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Abstract

Introduction: Complexity in the brain has been well-documented at both neuronal and hemodynamic scales, with
increasing evidence supporting its use in sensitively differentiating between mental states and disorders. However,
application of complexity measures to fMRI time-series, which are short, sparse, and have low signal/noise, requires careful
modality-specific optimization.

Methods: Here we use both simulated and real data to address two fundamental issues: choice of algorithm and degree/
type of signal processing. Methods were evaluated with regard to resilience to acquisition artifacts common to fMRI as well
as detection sensitivity. Detection sensitivity was quantified in terms of grey-white matter contrast and overlap with
activation. We additionally investigated the variation of complexity with activation and emotional content, optimal task
length, and the degree to which results scaled with scanner using the same paradigm with two 3T magnets made by
different manufacturers. Methods for evaluating complexity were: power spectrum, structure function, wavelet decomposition,
second derivative, rescaled range, Higuchi’s estimate of fractal dimension, aggregated variance, and detrended fluctuation
analysis. To permit direct comparison across methods, all results were normalized to Hurst exponents.

Results: Power-spectrum, Higuchi’s fractal dimension, and generalized Hurst exponent based estimates were most
successful by all criteria; the poorest-performing measures were wavelet, detrended fluctuation analysis, aggregated
variance, and rescaled range.

Conclusions: Functional MRI data have artifacts that interact with complexity calculations in nontrivially distinct ways
compared to other physiological data (such as EKG, EEG) for which these measures are typically used. Our results clearly
demonstrate that decisions regarding choice of algorithm, signal processing, time-series length, and scanner have a
significant impact on the reliability and sensitivity of complexity estimates.

Citation: Rubin D, Fekete T, Mujica-Parodi LR (2013) Optimizing Complexity Measures for fMRI Data: Algorithm, Artifact, and Sensitivity. PLoS ONE 8(5): e63448.
doi:10.1371/journal.pone.0063448

Editor: Alejandro Raul Hernandez Montoya, Universidad Veracruzana, Mexico

Received December 23, 2012; Accepted April 2, 2013; Published May 21, 2013

Copyright: � 2013 Rubin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Office of Naval Research, Grant# N000140410051 (LRMP) and the National Science Foundation, Grant# 0954643
(LRMP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Lilianne.Strey@stonybrook.edu

Introduction

The prevalence of power-law or scale-free behavior in natural

processes is well-established [1], with theoretical justification for

the complexity found in neurobiological and physiological systems

[2,3]. These include considerations of robustness, in which

redundancies maximize system integrity in the event of damage,

as well as adaptability: operating on the edge of chaos, complex

systems position themselves for optimal responsivity to inputs, as

well as ability to maintain homeostatic regulation. The complexity

of brain activity has been observed and modeled on many levels,

from neuronal spiking [4,5] and local field potentials [6] to EEG

[7], suggesting that scale-free behavior may be fundamental to

neural information processing. Recent fMRI experiments demon-

strate that brain signal fluctuations differ from other scale-free

natural processes, suggestive of different underlying mechanisms

[8], and that fMRI time series exhibit complexity that is

functionally significant [9]. Moreover, there is evidence that

deviations from chaotic behavior can be used diagnostically in

identifying disease, using ECG [10–12], EEG [13], MEG [14],

NIRS [15], and fMRI [8,16–18].

FMRI applications of complexity have dealt with both between-

voxel and between-subject differences. For example, active and

inactive voxels in the human visual cortex show markedly different

power-law and Hurst exponents during a simple rotating

checkerboard fMRI paradigm [19]. Shimizu et al. [20] applied a

multifractal version of the Hurst exponent (the Hölder exponent)

to fMRI data to show that active voxels are clearly distinct from

both non-active ones and white matter. More recent results

illustrate that the power law exponent varies across networks of

voxels (e.g. attention, default, motor, saliency, and visual) [8] and

is affected by cognitive load [21]; for review, see [22] and [3].

Between-group differences in time series complexity either focused

on a particular disorder, such as Alzheimer’s disease [17], autism

[16], and schizophrenia [18], or individual variability across

psychophysiological variables such as trait anxiety, heart rate
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variability [23], age, cholinergic effects, and cognitive performance

[24,25].

Complexity measures in physiology have historically been

applied to time-series that are long, rich, and have strong

signal/noise, as with 24-hour ECG. In contrast, fMRI time-series

tend to be short (5–10 minutes), sparse (TR = 1–2.5 s), and subject

to sufficient scanner and physiological artifacts that significant pre-

processing is the norm. Despite the application of complexity

methods to fMRI data, and the challenges associated with it, no

systematic analyses of the optimal way to compute such

complexity measures specifically for fMRI data have been

published. To this end, here we evaluate the most common

methods for computing time series complexity, investigate the

effects of data preprocessing, activation and scanner differences,

with eye towards optimizing the balance between detection

sensitivity and resilience to artifact. For the sake of permitting

direct comparison between methods, each of which is scaled

differently, all values will be normalized to the Hurst exponent.

