
micromachines

Article

Compensation of Hysteresis on Piezoelectric
Actuators Based on Tripartite PI Model

Dong An * ID , Haodong Li, Ying Xu and Lixiu Zhang *

College of Mechanical Engineering, Shenyang Jianzhu University, Hunnan East Road No.9,
Hunnan New District, Shenyang 110168, China; lihaodong@stu.sjzu.edu.cn (H.L.); yxu@sypi.com.cn (Y.X.)
* Correspondence: andong@sjzu.edu.cn (D.A.); huangli@mail.neu.edu.cn (L.Z.);

Tel.: +86-024-2469-0088 (D.A.); Tel.: +86-024-2469-4412 (L.Z.)

Received: 7 December 2017; Accepted: 24 January 2018; Published: 26 January 2018

Abstract: Piezoelectric ceramic actuators have been widely used in nanopositioning applications
owing to their fast response, high stiffness, and ability to generate large forces. However, the existence
of nonlinearities such as hysteresis can greatly deteriorate the accuracy of the manipulation, even
causing instability of the whole system. In this article, we have explained the causes of hysteresis
based on the micropolarization theory and proposed a piezoelectric ceramic deformation speed law.
For this, we analyzed the piezoelectric ceramic actuator deformation speed law based on the domain
wall theory. Based on this analysis, a three-stage Prandtl–Ishlinskii (PI) model (hereafter referred
to as tripartite PI model) was designed and implemented. According to the piezoelectric ceramic
deformation speed law, this model makes separate local PI models in different parts of piezoelectric
ceramics’ hysteresis curve. The weighting values and threshold values of the tripartite PI model
were obtained through a quadratic programming optimization algorithm. Compared to the classical
PI model, the tripartite PI model can describe the asymmetry of hysteresis curves more accurately.
A tripartite PI inverse controller, PI inverse controller, and Preisach inverse controller were used
to compensate for the piezoelectric ceramic actuator in the experiment. The experimental results
show that the inclusion of the PI inverse controller and the Preisach inverse controller improved the
tracking performance of the tripartite PI inverse model by more than 80%.

Keywords: piezoelectric actuators; hysteresis nonlinearity; Prandtl–Ishlinskii (PI) model; hysteresis
compensation; micropolarization

1. Introduction

In recent years, the rapid development of ultraprecision machining technology has led to
higher positioning accuracy standards of the micropositioning platform driven by some functional
materials such as piezoelectric ceramics. Piezoelectric ceramics actuators (PCAs) have been widely
used in precision positioning applications, such as scanning and microscopic technologies [1,2],
micromanipulators [3], atomic force microscopes [4–6], and ultraprecision machine tools [7,8]. This is
because of their ability to achieve high precision and versatility to be implemented over a wide
range of applications [9]. However, the existence of hysteresis in PCAs often limits the operation
performance of the actuators. Therefore, it is highly desirable to compensate for the hysteresis so
that the piezoelectric devices can have a virtually linear relationship, or one-to-one mapping between
the control signal and the output displacement [10]. Figure 1 presents the relationship between the
displacement and the voltage across a piezoelectric actuator. It can be seen from the figure that
when the voltage is applied across the piezoelectric ceramic, the step-up displacement curve does not
coincide with the step-down displacement curve, and the displacement does not return to zero after
the applied voltage is reduced to zero. This phenomenon is called the piezoelectric ceramic hysteresis
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phenomenon. This means that the actuator output displacement depends not only on the input or
applied voltage at the present time, but also on the input history [11]. The intrinsic nonlinear and
multivalued hysteresis in the piezoelectric actuator has the potential to cause an inaccuracy in, or even
instability of, its applied system. The maximum error resulting from the hysteresis can be as much as
10–15% of the path covered [12]. It is obvious from the above analysis that the available approaches for
the identification of piezoelectric-actuated stages containing the hysteresis and linear dynamics are
still an open problem [13]. Therefore, establishing a precise control model of piezoelectric ceramics,
and (based on this model) controlling the hysteresis nonlinearity of piezoelectric ceramics so as to
improve the control precision of piezoelectric ceramics, has become a hot issue discussed by many
scholars, globally [14,15].
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Figure 1. Hysteresis characteristic of a piezoelectric ceramic.

