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ABSTRACT: Unlike conventional liquid electrolytes, solid-state electro-
lytes (SSEs) have gained increased attention in the domain of all-solid-
state lithium-ion batteries (ASSBs) due to their safety features, higher
energy/power density, better electrochemical stability, and a broader
electrochemical window. SSEs, however, face several difficulties, such as
poorer ionic conductivity, complicated interfaces, and unstable physical
characteristics. Vast research is still needed to find compatible and
appropriate SSEs with improved properties for ASSBs. Traditional trial-
and-error procedures to find novel and sophisticated SSEs require vast
resources and time. Machine learning (ML), which has emerged as an
effective and trustworthy tool for screening new functional materials, was
recently used to forecast new SSEs for ASSBs. In this study, we developed
an ML-based architecture to predict ionic conductivity by utilizing the
characteristics of activation energy, operating temperature, lattice parameters, and unit cell volume of various SSEs. Additionally, the
feature set can identify distinct patterns in the data set that can be verified using a correlation map. Because they are more reliable,
the ensemble-based predictor models can more precisely forecast ionic conductivity. The prediction can be strengthened even
further, and the overfitting issue can be resolved by stacking numerous ensemble models. The data set was split into 70:30 ratios to
train and test with eight predictor models. The maximum mean-squared error and mean absolute error in training and testing for the
random forest regressor (RFR) model were obtained as 0.001 and 0.003, respectively.

1. INTRODUCTION
After commercialization in the early 1990s, the LIBs have gained
tremendous success in the field of portable electronic devices
and EVs1 due to various reasons such as high specific energy
(361 Wh kg−1),2 high operating voltage (∼4 V),3 and long life
cycle. However, with the advent of next-generation smart
electronic devices and long-range EVs, a battery system with
high energy density, safety, and life span is the need of the
hour.4,5 To manufacture Li-ion batteries with improved safety
and wider operating temperature ranges, one alternative is to
substitute liquid electrolytes with inorganic SSEs.6,7 As a result,
this field has gained tremendous attention for producing various
SSEs, some of which such as sulfide-based thio-LISICON
(LIthium Super-Ionic CONductor), etc. have shown ionic
conductivities as high as 10−2 S cm−1 at room temperature,
which is close to that of the liquid electrolytes.8,9 Also, Li-ion
batteries with SSEs, i.e., the ASSBs, have the following
advantages over conventional LIBs desired for the applications
mentioned above, i.e., in the field of portable electronic devices
and EVs:

• ASSBs with Li-metal anodes have high specific energy
density (>500 Wh/kg), high volumetric energy density

(>1500 Wh/L), and potentially lower cost (<$100/
kWh).10−12

• ASSBs are exceptionally safe since SSEs have better
mechanical strength (a shear modulus of 100 GPa) and
safety, as these are leakproof and inflammable.13,14

• The SSEs used in the ASSBs have a broader electro-
chemical stability window (∼6 V vs Li+/Li).15

• High mechanical strength of SSEs (a shear modulus of
100 GPa) ensures long life and dendrite suppression in
the ASSBs.13

• ASSBs are easier to design since they have less packaging
and state-of-charge monitoring circuit requirements.

• In ASSBs, SSEs serve as separators and electrolytes at the
same time.14

Hence, there is a significant need for more effective energy
storage and power devices, and an efficient technique of building
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ionic conductors based on a repeatable and systematic
methodology is crucial for long-term success in this domain.
Traditional techniques of searching for optimal compositions
with superior properties entail trial-and-error procedures that
take a long time to produce and verify new SSEs, resulting in
poor progress and low efficiency. With the emergence of high-
performance computation, first-principles calculation ap-
proaches such as DFT are being commonly utilized for the
quantitative investigation of ionic conduction in the crys-
tals.16−20

