both carboxycitric acid and 3-
oxoglutarate that we observed in urine from autistic patients
could be due to increased uptake of these compounds across
the blood-brain barrier of the brain. Our results are consistent
with previous studies that showed anti-fungal treatments for
children with autism can effectively reduce the amounts of
corresponding organic acid indicators (Cobb and Cobb, 2010),
and suggests that gastrointestinal yeast could provide a basis
for dietary adjustments such as gluten/casein-free diets that

are important for children’s nervous system development and
could mitigate autism symptoms. 3-oxoglutarate in urine is
associated with the presence of harmful gut flora such as
Candida albicans (Schmidt, 1994). These results support the
reliability of the gut-brain axis and suggest new avenues of
study for autism.

Aconitic acid is produced from citric acid dehydration
that occurs during the Krebs Cycle and is a marker of
mitochondrial activity. Mitochondrial disease, either through
maternal inheritance or other causes, is present in up to 5%
of autistic children (Rossignol and Frye, 2012; Frye et al.,
2013). Previous studies reported that cis-acotinic acid levels are
increased in children with autism (Noto et al., 2014; Mussap et al.,
2016). Here, we found that acotinic acid levels were decreased in
the ASD group relative to the TD group, which is indicative of
energy metabolism deficiencies in energy metabolism of ASD. In
the Krebs Cycle, citrate undergoes stereospecific isomerization to
isocitrate by the enzyme aconitase hydratase and the intermediate
cis-aconitate (Mussap et al., 2016). Meanwhile, trans-aconitic
acid (TAA) acts as an anti-inflammatory agent in plant-based
treatments for rheumatoid arthritis used in Brazil, and could be
one explanation for the decreased levels of aconitic acid in the
ASD group. Similarly, it has been reported that inflammatory
mediators may play crucial role in some neuropsychiatric
diseases. Dan et al. (2015) found that homocysteine (Hcy) and
uric acid (UA) may contribute to the pathogenesis of multiple
system atrophy (MSA) and serum Hcy together with UA levels
could be a diagnostic tool of MSA (AUROC = 0.736). In addition,
another cross-sectional study supported that low serum UA levels
may indicate a higher risk of Parkinson’s disease (PD) and serum
UA level could serve as an indirect biomarker of prediction in PD
(Mengqiu et al., 2013).

Phosphoric acid is important for bone metabolism. In
our study population we observed decreased amounts of
phosphoric acid in ASD children relative to TD children,
which could suggest that ASD pathology involves abnormal
bone metabolism, although this possibility requires further
investigation. Vitamin D regulates bone formation and density
by promoting absorption of key intestinal compounds such as
calcium and phosphate. Imbalances in phosphoric acid could
be related to an imbalance of several other substances. In
pregnant women, vitamin D deficiencies can affect regulatory
T cell function and in turn immune responses. Such vitamin
D deficiencies can impact the developing fetus and could
increase the risk for autism. Vitamin D is also critical during
development of the fetal nervous system through regulation
of the expression of several nerve growth factors as well
as transforming factor beta 2 (TGF-b2) and neurotrophin
3 and 4. Previous studies showed that some children with
autism have vitamin D deficiency (Pioggia et al., 2014;
Uğur and Gürkan, 2014). The amount of serum 25 (OH)
D3 is significantly lower in children with ASD, indicating
that lower 25 (OH) D levels could be an independent risk
factor for autism, and may be independently associated with
disease severity (Gong et al., 2014). Our findings support
observations of disorders in bone salt metabolism in children
with autism, and are also consistent with clinical symptoms
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indicating that reduced bone mineral density is common in
children with autism.

CONCLUSION

In this study, we used GC/MS to evaluate major metabolic
fluctuations in 76 organic acids present in urine from
156 children with ASD and from 64 non-autistic children.
Three algorithms, Partial Least Squares-Discriminant Analysis
(PLS-DA), Support Vector Machine (SVM), and eXtreme
Gradient Boosting (XGBoost), were used to develop models
to distinguish ASD from TD children and to detect potential
biomarkers. By a voting mechanism, 20 acids have been
successfully identified as potential ASD biomarkers and reduced
model with top 20 acids achieved 0.93 and represent a good
collection of potential ASD biomarkers. These biomarkers
were distributed across a wide variety of metabolic pathways,
indicating the complicated mechanism behind ASD. XGBoost
algorithm has shown better classification performance and more
robustness than other traditional algorithms.

In summary, urine organic acids detection with GC/MS
combined with XGBoost algorithm could represent a novel,
non-invasive and accurate strategy for diagnosis of autism
and the discovered potential biomarkers could be valuable for
future research on the pathogenesis of autism and possible
interventions, and have a range of clinical applications.
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