As increasingly more researchers focus on PCAs, there have been numerous attempts to use
models to compensate for hysteresis. These are broadly divisible into two, namely, physics-based
models (white/gray box) and phenomenological models (black box) [16]. The physics-based models
are derived from the physical means of the hysteresis and can be strictly verified. The physical
model refers to a scientific concept that is abstracted out from a large number of experiments for the
convenience of research, excluding secondary factors and highlighting the main factors. One of the
advantages of physics-based models is their clear physical meaning. However, due to the complicated
form, physics-based models are not commonly used in the control of PCAs [17]. The commonly used
hysteresis models based on the hysteresis nonlinearity of piezoelectric ceramics are the Jiles–Atherton
(J–A) model [18] and the Maxwell model [19]. Malczyk et al. proposed an extension of the J–A model,
as the J–A magnetic hysteresis model, to describe the hysteresis curve narrowing phenomenon in
ferrite ZnMn material. Their new model permits the inclusion of a wide variety of additional effects
observed in ferromagnetic materials without invalidating the well known and broadly used J–A model
parameters. Experiments prove the feasibility of this method [20]. Liu et al. presented a Maxwell model
to describe the hysteresis in a piezoelectric actuator. They studied the effect of the number of elements
and presented both the forward and inverse algorithms. Further, they used the inverse Maxwell
model and obtained almost linear performances of the hysteresis compensation. The results of their
experiment validate the effectiveness of the proposed algorithm and showed a reduction in hysteresis
nonlinearity from 13.8 to 0.4% [21]. Phenomenon-based models are the ones in which researchers
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generalize and summarize input and output data and the phenomena of practical experiments, utilizing
mathematical methods to directly build a mathematical model to satisfy the experiment rule regardless
of the physical meaning, such as the Preisach model [22], the Prandtle–Ishlinskii (PI) model [23],
the Duhem model [24], and the Bouc–Wen model. Song et al. proposed a novel modified Preisach
model to identify and simulate the hysteresis phenomenon observed in a piezoelectric stack actuator.
Their approach can handle a varying-frequency dependence by employing a time-derivative correction
technique. Parameter estimation and model verification demonstrated high accuracy of the derived
model, keeping the deviation in a low percentage range (about 2–3%) [16]. Lin et al. reformulated the
Bouc–Wen model, the Dahl model and the Duhem model as a generalized Duhem model to compare
the performances of variant hysteresis models with respect to the tracking reference. Since the Duhem
model includes both the electrical and mechanical domains, it has a smaller modeling error compared
to the other two hysteresis models. Finally, a real-time experiment confirmed the feasibility of their
proposed method [25]. Wang et al. proposed a novel modified Bouc–Wen (MBW) model to describe the
asymmetric hysteresis of a piezoelectric actuator. They used a polynomial-based non-lag component
to realize the asymmetric hysteresis property. The results demonstrate that their model is superior
to its competitors’ models in describing the asymmetric hysteresis of a piezoelectric actuator [26].
However, the lack of a physical meaning makes the above-mentioned model difficult to understand.
Simultaneously, none of the abovementioned models reveal the cause of hysteresis from a microscopic
point of view, thus, modeling errors in these modeling methods are inevitable.

In this study, we first analyze the causes of the hysteresis based on the micropolarization
mechanism. Then, by observing the hysteresis curve of piezoelectric ceramic and establishing the
deformation speed law of piezoelectric ceramics, we explain the deformation rate of piezoelectric
ceramics at different stages, making use of the nucleation rate of microscopic domain evolution.
After that, according to the proposed piezoelectric ceramic deformation speed law, we split and then
recombined the play operator, and the improved PI model is proposed. Finally, the improved PI model
is compared with the traditional PI model and Preisach model. The experimental results show that the
accuracy of the improved PI model is increased by more than 80% as compared to the traditional PI
model and Preisach model.

This paper is organized as follows: Section 2 describes hysteresis based on the microscopic
polarization mechanism and domain wall theory, and reveals the cause of hysteresis from the
microscopic point of view. A novel piezoelectric ceramic deformation speed law is proposed, and its
analysis presented in Section 3. Section 4 presents the proposed tripartite PI model based on the
deformation rate law of piezoelectric ceramics. A contrast experiment with traditional PI model and
Preisach model is presented in Section 5. Finally, Section 6 provides a summary of discussion and
future works.