Recently, various ML-based data-driven approaches have
been proposed for modeling desirable properties of the SSEs.
Homma et al. used ML for compositional optimization of
ternary Li3PO4−Li3BO3−Li2SO4 and obtained the best lithium-
ion conductivity, i.e., 4.9 × 10−4 S/cm (300 °C) for 25:14:61,
respectively.21 The “ML” term was coined by Arthur Samuel,
and it is defined as follows: A branch of artificial intelligence that
allows systems to learn and develop from data without being
explicitly programmed.22 Machines can be trained to discover
patterns in and correlations between incoming data and
automate regular activities using huge amounts of computation
for a single or numerous specific tasks.23 Our target problem of
predicting the ionic conductivity of SSEs falls under the
regression task. The unsupervised learning algorithm is given
no labels and is left to find structure in its data on its own. The
goal of this algorithm is to find a hidden pattern in the data
set.24,25 The semisupervised learning algorithm is a hybrid of
supervised and unsupervised learning. It employs a little quantity
of labeled data and a large amount of unlabeled data, allowing it
to benefit from both unsupervised and supervised learning while
avoiding the difficulties associated with locating huge amounts
of labeled data26,27

The significant growth of ML during the last few decades has
extended the use of this data-driven technique throughout
research, commerce, and business.28 There has recently been a
surge in interest in using ML to solve difficulties in materials

science. Inorganic materials, in particular, have been represented
using ML techniques, which have also been used to forecast
fundamental properties, build atomic potential, discover func-
tional candidates, assess complex reaction networks, and guide
experimental design.29−35 The key to these breakthroughs is the
ability to reliably forecast behavior in unknown areas by
quantitatively learning the pattern from sufficient training
samples. Furthermore, ML has been used in the battery industry
to estimate the state of charge or cycle life of operating cells36,37

and to aid in the fabrication of LIB electrodes.38 However, until
Chen et al. looked into an opportunity to employ such skills to
improve the performance and overall quality of SSE films used in
ASSBs, the application of ML in the fabrication of flexible SSE
films remained untapped. Their research looks at the multi-
variable interdependencies between performance and manu-
facturing characteristics to predict the quality of SSE films.39

Similarly, in the domain of SSEs, ML has got a wide application
to forecast the best structure, create innovative materials, and
predict ionic conductivity.40−43 The ML algorithm has
successfully been used to screen the new SSEs by the Materials
Genome Initiative founded in 2011.44−46 ML is frequently used
in attribute forecasting to reflect molecular materials and
targeted characteristics.
In summary, from the literature survey, we can summarizeML

algorithms as faster and scaler in comparison to the first
principles-based DFT, which takes weeks for doing the same
calculation. The schematic workflow diagram of our proposed
model is shown in Figure 1. In this work, we targeted predicting
the ionic conductivity of SSEs, where different ML models were
explored to robustly predict ionic conductivity. Also, we tried to
get an insight into features’ contribution to ionic conductivity
prediction using a correlation map. The structure of the
remainder of the paper is as follows: The data set is described
in Section 2; ionic conductivity prediction methods with eight
predictor models are discussed in Section 3; Section 4 contains

Figure 1. Proposed methodology to predict the ionic conductivity of SSEs.
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results and discussions, and finally the conclusion of the paper is
included in Section 5.40

2. DATA SET
Data sets are the most fundamental resource required for any
ML model. Since the ML model learns from the pattern of the
given data to either predict or classify the label/labels, the input
data set plays a crucial role not only to meet the objective of the
problem but also to achieve good performance on the unseen
data. The problem to be solved usingML is often represented by
data in multiple formats and/or a variety of structures.
Multiple standards and variances in the data set make the

ionic conductivity prediction a little bit challenging. However,
appropriate data sets can make it much easier to access material
information. For the screening of SSE, the material scientists
apply the materials databases such as ICSD (fiz-karlsruhe.de/
icsd),47 Material project (materialsproject.org),48 AFLOW
(aflowlib.org),49 OQMD (oqmd.org),44 Computational Materi-
als Repository (cmr.fysik.dtu.dk),50 Crystallography Open
Database (crystallography.net),51 and MATGEN (mat-
gen.nscc-gz.cn).52 Ionic conductivity is a difficult concept to
grasp, and hence most databases lack it. As a result, some
material scientists have attempted to automatically collect
material synthesis parameters from tens of thousands of
academic publications using text mining, i.e., ML and natural
language processing techniques, to integrate and compile them
into usable datasets for ML and have successfully performed
practical applications.
The concentration of charge carriers, the temperature of the