Methods

2.1 Overview
This paper references a range of fMRI datasets, with all data

collected on a single Siemens Magnetom Trio 3T scanner, unless

specified otherwise. The tasks include a resting state design (RST;

N = 11), a ‘‘guided-rest’’ design modified to standardize content

across subjects by presentation of a movie, the pilot episode of the

television series ‘‘Lost’’ (GRST-LOST; N = 11), event-related

presentation of emotionally valent faces (ER-FACES; N = 22),

block presentation of faces (BL-FACES; N = 22), and a block

design auditory anticipation task (BL-ANT; N = 22). The GRST-

LOST task was implemented mainly to provide a realistic design-

free stimulus that would ensure that participants do not fall asleep

during the lengthy scan session designed to provide long time

series. The particular choice of show was made based on the

general public consensus that the show is highly rated (IMDB

rating of 9.3) and therefore would be engaging. The other tasks

(BL-ANT, ER-FACES, BL-FACES) were chosen for the purpose

of task design comparison, as all three sets of stimuli were

presented to the same 22 participants.

2.2 fMRI Acquisition Parameters
For the three sets of stimuli presented to the same 22

participants (BL-ANT, ER-FACES, BL-FACES), we acquired

fMRI data using a 3 Tesla Siemens Trio whole body scanner

equipped with an eight-channel SENSE head coil. We acquired

T2*-weighted whole-brain volumes with an EPI sequence with the

following parameters: TR = 2500 ms, TE = 22 ms, flip an-

gle = 83u, matrix dimensions = 96696, FOV = 224 mm6224 mm,

slices = 36, slice thickness = 3.5 mm, gap = 0. For RST and

GRST-LOST the TR was changed to 2100 ms and the number

of slices to 37. Standard preprocessing procedures were performed

in SPM8, including image realignment corrections for head

movements, slice timing corrections for acquisition order,

normalization to standard 26262 mm Montreal Neurological

Institute space, and spatial smoothing with a 6-mm full width at

half maximum Gaussian kernel. The BL-ANT task was prepro-

cessed in SPM5, but the procedures used produce numerically

identical results in SPM5 and SPM8. As for the other tasks, the

standard preprocessing in SPM8 included realignment, normali-

zation, and spatial smoothing with the same parameters as above.

The number of acquired volumes in these tasks was as follows: BL-

ANT = 232, ER-FACES = 226, BL-FACES = 264, RST = 143,

GRST-LOST = 1190.

2.3. Task Description
The GRST-LOST data were collected during an uninterrupted

scanning session, with a five-minute pure rest condition (RST)

always preceding guided-rest condition (GRST-LOST). During

the rest condition, participants were instructed to relax and let

their minds wander while looking at a fixation cross and waiting

for the show to start. Immediately after the rest condition,

participants viewed the entire first part (42 minutes) of the pilot of

ABC’s TV-series ‘‘Lost’’ (GRST-LOST). Using simultaneous eye-

tracking during scans, we verified that all participants stayed

awake during the entire course of the experiment. Immediately

after watching the episode, the participants rated the content of

the show on a nine-point scale in terms of arousal (‘‘excitement’’)

and valence (‘‘pleasantness’’). The ratings were provided for each

of the two hundred 10–15 second scenes into which the episode

was split. The participants were instructed to rate their emotional

responses rather than the content. The sequences of clip ratings

were interpolated to match the length of the show and averaged

across subjects. The valence scores were inverted for ease of

interpretation.

In the BL-ANT task, the participants anticipated an unpleasant

or a neutral stimulus during a 16-second countdown preceded by a

cue informing them of the upcoming stimulus. The stimuli were

aversive (loud) or benign (soft) bursts of white noise. A complete

description of the anticipation task and its findings using standard

(GLM) analyses were previously published [26].

For the BL-FACES task, the Ekman faces [27] were presented

in 20-second blocks of nine faces, each block containing either

angry, fearful, neutral, or happy faces. The sequence of blocks was

counterbalanced for order across participants. This design was

equivalent to one used in our previous studies [18,23]. The ER-

FACES task required more stimuli for a comparable length of

time, so we used a subset of Karolinska faces [28], with fearful and

happy emotional expressions (26 individuals, 13 female). The

images were cropped along the hairline and converted to

grayscale. The design was generated using OptSeq [29] using 2–

10 second inter-stimulus intervals.