2. Causes of Hysteresis

2.1. Micromechanism

The piezoelectric ceramics are obtained from ferroelectric ceramics after the polarization treatment,
and thus, the property of piezoelectric ceramics is consistent with those of ferroelectric piezoelectric
dielectric materials. Under the influence of an electric field, they have electrostriction effect, inverse
piezoelectric effect, and ferroelectric effect [27].

The electrostriction effect is caused by dielectric polarization. In the presence of an electric
field, dielectric molecules get polarized, thereby generating dielectric stress and the corresponding
deformation. However, due to the strong mutual attraction between the nucleus and the electrons,
the applied electric field is not sufficient to destroy the dielectric property; moreover, compared
with the piezoelectric effect, the electrostrictive coefficient is several orders of magnitude smaller
than the piezoelectric coefficient; hence, the electrostriction effect is extremely weak in the macro
performance [28], and therefore, the output displacement of the piezoelectric ceramic can be ignored.
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Curie brothers while studying quartz crystals in 1880 detected crystal deformation [29]. Under the
effect of an external force, the surface of the crystal will have polarized charges when a mechanical
force is applied. This appearance of electrical polarization is called direct piezoelectric effect, as shown
in Figure 2a. On the contrary, if an electric field is applied to the piezoelectric crystal, the crystal not
only produces polarization, but also produces deformation. This phenomenon of deformation caused
by the electric field is called the inverse piezoelectric effect, as shown in Figure 2b. Piezoelectric ceramic
output displacement feature is due to the inverse piezoelectric effect. In general, inverse piezoelectric
effect can be expressed as

S = dE (1)

where S is the strain due to the electric field, d is the piezoelectric constant, and E is the applied electric
field strength. The inverse piezoelectric effect can be deduced from the above equation, is linear,
and there are no hysteresis characteristics.
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Figure 2. Piezoelectric effect diagram (Red dashed lines indicate after deformation): (a) Direct
piezoelectric effect diagram; (b) Inverse piezoelectric effect diagram. The black rectangle represents
the original shape of the piezoelectric ceramic block, and the red dashed rectangle represents the
deformed shape.

Piezoelectric ceramic is a kind of ferroelectric material. Inside the piezoelectric ceramic, in the
presence of an external force, the intrinsic dipole moments of the unit cell are arranged neatly in
the same direction and cause the piezoelectric ceramic crystal to be in a highly polarized state.
Spontaneous polarization in ferroelectric materials always splits into a series of small regions with
different polarization directions, so that the electric fields established by spontaneous polarization with
the external space offset each other. Therefore, the entire single crystal is nonelectrical. These small
areas with the same direction of spontaneous polarization are called domains. There are usually
four directions inside a piezoelectric ceramic transducer: the 71◦ domain, the 90◦ domain (as shown
in Figure 3), the 109◦ domain, and the 180◦ domain. It should be noted that, for the crystal strain,
only a non-180◦ domain steering contributes to the displacement of the PCAs, while a 180◦ domain
steering has no effect on the volume effect [30]. Spontaneous polarization of the domain will reorient
under the influence of an external electric field. This phenomenon of reorientation of the spontaneous
polarization in a piezoelectric ceramic in the presence of an external electric field is known as the
ferroelectric effect.
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Therefore, we define the micropolarization mechanism of a piezoelectric ceramic as if the direction
of the applied electric field in a piezoelectric ceramic is the same as the polarization direction.
Then, the domain inside the piezoelectric ceramic will have a certain degree of steering and elongation
and the boundary of the domain will also produce elongation deformation. Therefore, the piezoelectric
ceramic will have an elongation deformation along the polarization direction (as shown in Figure 4).
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presence of an electric field.

2.2. Analysis of the Causes of Hysteresis

When the applied electric field strength exceeds a certain critical field strength (the field strength
that begins to turn the electric domain), the strain of the piezoelectric ceramic (except for the inverse
piezoelectric effect) occurs, thus steering the non-180◦ domain (which is not completely reversible)
and gradually starts to dominate. When the field strength is on the decline, some non-180◦ domains
cannot be restored to the same level as at the time of increasing field strength.

In this study, we assume that N1 is the number of unit cells making non-180◦ domain turns in the
piezoelectric ceramic when the field strength is increased and N2 is the number of unit cells making
non-180◦ domain turns in the piezoelectric ceramic when the field strength is reduced. From the
above analysis, we can conclude that N1 > N2; this partially irreversible non-180◦ domain causes
the hysteresis in the displacement of the PCAs. Furthermore, the greater the field strength, the more
irreversible the non-180◦ domain, and greater the hysteresis displacement of the PCAs.