crystal, the availability of vacant-accessible sites, which are
controlled by the density of defects in the crystal, and the ease
with which an ion can jump to another site are the factors that
influence the ionic conductivity of the SSEs. Activation energy
controls the last parameter mentioned above, namely, the ease
with which an ion can migrate to an adjacent site. The
phenomenological quantity known as “activation energy” can be

thought of as the free energy barrier that an ion must overcome
to successfully hop between the two sites. Activation energy is
the most important component influencing the ionic con-
ductivity of a crystal since its dependency on other parameters is
exponential. Experiments can be used to measure it quite easily.
The Arrhenius expression, given in eq 1, is most typically used to
calculate activation energies.53

=s A T E k T( / )exp( / )a B (1)

Here, the ionic conductivity at temperature T (in kelvin) is
denoted by “s”, the Boltzmann constant is denoted by kB, the
activation energy is denoted by Ea, and the pre-exponential
factor is denoted by A. All remaining parameters that determine
ionic conductivity, other than the activation energy, are
contained in the pre-exponential component, A.
Keeping the above-mentioned dependence of ionic con-

ductivity on the activation energy and temperature in the eye,
here, we also have compiled a data set of 120 SSEs from the
literature that includes the ionic conductivity, activation energy,
lattice parameter, and unit cell volume at a given temper-
ature.20,54,55 However, unlike ionic conductivity, activation
energy, and temperature, there is no clear-cut relationship
between the ionic conductivity and the lattice parameter or unit
cell volume.

3. PROPOSED METHODOLOGY
Before diving deep into explaining the algorithms used in this
work, we present in brief the generic steps involved in ML
applications (shown schematically in Figure 2).
3.1. Problem Definition and Data Collection. The first

step toML application is defining the problem. The definition of
the problem is important to label the system inputs and outputs.
Most physical, engineering or design processes have multiple
system variables and hence problem definition involves
identifying which control parameter is being used to solve the
problem at hand. As mentioned earlier, the feasibility of ML

Figure 2. Generic ML application flow diagram.
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applications to solve a particular problem lies in the availability
of data. Once the problem is defined, it is important to gather the
data which are commonly available in tabular form as CSV files
or as JSON files. Also, the available data must be readable.
The available data is then organized and stored. The data can

be classified as structured, semi-structured, or unstructured
based on the extent they are organized. Structured data stored in
the form of tables have some relation between the values in the
rows and columns. Such datasets are easy to update as they
possess concurrency.56 They are preferred when multiple users
are working simultaneously on the dataset for transaction
management. Semi-structured and Unstructured datasets have
the lowest level of relational attributes within. Thus they do not
provide comparable performance. However, these datasets are
preferable when we need to possess good flexibility and
scalability.
3.2. Data Pre-processing. A huge amount of data is

available and stored for the ML model to analyze and interpret.
However, it is not necessary that all the variables or features in a
dataset may be useful. Thus, feature selection is an important
task in pre-processing. The idea is to select the best set of
features that provide the most information.56 Redundancy in the
data can lead to instability in the algorithm. The generality of the
model application is reduced. For feature selection, techniques
such as Correlation coefficient, Chi-square, Dispersion ratio,
Exhaustive Feature selection, and LASSO Regression can be
employed.57 Modern tools include optimization-based algo-
rithms, meta-heuristic techniques, and nature-inspired algo-
rithms58,59 for selecting the variables which lead to an efficient
ML model.
It is also important to check whether there exists any

correlation, collinearity, or multicollinearity in the dataset.
Higher collinearity amongst the features leads to difficulty in the
interpretation of the output relation with every single feature.
Changes in one feature can also change the correlated feature.
The correlation matrix and Variance Inflation Factor60 are used
to detect when multiple features have collinearity.
The most common Data cleaning task includes removing

