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Abstract  
Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial 

dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclero-
sis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its 
transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence 
specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual 
transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atheroscle-
rotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in 
endothelial injury during atherogenesis.
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INTRODUCTION
Atherosclerosis represents a major factor of coronary 

heart disease characterized by the formation of fat-
laden plaque in large and medium-sized vessels. Dur-
ing atherogenesis, the endothelial layer of the vessels 
is constantly confronted with a range of stress signals. 
Elevated levels of circulating oxidized low-density li-
poprotein (oxLDL)[1], increased turbulent blood flow[2], 
and excessive inflammation[3] all contribute to en-
dothelial injury. Regardless of the nature of the stress 
cue, the transcriptome of vascular endothelial cells is 
profoundly altered[4-8]. For instance, down-regulation 
of eNOS transcription and simultaneous up-regulation 
of ET-1 transcription in endothelial cells precedes the 

impairment of vasodilation and rhythmic vessel tone[9]. 
Transcriptional activation of adhesion molecules, on 
the other hand, enables circulating leukocytes to attach 
to the endothelium and establish a pro-inflammatory 
microenvironment[10]. Therefore, elucidation of the 
mechanisms underlying these characteristic transcrip-
tional events will potentially further our understand-
ing of atherogenesis and yield druggable targets for 
the intervention and prevention of atherosclerosis. 
Recent advances in the transcriptional regulation of 
atherosclerosis suggest a growing involvement of the 
epigenetic machinery[11,12]. This mini-review is a mod-
est attempt to summarize the current state of research 
on the epigenetic regulation of endothelial disorder in 
atherosclerosis and to provide an outlook.
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EPIGENETIC REGULATION OF 
TRANSCRIPTION

Unlike prokaryotic organisms, eukaryotic tran-
scription takes place on nucleosome-wrapped chro-
matin. In order for the basic transcription machinery 
to be recruited to promoter region and initiate tran-
scription, chromatin has to be unwound to expose the 
binding sites. The epigenetic machinery, composed 
of histone modifying enzymes, DNA modifying en-
zymes, chromatin remodeling proteins, non-coding 
regulatory small RNAs, and histone variants, serves as 
an intricate regulatory layer for eukaryotic transcrip-
tion by altering chromatin structure[13]. Due to space 
constraints, we only give a brief overview of histone 
modifications and chromatin remodeling, which will 
be the focus of discussion in this review.

Histone modifications
The N-terminal tails of core histones, H3 and H4 in 

particular, can be post-translationally modified. The 
term "histone code" was coined to correlate a specific 
set of histone modifications to a predictable tran-
scriptional outcome[14]. Though a subject of constant 
controversy and debate, it is generally believed that 
acetylation of histones H3 and H4 surrounding the 
promoter region is synonymous with transcriptional 
activation. Whereas methylation of histone H3 lysine 
4 (H3K4) may herald activation, H3K9 methylation 
often marks repressed chromatin[15].  

Chromatin remodeling
In order for sequence-specific transcription factors 

and the basic transcription machinery to access the 
DNA and initiate transcription, the chromatin has to 
be unwound and loosened. This is achieved by mov-
ing the nucleosomes along the DNA at the expense of 
ATP hydrolysis[16]. Initially identified and character-
ized in yeast[17,18], the chromatin remodeling proteins 
represent a most conserved branch of the epigenetic 
machinery during evolution. The mammalian chroma-
tin remodeling complex is a multi-subunit mega-pro-
tein conglomerate that contains a catalytic component. 
Brahma related gene 1 (Brg1) and Brahma (Brm) are 
the best studied chromatin remodeling proteins with 
ATPase activity[19]. Brg1 and Brm have been known 
to participate in both transcriptional activation and re-
pression depending on the specific chromatin environ-
ment and the transcription factors they interact with[20].

EPIGENETIC REGULATION OF IN-
DUCTION  OF ADHESION MOLE-
CULES DURING ATHEROGENESIS

Under physiological conditions, the vessel wall is 
free from the attachment of circulating leukocytes. 
Under certain pro-atherogenic conditions, such as 
turbulent shear stress, oxidative stress, intermittent 
hypoxia, and excessive nutrition, endothelial cells 
up-regulate the transcription of adhesion molecules 
(CAM) including ICAMs, VCAMs, and selectins, 
which consequently allow a much stronger interaction 
between leukocytes and the endothelium perpetuating 
a pro-inflammatory niche[10,21]. 