3. Piezoelectric Ceramic Deformation Speed Law

3.1. Derivation of Deformation Speed Law

We utilized the Renishaw XL-80 (Renishaw plc, Gloucestershire, UK) laser interferometer
(shown in Figure 5) to measure the deformation rate of piezoelectric ceramics for voltages ranging
from 0 V to 150 V. Figure 6 shows the deformation rates of the PCAs for an applied triangle wave
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voltage of 150 V driven by different frequencies. Figure 7 shows the deformation rates of the PCAs for
an applied triangular wave, a sine wave, and a manually added voltage.

As can be seen from Figure 6, although the triangular wave voltage frequency is different,
the three sub-plans followed the same law: the deformation rate in the lift stage is below the timeline
(which is the elongation rate), showing the trend of first increasing and then decreasing with time,
during the boost period. Deformation rate change is not monotonic and the maximum value is taken
as shown by the arrow in the figure. The return deformation rate is above the timeline (which is the
contraction rate), showing an increasing trend over time: in the voltage reduction phase, deformation
rate increases monotonically, with the maximum appearing at the end of voltage reduction phase.
Figure 7 shows that although the applied voltage wave forms are different, the three sub-plans follow
the above law.
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Figure 7. Deformation rate of piezoelectric actuators for an applied voltage of 150 V with frequency
1 Hz in (a) triangular wave form; (b) sign-wave form, u = 150(sinπt/5) positive half cycle; (c) Manually
added, 0 V–150 V–0 V, at steps of 15 V. Below the timeline, the voltage is loaded from the minimum
voltage (0 V) to the maximum voltage (150 V). Above the timeline, the voltage drops from the maximum
voltage (150 V) to the minimum voltage (0 V).

Therefore, we propose the deformation rate law of piezoelectric ceramics: In the phase of voltage
increase, the deformation rate of piezoelectric ceramics first increases and then decreases, and there
is an inflection point voltage. During the voltage drop phase, the deformation rate of piezoelectric
ceramics increases monotonically without the inflection point.

3.2. Analysis of Deformation Speed Law

In 2007, Rabe et al. proposed that when an electric domain turns under the influence of an electric
field, the entire domain is not oriented like a dipole. Instead, the following four stages occur: new
domain nucleation, vertical growth of new domain, horizontal expansion of the new domain, and new
domain merger [31].

In this study, we analyze the above law based on the nucleation rate of microscopic domain
evolution. As already mentioned in Section 2.1, piezoelectric ceramic deformation is due to the internal
electric domain steering. Experiments of predecessors have confirmed that the physical mechanism of
electrical domain inversion is the nucleation process and the nucleation rate of the domain is a function
of the applied electric field [32]. Hence, through the change of nucleation rate, one can obtain the
domain inversion volume change rate. Merz et al. obtained the relationship between the new domain
nucleation rate and the applied load through experiments, generally conducted in the lower electric
field range (E = 0.1 kV/cm–1.0 kV/cm). They found the nucleation rate in line with the exponential
relationship [33]

n1 = k1 exp(
−δ

E
) (2)

In the higher electric field range (E > 1.0 kV/cm), the nucleation rate conforms to the power function

n2 = k2E1.4 (3)

where n1, n2 represent the numbers of nucleations per unit time per unit area, δ is the activation of the
electric field, and k1, k2 are constants.
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We assume that the electric field changes uniformly. Taking saturated electric field as 2Ec, the total
number of domains contained in the piezoelectric ceramic is

N =
∫ Ec

0
k1 exp(

−δ

E
)dE +

∫ 2Ec

Ec
k2E1.4dE (4)

In a certain electric field, flipped domains are only related to the applied electric field.
Therefore, the deformation rate of piezoelectric ceramics at low electric field strengths can be expressed as

α1 =

∫ E
0 k1 exp(−δ

E )dE∫ Ec
0 k1 exp(−δ

E )dE +
∫ 2Ec

Ec
k2E1.4dE

(5)

At high electric field strengths, the deformation rate can be expressed as

α2 =

∫ Ec
0 k1 exp(−δ

E )dE +
∫ E

Ec
k2E1.4dE∫ Ec

0 k1 exp(−δ
E )dE +

∫ 2Ec
Ec

k2E1.4dE
(6)