outliers from the datasets. Outliers in the dataset are the values
that are far off the allowed or assumed data range. Anomaly
detection identifies the error’s existence and can be used by the
ML model to act on it. Five-Number Summary and Isolation
Forest61 are some commonmethods used for anomaly detection
or outlier detection. In data normalization, the values of numeric
columns in the dataset are changed to use a common scale,
without compromising the information or distorting the ranges
of values. Normalization is needed for the ML model to process
data correctly and reduce the mathematical or numerical
instability of the algorithm.
3.3. Data Processing andModel Deployment.Once the

datasets are processed, we configure the model, by selecting the
type of algorithm, and defining its hyperparameters. Most ML
models fall into either Classification or Regression models.
Part of the data is used for training the model and part of it is

used for testing the model. Usually, an 80%-20% ratio is used in
training and testing respectively. Upon training the algorithm,
the hyperparameters are tuned. Hyperparameters are specific to
the ML model selected. The hyperparameters iterate over
multiple combinations. The parameter measures accuracy until
it finds the “best” model.
Model validation is required to check whether the model

represents the system/process behavior accurately. ML models
are validated by comparing the output to an independent field or

experimental data sets that align with the simulated scenario.62

Rigorous training and testing of ML algorithm are followed by
model deployment which is done to create a proper user
interface for working with the model.
We have used eight different ML algorithms ranging from

simple/white-box to complex/black-box models. White-boxML
models are simple and easy to interpret but lack performance,
whereas Black-box models are highly efficient and are capable
enough to capture the non-linear relationship between features
but these are complex and lack interpretability. The predictors
model used in the proposed work is 1. RFR, 2. SVM, 3. GBR, 4.
ANN, 5. DT, 6. LR, 7. XGB, 8. VR (an ensemble of GBR, LR,
and RFR models). RFR, GBR, and XGB models are based on
ensemble learning. Ensemble learning is a general meta-ML
approach that seeks to improve predictive performance by
combining predictions from multiple different or same type
models which are shown in Figure 3.

It combines multiple weak models into a single strong
prediction which results in robust prediction and overcomes
overfitting.63 Again, ensemble learning methods can belong to
either: the bagging, boosting, or stacking method. RFR is based
on a bagging algorithm, where many DTs were created on
different samples of the same dataset and averaged the
prediction from different DTs for a sample.63,64 Whereas,
GBR and XGB are based on boosting method where multiple
models are created sequentially which corrects the prediction of
the predecessor model and outputs the average of the
prediction.65,66 And VR model is based on a stacked algorithm
where prediction from multiple predictors is used as input to
forecast the final prediction.67 Further, we have used the LR
model which is a linear model where output features are
calculated using a linear combination of input features. Further,
we have used the SVM model, where the model finds a
hyperplane separating different classes having a maximum
margin.68 In this work, we have used SVM with two kernel
functions: Radial kernel Function and polynomial function,
where kernel functions are used to capture nonlinearity from the
dataset. Furthermore, the parameters used in different predictor
models are fine-tuned using grid search, which is shown in the
following Table 1:
Also, we have used a shallow ANN model with two hidden

layers and its structure is shown in Figure 4. ANNmodel mimics
neurons of the human brain. It is the complex (nonlinear) model
which can learn the complex relationship between features. The
dataset was split into 70-30 ratios to train and test each predictor
model.

Figure 3.Working of ensemble learning-based model.
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In summary, we have used eight predictors ranging from linear
to nonlinear models that can capture linear and/or non-linear
relationships between features, which can help predictor models
to generalize well on an unseen dataset.