Diabetes is one of the leading causes for vascu-
lopathies including atherosclerosis[22]. A seminal study 
by Brownlee and colleagues examined the effect of 
transient hyperglycemia on endothelial function[23]. 
Of great intrigue, these authors have found that ex-
posure to high glucose (HG) for a short period time 
(16 hours) induced a prolonged activation of VCAM-
1 in bovine aortic endothelial cells even when these 
cells were switched to and maintained in low glucose 
(LG) for additional 6 days, a phenomenon dubbed as 
"metabolic memory". Chromatin immunoprecipitation 
(ChIP) revealed an uptick of H4K4 monomethylation 
on the proximal promoter of the p65 gene mediated by 
the histone methyltransferase SET7/9. Transient HG, 
these authors propose, leaves an epigenetic dent on the 
p65 gene such that even in the absence of the original 
stimulus endothelial dysfunction will sustain.

Circulating oxLDL presents a major risk to athero-
sclerosis in part by promoting the expression of adhe-
sion molecules[24]. Fang et al. have recently reported a 
novel epigenetic mechanism underlying the induction 
of ICAM-1 in human endothelial cells[25]. oxLDL ac-
tivated the transcriptional modulator MRTF-A, which 
in turn was recruited to the ICAM-1 promoter by p65 
and synergistically stimulated ICAM-1 transcrip-
tion with oxLDL. Depletion of MRTF-A erased H3/
H4 acetylation and H3K4 dimethylation but restored 
H3K9 trimethylation on the ICAM-1 promoter. Since 
MRTF-A is known to engage the epigenetic machin-
ery in regulating transcription within the vascula-
ture[26-29], it is conceivable that MRTF-A may serve as 
the critical link of endothelial injury bringing histone 
modifying enzymes to the chromatin. Alternatively, 
Kim et al. propose that the regulatory subunit of the 
NAPDH oxidase complex p66shc mediates the in-
duction of ICAM-1 by LDL[30]. LDL induced histone 
acetylation but inhibited DNA methylation of the 
p66shc promoter to up-regulate the transcription of 
p66shc. Of note, oxLDL has been reported to elicit 
epigenetic changes on a host of gene promoters in en-
dothelial cells[31-33], although a genome-wide survey is 
lacking. 

Chronic hypoxia has emerged as an independent 
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risk factor of atherosclerosis[34]. As a result of in-
termittent low oxygen supply, the transcriptome of 
endothelial cells undergoes marked changes that in-
clude an increase in the transcription rate of adhesion 
molecules[35]. Our laboratory has recently uncovered 
a potential role for Brg1 and Brm in hypoxia induced 
endothelium-leukocyte interaction. Expression of 
Brg1 and Brm in vitro was up-regulated in cultured 
endothelial cells exposed to 1% O2 and in vivo in 
pulmonary arteries isolated from mice kept in a low-
oxygen chamber for 4 weeks. Introduction of Brg1 
and Brm into a Brg1/Brm-negative cell line (SW-13) 
greatly potentiated hypoxia-induced CAM transacti-
vation whereas silencing of Brg1/Brm in endothelial 
cells crippled the effect of hypoxia. Brg1 and Brm 
formed a dynamic interaction with p65 on the CAM 
promoters where p65 recruits Brg1/Brm and Brg1/
Brm reciprocally stabilizes p65. Brg1/Brm influ-
enced CAM transactivation by altering histone H3/H4 
acetylation and H3K4 methylation creating a friendly 
chromatin structure for the basic transcription ma-
chinery. More important, endothelial-specific target-
ing of Brg1 and Brm normalized CAM expression 
and attenuated hypoxia induced leukocyte adhesion 
in mice. Of intrigue, a similar strategy also alleviated 
the development of atherosclerotic lesions in Apoe-/- 
mice, indicating that Brg1 and Brm might be able to 
orchestrate endothelial injury in response to a range 
of different pro-inflammatory stimuli (unpublished 
observation).

EPIGENETIC REGULATION OF IN-
DUCTION OF VASOACTIVE SUB-
STANCES DURING ATHEROGENESIS

Endothelium derived NO plays a critical role in 
maintaining vascular integrity, the disruption of which 
contributes to atherogenesis[36]. Not surprisingly, 
eNOS expression can be down-regulated by multiple 
atheroprone factors[37]. oxLDL decreases acetylation of 
H3 and H4 and dimethylation of H3K4 while simul-
taneously increasing H3K9 trimethylation surround-
ing the eNOS promoter consistent with the repression 
of eNOS transcription in endothelial cells[25]. Again, 
MRTF-A appears to be the key coordinator of these 
epigenetic changes. In addition, there is a decrease 
of eNOS expression in mice deficient in LSD1, an 
H3K4/K9 demethylase, highlighting the role of his-
tone methylation in fine-tuning eNOS transcription[38]. 