We define E0, E1, E2, E3 . . . , En-1, En as the field strength points at equal intervals on the axis of
coordinates, while the distance between the two adjacent pressure points is defined as hi = Ei − Ei−1.
Assuming that Ec is an inflection point electric field (can be considered as a constant), and using the
geometric meaning of definite integral, we can get

α1 =

c
∑

i=1
hi exp(−δ

E )

M
(7)

In the formula M =
∫ Ec

0 k1 exp(−δ
E )dE +

∫ 2Ec
Ec

k2E1.4dE, since Ec is a constant, M can also be
considered as a constant. Similarly,

α2 =

m +
n
∑

i=c
hik2E1.4

M
(8)

where m =
∫ Ec

0 k1 exp(−δ
E )dE is also a constant.

As can be seen from Equations (7) and (8), α1 and α2 are electric field functions.
However, the exponential function grows much faster than the power function. Therefore, the growth
rate of α1 is obviously greater than the growth rate of α2, which means that the deformation rate
of the piezoelectric ceramics in the range 0~Ec is greater than the deformation rate of piezoelectric
ceramics in the range Ec~2Ec. In the piezoelectric deformation curve, the deformation speed of the
voltage rise phase first increases and then decreases, and there is an inflection point of deformation
rate. Combining this with the applied voltage period, we can determine the piezoelectric ceramic
hysteresis curve inflection point voltage.

Based on this basic fact, this study proposes a tripartite PI model—a modeling method for the
hysteresis characteristics curves of piezoelectric ceramics.

4. Hysteresis Modeling

Whether in scanning tunneling microscopes, atomic force microscopes, or other precision
positioning systems, quick and accurate positioning of the probe is desired. However, due to hysteresis,
it is difficult for the probes to locate the correct position quickly and accurately. Various ways to reduce
errors and improve the positioning accuracy are currently in practice. In this paper, we discuss the use
of modeling methods, as shown in Figure 8.

From the piezoelectric ceramic hysteresis curve shown in Figure 8, it can be seen that every time
the voltage rises and reduces, a hysteresis error is introduced; however, the maximum error occurs
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in the main hysteresis loop (the distance from A to B in Figure 8). Therefore, in this study, we only
model the main hysteresis loop of the hysteresis curve. As a next step, we will conduct a study on the
remaining displacements of the hysteresis curve.
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4.1. Play Operator and Prandtle–Ishlinskii Model

The PI hysteresis model can be thought of as consisting of a stack of hysteresis operators.
The mathematical expression for the play hysteresis operator shown in Figure 9a is

y(k) = max{u(k)− r, min[u(k) + r, y(k− 1)]} (9)

where k is the input time, r is the threshold of the play operator, u(k) is the input of the operator,
and y(k) is the output of the operator. The initial value of hysteresis operator is defined as

y(0) = max{u(0)− r, min[u(0) + r, h0]} (10)

If the piezoelectric actuator is started from the power off state, the value of h0 is 0.
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The PI hysteresis model was established in 1970 by the Russian mathematician Krasnoselskii,
developed from the Preisach model and it was referred to as the PI model. It is formed by different
play operators with different thresholds. The play operator is similar to the hysteresis curve in shape.
Different play operators are multiplied by different weighting values and superimposed on one another
to obtain the piezoelectric ceramic hysteresis PI model. The mathematical expression for the PI model is

Y(k) =
n

∑
i=1

wi × yi(k) =
n

∑
i=1

wi ×max{u(k)− ri, min[u(k) + ri, y(k− 1)]} (11)

where wi is the weight of each hysteresis operator in the mathematical sense, n is the number of
operators, Y(k) is the output of the model at the moment k, and ri is the threshold of the hysteresis
operator. The vector form of Equation (11) is

Y(k) = wT × y(k) (12)

where the threshold vector is W = (w1,···, wi,···, wn)T, the state vector of the operator at the moment k
is y(k) = (y1(k),···, yi(k),···, yn(k))T, and the state vector of the operator at initial time is y(0) = (y1(0),···,
yi(0),···, yn(0))T.