4. RESULTS AND DISCUSSIONS
We have used MAE and MSE metrics to quantify the
performance of different predictor models.69 MAE is more
robust to outliers because it averages the absolute differences
between actual and predicted values over all the samples from
the dataset70 which is defined as

= | |
=n

Y YMAE
1

k

n

1 (2)

whereas MSE is less robust to outliers but unlike MAE, it can
accurately capture the performance when handling larger error
values.71 MSE measures the squared of the difference between
actual and predicted value, which is defined as

=
=n

Y YMSE
1

( )
k

n

1 (3)

where n is the number of samples, Y is the actual target value and
Ŷ is the predicted value.
A graphical representation of the prediction accuracy of the

ANN model is presented in Figure 5. For brevity, plots for only
the ANN model are shown here. The “Ground Truth”
datapoints represent the actual ionic conductivity of the sample
dataset. We compare the predicted values of the ionic

conductivity obtained by ANN model with the actual values in
Figure 5. The loss function from the ANNmodel on the training
and validation dataset is shown in Figure 6. However similar
plots can be developed for other ML models as well. The actual
ability of prediction is better gauged by using the indicators as
MSE and MAE defined earlier. Table 2 shows performance
comparisons from different predictor models on the Training
and Testing dataset.
It can be observed that predictions from the ensemble models

are more robust compared to ANN and LR models. ANN didn’t
perform well when compared to other models, the probable
reasons can be: the complex nature of the model and the smaller
size of the input dataset. The MSE from different predictors is
approximately zero indicating that the models are not
overfitting. Also, the difference in performance measures of
the Training and Testing dataset is less which again reflects the
robustness of the predictor models used. We have plotted the
samples from the Training and Testing set for the Voting
Regressor model, which is a stack of three ensemble models i.e.,
RFR, GBR, and XGRmodel. Similarly, to gain an insight into the
feature set used to train the predictor models, we generated a
correlationmap which is shown in following Figure 7. (Listing of
Feature sets is mentioned in Appendix). The correlation map
uses Pearson correlation Index to measure the strength of the
linear relationship between features, which ranges from −1 to
+1, where 0 represents no correlation, +1 represents strong
positive correlation and −1 represents strong negative
correlation.72

A positive correlation indicates that if the value of parameter A
increases, the value of parameter B will also increase, whereas a
negative correlation indicates that if A increases, B decreases.We
can observe that most of the features are weakly correlated and
carry unique information to capture ionic conductivity patterns
from the dataset.
In summary, we observe that ensemble-learning-basedmodels

are more robust than other predictor models and the feature set
carries unique information that contributes significantly to the
ionic conductivity prediction.

5. CONCLUSIONS
Traditional trial-and-error procedures to find novel and
sophisticated SSEs require huge resources and time. ML has
emerged as an effective and trustworthy tool for screening new
functional materials, which has been used recently to forecast
new SSEs for ASSBs. In this work, we proposed ML-based
architecture to predict ionic conductivity using the features

Table 1. The Parameters Used in Different Predictor Models

model fine-tuned parameter

RFR bootstrap, maximum depth of the tree, maximum features for the best split, minimum samples to be required at the child node,
minimum samples required for the split at the intermediate node, and numbers of trees used.

SVM forKernel (RBF, Polynomial) for radial basis function (RBF) kernel: L2 penalty (regularization) parameter.
for polynomial (poly) kernel: L2 penalty (regularization), degree of the polynomial kernel function, epsilon value - which
signifies no penalty if the distance between the actual and predicted value is less than or equal to a specified value.

GBR learning rate, maximum depth of the tree, maximum features for the best split, minimum samples to be required at the child
node, minimum samples required for the split at the intermediate node, and numbers of trees used.

ANN numbers of epochs, learning rate, and momentum for the Adam optimizer.
DT maximum depth of the tree, maximum features for the best split, minimum samples to be required at the child node, minimum

samples required for the split at the intermediate node, and the technique used to split at each node.
LR used all default parameters.
XGB learning rate, maximum depth of the tree, maximum features for the best split, minimum samples to be required at the child

node, and minimum samples required for the split at the intermediate node.
VR used all default parameters.

Figure 4. Proposed structure of ANN model.
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Activation Energy, Temperature, Lattice parameters, and
Volume of the Unit Cell. Also, feature sets can capture unique
patterns from the dataset, which can be validated from a
correlation map. The ensemble-based predictor models are

Figure 5. Comparison of predicted v/s actual values of Ionic Conductivity (S cm−1) by ANN: (a) Training Dataset (b) Testing Dataset.