Fish et al. conducted a comprehensive survey of 
histone modifications on the eNOS promoter region 
in endothelial cells challenged with anoxia[39]. In the 
proximal region of the eNOS promoter (-166/-26), 
H3/H4 acetylation and H3K4 dimethylation declined 

as early as 1 hour following exposure to low oxygen. 
In contrast, these signature changes were not observed 
on the distal eNOS promoter (-891/-797 and -488/-
398). A closer examination revealed that acetylation 
levels of specific lysine residues fluctuated with dis-
tinct patterns. For instance, 1 hour after hypoxia, only 
H3K14 and H4K5 acetylation plummeted significant-
ly, which was joined by a decrease in H3K9/H4K8/
H4K12 acetylation at 2 hours with H4K16 acetylation 
unaltered. Interestingly, histone H2A.Z was evicted 
from the proximal eNOS promoter during hypoxia 
thereby creating a closed chromatin conformation and 
rendering a repressed transcription state. Consistently, 
a recent study has correlated decreased eNOS ex-
pression with high levels of DNA methylation on the 
proximal eNOS promoter in patients with obstructive 
sleep apnea (OSA), a typical pathology of hypoxia[40]. 
Paradoxically, eNOS expression has been observed to 
increase, rather than decrease, in endothelial cells in 
response to hypoxia probably as means of compensa-
tion[41]. The up-regulation of eNOS transcription is ac-
companied by increased H3 and H4 acetylation across 
the eNOS promoter region (-4501/+23)[42]. Therefore, 
while it remains debatable how eNOS transcription 
responds to hypoxia, suffice it to say that a specific  
epigenetic code is intimately associated with the tran-
scription status.

The vessel wall, particularly the endothelial layer, 
is subject to the pressure caused by various hemo-
dynamic forces. Whereas laminar shear stress (LSS) 
is considered atheroprotective and stimulates eNOS 
transcription, turbulent blood flow creates shear stress 
that damages the vascular endothelium especially at 
the sites of arterial branches[43]. Among the detrimen-
tal effects exerted by pro-atherogenic shear stress are 
accelerated turnover of endothelial cells, increased 
adhesion of leukocytes, accumulation of reactive oxy-
gen species, and decreased synthesis of NO stemming 
from eNOS repression[44-47]. Illi et al. have reported 
that LSS increased global H3 and H4 acetylation levels 
in endothelial cells through activating histone acetyl-
transferases (HATs)[48]. In addition, LSS augmented 
H3 and H4 acetylation on c-Jun and c-Fos promoters. 
Since c-Jun/c-Fos is considered essential for eNOS 
transactivation[49], increase AP-1 activity likely ex-
plains elevated eNOS transcription in response to LSS. 

Impaired vessel relaxation during atherogenesis is 
also rooted in the enhanced expression of endothelin, 
a potent vasoconstrictor[50]. Accumulating evidence 
has provided a clear link between histone modification 
and ET-1 transactivation. In diabetic rats, increased 
ET-1 release was accompanied by an up-regulation of 
the histone acetyltransferase p300[51]. This observation 
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has been replicated in high glucose treated endothelial 
cells[52]. Silencing of p300 completely abolished ET-1 
activation by high glucose thought it remained unclear 
whether p300 acted through histone or non-histone 
factors. Wort et al. have demonstrated that H4 acetyla-
tion was increased on the ET-1 promoter surrounding 
a conserved p65 binding element in endothelial cells 
treated with two pro-inflammatory stimuli, TNF-α 
and IFN-γ[53], suggesting a potential role for a HAT 
like p300. In rats with intrauterine growth retarda-
tion (IUGR) where hypoxia plays a determining role, 
H3K9/K18 and H4 acetylation increased on the ET-1 
promoter[54]. Recently, our investigation has led to 
the identification of an MRTF-A-centered epigenetic 
complex on the ET-1 promoter in response to hypox-
ia[55]. Under hypoxic conditions, MRTF-A interacted 
with and was recruited by the sequence specific tran-
scription factor SRF to the proximal ET-1 promoter 
(-81/+150). Upon the joining of Brg1/Brm, this epi-
genetic complex altered histone acetylation and H3K4 
methylation to facilitate the binding of RNA polymer-
ase II thereby activating ET-1 transcription. 

FUTURE DIRECTIONS
The turn-of-the-century saw a boom in research on 

epigenetics with the initiation of several epigenomics 
projects[56]. Relying on high-fidelity chromatin immu-
noprecipitation (ChIP) coupled with high-throughput 
sequencing techniques, these projects aim to decode 
the epigenetic information bringing insights for the 
prevention and intervention of human diseases. Sev-
eral exciting findings have provided clues for such 
basic biological events as adipogenesis[57], macro-
phage activation[58], and cell cycle progression[59]. So 
far, there has been a lack of effort in deciphering the 
epigenetic code on a genomewide scale in any of the 
major cardiovascular diseases including atherosclero-
sis. Since single-gene based epigenetic analysis tends 
to give very limited and often biased knowledge to 
the understanding of atherogenesis, long considered a 
multifactorial disease, basic scientists and clinicians 
like will benefit from an undertaking that unveils a 
comprehensive picture of epigenetic regulation of en-
dothelial injury in atherosclerosis.
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