In the actual experiment, the step-down phase of the standard play operator is only partially
present in the first quadrant, leading to its limited accuracy in describing the backhaul part of the
hysteresis curve. The input voltage is always positive, which is increased from 0 V, therefore, in actual
modeling, only a portion of the standard play operator is used. The input and output of the unilateral
play operator are completely cuffed in the first quadrant, as shown in Figure 9b. The dotted and solid
lines shown in Figure 9b are the output of the operator during increasing and decreasing voltage times.
For u(k) ≤ r, the output y(k) always remains zero. For an input r ≤ u(k) ≤ umax, the operator output
is u(k) − r. When the input voltage drops from peak umax to umax − 2r, the operator output is umax

− r. After this, the operator output y(k) is u(k) + r, until the voltage drops to zero. The output of the
operator whose threshold r ≥ 0.5umax does not have an output of u(k) + r.

4.2. Traditional PI Modeling and Inverse Model

We define d(k) as the output displacement that corresponds to the input voltage of the piezoelectric
ceramic at time k; the expression of the error signal e(k) at time k is

e(k) = d(k)−Y(k) = d(k)− wT × y(k) = d(k)− yT(k)× w (13)
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The square of the error e(k) is

e2(k) = d2(k)− 2d(k)yT(k)w + wTy(k)yT(k)w (14)

In this study, the accuracy of modeling is measured by the addition of the squared errors
n
∑

k=1
e2(k),

where n is the number of sampling points. The weight vector w of the objective function is obtained
from the quadratic programming algorithm, i.e.,

f (w) =
n
∑

k=1
e2 =

n
∑

k=1
[d(k)− yT(k)]2

=
n
∑

k=1
d2(k)− 2

n
∑

k=1
d(k)yT(k)w +

n
∑

k=1
wTy(k)yT(k)w

(15)

The cross-correlation function row vector RT
xd and autocorrelation function matrix Rxx are

defined as

RT
xd =

n

∑
k=1

d(k)yT(k) (16)

Rxx =
n

∑
k=1

y(k)yT(k) (17)

Equation (15) can now be expressed as

f (w) =
n

∑
k=1

d2(k)− 2RT
xdw + wRxxwT (18)

This indicates that f (w) is a quadratic function of the weight coefficient vector w, which is an
upwardly concave parabolic surface and a function with a unique minimum. The weight coefficient
is adjusted so that f (w) is the minimum, i.e., we find the minimum drop along the curved surface
corresponding to the parabolic path. Here, we use the gradient descent method to find this minimum.

For Equation (18), we take a derivative with respect to the weight coefficient w, and we obtain the
gradient of f (w) as

∇(k) = ∇ f (w)

= −2Rxd + 2Rxxw
(19)

Make ∇(k) = 0, and the optimal weight coefficient vector can be obtained.

w = R−1
xx Rxd (20)

In order to ensure the positive definite of the quadratic matrix, the principle of threshold selection
is rmax < umax, ri =

i
n max|u(k)|, i = 0, 1, 2, · · · , n− 1. Using a program written in MATLAB software

(R2017b, MathWorks, Inc., Natick, MA, USA) for the operation, the parameters of the traditional PI
model are obtained. They are tabulated in Table 1.

The triangular wave form shown in Figure 10 was applied to the piezoelectric ceramic.
The experimental hysteresis curve of the piezoelectric ceramic and the curve obtained using the
traditional PI model along with the error plot are shown in Figure 11. Error analysis using MATLAB

software shows that the mean absolute error of the traditional PI model is δ1 = 1
n

n
∑

k=1
|ek| = 0.13947 µm.
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Table 1. Parameters of the Prandtl–Ishlinskii (PI) model. (i is the number of sampling point, ri is the
threshold of the play operator, wi is the weight of each hysteresis operator in the mathematical sense).

i ri wi

1 0 0.0493
2 15 0.0298
3 30 0.0120
4 45 0.0090
5 60 0
6 75 0
7 90 0
8 105 0
9 120 0

10 135 0
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The inverse PI model is also a PI model. The threshold vector and the weight vector of the
PI inverse model can be calculated using the relationship between the PI model and its inverse

model. The PI model has an analytical inverse, r′i =
i

∑
j=1

wj
(
ri − rj

)
, i = 1, · · · , n; w′1 = 1

w1
,

w′i = −wi/

[(
i

∑
j=1

wj

)(
i−1
∑

j=1
wj

)]
, i = 2, · · · , n; ui[0] =

i−1
∑

j=1
wjyi[0] +

n
∑
j=i

wjyj[0], i = 2, · · · , n.