Figure 6. Loss function of Training and Validation dataset using ANN
model.

Table 2. Performance Comparisons from Different Predictor
Models on the Training and Testing Dataset

dataset model MSE MAE

training RFR 0.001 0
GBR 0 0.001
LR 0 0.004
SVM 0 0.022
ANN 0 0.006
XGB 0 0.001
SVM 0 0.022
DT 0 0.001
VR 1.08 × 10−05 0.002

testing RFR 0.003 0
GBR 0 0.002
LR 0 0.003
SVM 0.001 0.023
ANN 0 0.002
XGB 0 0.002
SVM 0.001 0.023
DT 0.001 0.007
VR 2.30 × 10−05 0.003
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more robust and hence can predict ionic conductivity more
accurately. Also, stacking multiple ensemble models can
strengthen the prediction even more and can overcome the
overfitting problem. The dataset was split into 70-30 ratios to
train and test with 8 predictor models. The maximum MSE and
MAE in training and testing for the RFRmodel were obtained at
0.001 and 0.003 respectively.
5.1. Future Work.We will include more features to predict

ionic conductivity and observe their role in the target feature
(ionic conductivity) prediction using ensemble models. We may
further look through various model agnostic methods such as
Shapley Additive exPlanations and Local Interpretable Model-
agnostic Explanations, which can depict the global and local
impact of input features on target features.

■ APPENDIX

sr. no. feature set
1 ionic conductivity (S cm−1)
2 activation energy (eV)
3 temperature (°C)
4 lattice parameters (a in Å)
5 lattice parameters (b in Å)
6 lattice parameters (c in Å)
7 volume of the unit cell (Å3)

■ AUTHOR INFORMATION

Corresponding Author
Indrajit Mukhopadhyay − Solar Research and Development
Center, Department of Solar Energy, Pandit Deendayal Energy
University, Gandhinagar 382007 Gujarat, India;
orcid.org/0000-0003-3756-6131; Email: Indrajit.M@

sse.pdpu.ac.in

Authors
Atul Kumar Mishra − Solar Research and Development Center,
Department of Solar Energy, Pandit Deendayal Energy
University, Gandhinagar 382007 Gujarat, India

Snehal Rajput − Department of Computer Science Engineering,
School of Technology, Pandit Deendayal Energy University,
Gandhinagar 382007 Gujarat, India

Meera Karamta − Department of Electrical Engineering, School
of Technology, Pandit Deendayal Energy University,
Gandhinagar 382007 Gujarat, India

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c01400

Author Contributions
∥A.K.M. and S.R. contributed equally to this work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors are grateful to Pandit Deendayal Energy University
(PDEU) for providing the necessary facilities to carry out this
investigation. Financial support from Department of Science
and Technology (DST) Government of India under project no.
DST/TMD/MES/2017/32(G) and Solar Research and Devel-
opment Centre (SRDC), PDEU is deeply acknowledged.

■ ABBREVIATIONS
LIB, lithium-ion battery; EV, electric vehicle; SSE, solid-state
electrolyte; ASSB, all-solid-state Li-ion battery; LISICON,
LIthium SuperIonic CONductor; DFT, density functional
theory; ML, machine learning; RFR, random forest regressor;
SVM, support vector machine; GBR, gradient boosting
regressor; ANN, artificial neural network; DT, decision tree;
LR, linear regressor; XGB, extreme gradient boosting; VR,

Figure 7. Correlation Map of Input and Output Feature (the numbers from 1 to 7 on the horizontal and vertical axis correspond to Ionic conductivity
(S cm−1), Activation Energy (eV), Temperature (°C), Lattice Parameters a, b, and, c (in Å), and the volume of Unit Cell (Å3), respectively).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c01400
ACS Omega 2023, 8, 16419−16427

16425

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Indrajit+Mukhopadhyay"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3756-6131
https://orcid.org/0000-0003-3756-6131
mailto:Indrajit.M@sse.pdpu.ac.in
mailto:Indrajit.M@sse.pdpu.ac.in
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Atul+Kumar+Mishra"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Snehal+Rajput"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Meera+Karamta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01400?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01400?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01400?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01400?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01400?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01400?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


voting regressor; MAE, mean absolute error; MSE, mean
squared error

■ REFERENCES
(1) Mauger, A.; Julien, C. M. Critical Review on Lithium-Ion
Batteries: Are They Safe? Sustainable? Ionics 2017, 23, 1933−1947.
(2) Wu, F.; Kim, G.; Kuenzel, M.; Zhang, H.; Asenbauer, J.; Geiger,
D.; Kaiser, U.; Passerini, S. Elucidating the Effect of Iron Doping on the
Electrochemical Performance of Cobalt-free Lithium-rich Layered
Cathode Materials. Adv. Energy Mater. 2019, 9, No. 1902445.
(3) Manthiram, A. A Reflection on Lithium-Ion Battery Cathode
Chemistry. Nat. Commun. 2020, 11, No. 1550.
(4) Zhang, X.-Q.; Zhao, C.-Z.; Huang, J.-Q.; Zhang, Q. Recent
Advances in Energy Chemical Engineering of Next-Generation Lithium
Batteries. Engineering 2018, 4, 831−847.
(5) Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.;
Zhang, J.-G. Lithium Metal Anodes for Rechargeable Batteries. Energy
Environ. Sci. 2014, 7, 513−537.
(6) Horowitz, Y.; Schmidt, C.; Yoon, D.; Riegger, L. M.; Katzenmeier,
L.; Bosch, G. M.; Noked, M.; Ein-Eli, Y.; Janek, J.; Zeier, W. G.; et al.
Between Liquid and All Solid: A Prospect on Electrolyte Future in
Lithium-Ion Batteries for Electric Vehicles. Energy Technol. 2020, 8,
No. 2000580.
(7) Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. Sulfide-
based Solid-state Electrolytes: Synthesis, Stability, and Potential for All-
solid-state Batteries. Adv. Mater. 2019, 31, No. 1901131.
(8) Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A
Sulphide Lithium Super Ion Conductor Is Superior to Liquid Ion
Conductors for Use in Rechargeable Batteries. Energy Environ. Sci.
2014, 7, 627−631.
(9) Fu, Z. H.; Chen, X.; Yao, N.; Shen, X.; Ma, X. X.; Feng, S.; Wang,
S.; Zhang, R.; Zhang, L.; Zhang, Q. The Chemical Origin of
Temperature-Dependent Lithium-Ion Concerted Diffusion in Sulfide
Solid Electrolyte Li10GeP2S12. J. Energy Chem. 2022, 70, 59.
(10) Albertus, P.; Anandan, V.; Ban, C.; Balsara, N.; Belharouak, I.;
Buettner-Garrett, J.; Chen, Z.; Daniel, C.; Doeff, M.; Dudney, N. J.;
Dunn, B.; Harris, S. J.; Herle, S.; Herbert, E.; Kalnaus, S.; Libera, J. A.;
Lu, D.; Martin, S.; McCloskey, B. D.; McDowell, M. T.; Meng, Y. S.;
Nanda, J.; Sakamoto, J.; Self, E. C.; Tepavcevic, S.; Wachsman, E.;
Wang, C.; Westover, A. S.; Xiao, J.; Yersak, T. Challenges for and
Pathways toward Li-Metal-Based All-Solid-State Batteries. ACS Energy
Lett. 2021, 6, 1399−1404.
(11) Masias, A.; Marcicki, J.; Paxton, W. A. Opportunities and
Challenges of Lithium Ion Batteries in Automotive Applications. ACS
Energy Lett. 2021, 6, 621−630.
(12) Sun, Y. K. Promising All-Solid-State Batteries for Future Electric
Vehicles. ACS Energy Lett. 2020, 5, 3221−3223.
(13) Ni, J. E.; Case, E. D.; Sakamoto, J. S.; Rangasamy, E.;
Wolfenstine, J. B. Room Temperature Elastic Moduli and Vickers
Hardness of Hot-Pressed LLZO Cubic Garnet. J. Mater. Sci. 2012, 47,
7978−7985.
(14) Mishra, A. K.; Chaliyawala, H. A.; Patel, R.; Paneliya, S.;
Vanpariya, A.; Patel, P.; Ray, A.; Pati, R.; Mukhopadhyay, I. Inorganic
Solid State Electrolytes: Insights on Current and Future Scope. J.
Electrochem. Soc. 2021, 168, 080536.
(15) Thangadurai, V.; Pinzaru, D.; Narayanan, S.; Baral, A. K. Fast
Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for
Energy Storage. J. Phys. Chem. Lett. 2015, 6, 292−299.
(16) Mueller, T.; Hautier, G.; Jain, A.; Ceder, G. Evaluation of
Tavorite-Structured CathodeMaterials for Lithium-Ion Batteries Using
High-Throughput Computing. Chem. Mater. 2011, 23, 3854−3862.
(17) Hautier, G.; Jain, A.; Chen, H.; Moore, C.; Ong, S. P.; Ceder, G.
Novel Mixed Polyanions Lithium-Ion Battery Cathode Materials
Predicted by High-Throughput Ab Initio Computations. J. Mater.
Chem. 2011, 21, 17147−17153.
(18) Jalem, R.; Aoyama, T.; Nakayama, M.; Nogami, M. Multivariate
Method-Assisted Ab Initio Study of Olivine-Type LiMXO4 (Main
Group M2+−X5+ and M3+−X4+) Compositions as Potential Solid
Electrolytes. Chem. Mater. 2012, 24, 1357−1364.