Hence, the output expression of the PI inverse model at the time k is

U(k) =
n

∑
i=1

w′i × ui(k) =
n

∑
i=1

w′i ×max
{

y(k)− r′i , min
[
y(k) + r′i , u(k− 1)

]}
(21)

Figure 12 shows the experimental hysteresis curves of the piezoelectric ceramic and the ones
obtained using the PI inverse model along with the error plot.
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Error analysis using MATLAB software shows that the mean absolute error of the traditional

PI inverse model is δ2 = 1
n

n
∑

k=1
|ek| = 0.29435 µm. From the above analysis, we can conclude that the

traditional PI model and its inverse model exhibit large modeling errors.

4.3. Tripartite PI Model Based on the Deformation Rate of Piezoelectric Ceramics

In Section 3.1, we obtained the piezoelectric ceramic deformation speed law, and here, we propose
a tripartite PI modeling method based on this law. As already mentioned in Section 4.1, the step-down
phase of the standard play operator is only partially present in the first quadrant, therefore, the standard
play operator has a limited description of the backhaul of the hysteresis curve. The operator used in
the tripartite PI modeling method is a unilateral play operator. The input and output of the unilateral
play operator are completely limited to the first quadrant, as shown in Figure 13.
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The output expression of unilateral play operator is{
y(0) = max{u(0)− r, min[u(0), 0]}
y(k) = max{u(k)− r, min[u(k), y(k− 1)]}

(22)
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Figure 13. Schematic of one side play operator.

The dashed part is the boost part and the solid part is the buck part. The model is based on the
theory presented in Section 3. A data collection experiment of the piezoelectric ceramic hysteresis
curve under the triangle wave pressure provides support for modeling. The inflection point is captured
based on Figures 6 and 7, which show the maximum deformation speed in the rising process.

Modeling steps:

(1) The selection of operators is based on the principles of concave-convex consistency, which means
that in the hysteresis curve, the concave and convex parts of the curve correspond to the boost
part and the depressurization part of the play operator, respectively.

(2) The rising curve rises from zero voltage to the inflection point voltage uif (uif refers to the voltage
indicated by the arrows in Figures 6 and 7), i.e., when the deformation speed rises from 0 to the
maximum. The relationship between the voltage and displacement is described by a single lateral
play operator as shown in Figure 13 (the dotted portion).

(3) The rising curve rises from the inflection voltage uif to maximum voltage umax (umax refers to the
maximum point voltage applied to the piezoelectric ceramic during the whole rising cycle. It is
150 V here). Voltage–position relation in this part is described by a single lateral play operator
as shown in Figure 13 (the solid line). One side play operators and hysteresis curves have a
counter clock directivity. The reducing portion and rising process in the second part manifest the
epirelief characteristic. The reducing portion of play operators point to the origin of coordinates
while the second rising hysteresis curve deviates from it. Therefore, we need to model in reverse
when we use play operators in the reducing part to describe the second rising process of the
hysteresis curve.

(4) The retraced curve’s relation that reduces from the maximum to zero voltage is described by a
single lateral play operator as shown in Figure 13 (the solid line).

The application of operators in respective parts of the hysteresis curves during the model process
are shown in Figure 14.
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Figure 14. Relation of the play operator and the hysteresis curve.

The weight identification algorithm and threshold selection principle are consistent with
Section 4.2. Table 2 shows the identification parameters of the tripartite PI model.

The tripartite PI model also includes the tripartite PI inverse model. Figure 15a,b show the
modeling result of the tripartite PI model and its inverse model, respectively. Through MATLAB
software modeling, we obtained the mean absolute error of the tripartite PI model as

δ3 = 1
n

n
∑

k=1
|ek| = 0.02137 µm.

Table 2. Parameters of tripartite PI model. (i is the number of sampling point, r1 is the threshold of the
first stage play operator, w1 is the weight of the first stage hysteresis operator in the mathematical sense;
r2 is the threshold of the second stage play operator, w2 is the weight of the second stage hysteresis
operator in the mathematical sense; r3 is the threshold of the first stage play operator, w3 is the weight
of the first stage hysteresis operator in the mathematical sense).

i r1 w1 r2 w2 r3 w3

1 0 0.0415 0 0.0529 0 0.0322
2 6.42 0.0097 15 0.0027 15 0.0081
3 12.84 0.0082 30 0.0067 30 0.0054
4 19.26 0.0067 45 0.0022 45 0.0044
5 25.68 0.0051 60 0 60 0.0065
6 32.10 0.0043 75 0 75 0.0039
7 38.52 0.0026 90 0 90 0.0087
8 44.94 0.0016 105 0 105 0.0016
9 51.36 0 120 0 120 0.0009
10 57.78 0 135 0 135 0.0008
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Figure 15. The tripartite PI model and its inverse model: (a) experimental and tripartite PI model
hysteresis curves of a piezoelectric ceramic actuator; (b) experimental and tripartite PI inverse model
hysteresis curves of a piezoelectric ceramic actuator.

It should be noted that the unilateral play operator used for modeling returns to the origin
when the voltage comes back to zero, and the displacement of the tripartite PI model obtained by the
weighted addition of the unilateral play operator is also forced to zero when the voltage drops to zero.
Since the actual hysteresis curve does not return to zero when the voltage drops to zero, the tripartite PI
model shows a high error when the voltage is close to 0 only during the process of reducing pressure.

5. Experiment Results and Discussion

The purpose of the microdisplacement positioning system is to make the expected piezoelectric
ceramic output displacement equal to its actual displacement, as shown in Figure 16.
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Hence, in order to verify the effect of tripartite PI inverse model on the piezoelectric ceramic
driver’s hysteresis compensation, we designed a piezoelectric ceramic hysteresis model control effect
comparison experiment. The PCA used for this study was the PSt150/4/7VS9 piezoelectric ceramic
made by Core Tomorrow company (Harbin, China). We used the driving power HVA-150D. A3, made
by Harbin Core Tomorrow Science & Technology Co., Ltd., to generate driving power (the input voltage
was in the range of 0 to 150 V and the output displacement was in the range of 0 µm to 9.5 µm) to drive
the piezoelectric ceramic and a Renishaw XL-80 laser interferometer to measure the displacement.
The equipment used for the experiment was as shown in Figure 17. The driving power communicated
with the host computer through the standard parallel port (SPP) parallel communication port. Here, we
refer to the Preisach model parameters used in Song et al.’s study [16] and we used the experimental
data in this study to establish the PCAs Preisach model. The desired displacement was taken as the
input of the PI inverse model, the Preisach inverse model, and the tripartite PI inverse model. Thus, we
got three sets of control voltages. These three sets of voltages were used to control the piezoelectric
ceramic via the driving power. The output displacement was collected and recorded in real time by the
laser interferometer. The control block diagram is shown in Figure 18. After the experiment, the data
was processed and compared.

The results obtained are shown in Figure 19. The mean absolute errors (MAE) of the traditional
inverse PI model, the Preisach inverse model, and the tripartite PI inverse model compensation
controllers are MAE = 0.19019 µm, MAE = 0.10893 µm, and MAE = 0.03549 µm, respectively.
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Figure 19. Positioning accuracies of three kinds of inverse models: (a) PI inverse model; (b) Preisach
inverse model; (c) Tripartite PI inverse model.

Figure 20 shows a comparison of the positioning accuracies of the three models. It can be seen
from the figure that the positioning accuracy of the tripartite PI model was higher than that of the
traditional PI model and the Preisach model. Error analysis shows that the positioning accuracy was
improved by more than 80% in the case of the tripartite inverse model when compared to the other
two models. Experiments confirm that the proposed modeling method was effective.
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6. Conclusions

In this study, through the observation of the deformation rate for piezoelectric ceramics during
the process of applying voltage, we arrived at the general law of the deformation rate of piezoelectric
ceramics and this law has a certain universality. The tripartite PI model is proposed on the basis of
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the deformation rate law. The hysteresis curves of piezoelectric ceramics with different deformation
rate laws are modeled to obtain the tripartite PI inverse model. Since the second segment is inverted,
in the actual control application, the control voltage of the second stage needs to be used in reverse
order. The tripartite PI modeling method does not introduce other parameters and other operators.
The model is simple and easy to construct, and can accurately describe the characteristics of the main
hysteresis loop. The tripartite PI inverse model has even more accurate precision as a series controller
in the micro process and is used in the reverse cycle. Next, we will conduct a study about the remanent
displacement of the hysteresis curve to broaden the scope of application of the model.
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