(19) Xu, Y.; Zong, Y.; Hippalgaonkar, K. Machine Learning-Assisted
Cross-Domain Prediction of Ionic Conductivity in Sodium and
Lithium-Based Superionic Conductors Using Facile Descriptors. J.
Phys. Commun. 2020, 4, 055015.
(20) Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K. A. N.; Cui, Y.;
Reed, E. J. Holistic Computational Structure Screening ofMore than 12
000 Candidates for Solid Lithium-Ion Conductor Materials. Energy
Environ. Sci. 2017, 10, 306−320.
(21) Homma, K.; Liu, Y.; Sumita, M.; Tamura, R.; Fushimi, N.; Iwata,
J.; Tsuda, K.; Kaneta, C. Optimization of a Heterogeneous Ternary
Li3PO4-Li3BO3-Li2SO4Mixture for Li-Ion Conductivity by Machine
Learning. J. Phys. Chem. C 2020, 124, 12865−12870.
(22) Samuel, A. L. Some Studies inMachine Learning Using theGame
of Checkers. IBM J. Res. Dev. 2000, 44, 206−226.
(23) Kleesiek, J.; Murray, J. M.; Strack, C.; Kaissis, G.; Braren, R. A
Primer on Machine Learning. Der Radiologe 2020, 60, 24−31.
(24) Glielmo, A.; Husic, B. E.; Rodriguez, A.; Clementi, C.; Noé, F.;
Laio, A. Unsupervised Learning Methods for Molecular Simulation
Data. Chem. Rev. 2021, 121, 9722−9758.
(25) Tao, K.; Wang, Z.; Han, Y.; Li, J. Rapid Discovery of Inorganic-
Organic Solid Composite Electrolytes by Unsupervised Learning.
Chem. Eng. J. 2023, 454, No. 140151.
(26)Mehyadin, A. E.; Abdulazeez, A.M. Classification Based on Semi-
Supervised Learning: A Review. Iraqi J. Comput. Inf. 2021, 47, 1−11.
(27) Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf,
A. J. A Systematic Review on Supervised and Unsupervised Machine
Learning Algorithms for Data Science, 2020.
(28) Jordan, M. I.; Mitchell, T. M. Machine Learning: Trends,
Perspectives, and Prospects. Science 2015, 349, 255.
(29) Kalidindi, S. R.; de Graef, M. Materials Data Science: Current
Status and Future Outlook. Annu. Rev. Mater. Res. 2015, 45, 171.
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