2.4. Complexity Estimation and Normalization to Hurst
Exponent

The generalized Hurst exponent was computed for time series

x(t) for q = 1 and q = 2 according to the structure function:

S(q,t)~SDx(tzt){x(t)DqT!tqH(q,t) [30]. For time series of

length L, we used ten logarithmically spaced lags t ranging

between 1 and log10(L/50). The estimates of H(q), denoted by HQ1a

and HQ2a, were estimated by the slope of line fitting log(S(q,t))/q vs.

log(t).

The generalized Hurst exponent was also estimated by a

different implementation [31] of the same relation in accordance

to [32–34]. Again, the Hurst parameter was estimated for q = 1

and q = 2 (HQ1b/HQ2b), with the default maximum lag of 19.

An alternative method for estimating Hurst exponent is the

aggregated variance technique [35], available through Matlab File

Exchange [36,37]. A series of length N is divided into N/m blocks

of length m, and sample variance of each block X(m) is computed.

For series of finite variance, the sample variance var(X(m)) will be

asymptotically proportional to m2H-2 for large N/m and m. The

Hurst exponent HAV is estimated by computing the slope 2HAV-2

of the graph of sample variance vs. m.

Another closely related quantity is Higuchi fractal dimension

[38], which estimates the fractal dimension D of a time series curve

from segments L(k) constructed from k samples, with L(k)!k{D,

where D is related to Hurst estimate HHFD through D = 2–HFD
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[39]. We used k = 5 and k = 10 samples, denoted by HHFD-5 and

HHFD-10, respectively. A Matlab implementation of the algorithm

[40] can be found through Matlab File Exchange [41].

The Matlab Wavelet Toolbox [42] also provides several

estimates of the Hurst parameter. The first two estimates are

based on the discrete second-order derivative, using an FIR and a

wavelet filter, denoted HDD and HDDW, respectively [43]. The

third estimate is obtained from the slope of the variance of local

detail coefficients vs. scale [39]. For the last estimate, in addition to

the default Haar wavelet, we used higher order Daubechies

wavelets of scales 2, 4, 8, and 16, denoted by Hdb1, Hdb2, Hdb4, Hdb8,

and Hdb16.

The Hurst parameter can, under certain assumptions [44], be

computed through the relation H = (b–1)/2, where b is the

negative slope of the power spectral density of the time series

PSD(x) vs. frequency f on a log-log scale (PSD(x)!f {b). We used

two methods to estimate the power spectrum; one employing the

Matlab fast Fourier transform (PSD(x) = |FFT(x)|2) and the other

used Welch’s periodogram with eight windows of 50% overlap.

The corresponding values of the Hurst exponent calculated from b
estimates are denoted HFFT and HpWelch, respectively.

The estimation of the Hurst parameter via Detrended

Fluctuation Analysis (HDFA) was performed in accordance with

[11]. First, each N-point long time series x(t), t = 1. N, is integrated

y~
PN

1 (x(t){x) and a set of window – or box – lengths is

defined. We chose box sizes on a log-scale between 4 and N/4

points such that the ratio between successive box sizes was 21/8.

For each box size, time series segments of that many points are

created by a sliding window method. A linear trend is fit and

subtracted from each segment and the root-mean-square of the

residuals is computed. More formally, for each window length n

and set of k segments y(k), the root-mean-square fluctuation is

F (n)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
1 ½y(k){yfit(k)�2

q
, where yfit(k) is the linear fit to the

segment y(k). This calculation is repeated for each box size n and

the slope of the log-log scale fit of F(n) vs. box size yields the scaling

exponent a, where H = a–1 [2]. Since the DFA estimate is affected

by the range of box sizes, we also computed DFA over small and

large box sizes (HDFA-S/HDFA-L) by fitting the upper and lower

parts of F(n) vs. box size separately. For example, for our longest

1190-point time series, small boxes ranged 4–40 points and large

ranged 40–300 points).

H via Rescaled Range was estimated using the relationship

E R(n)=S(n)½ �!CnH
, where S(n) is the standard deviation and R(n)

is the range of cumulative sums of zero-meaned n-size segments of

time series Xi, i = 1.L. The recipe for computing is as follows. (1)

Define a range of scales: L,L/2,L/4,…L/k such that L/k . = 8. (2)

For each scale, define n-length segments of time series (e.g. one

segment for scale L, two for L/2, etc.). (3) For each segment of

length n, subtract the mean and compute cumulative sum

Ym~
Pm

1 (Xi{X ), with m = 1.n. (4) Calculate R(n) = max(Y1.Yn)

– min(Y1.Yn) over standard deviation S(n). (5) Find E[R/S] by

averaging R/S over all segments for a particular scale. (6) Estimate

Hurst exponent HRS as the slope of log2(E[R/S]) vs. log2(scale) (e.g.

|log2(L)|, |log2(L/2)|, etc.).

In order to test the consistency of measures, we generated 1000

time series with the wfbm function for wavelet-based generation of

fractional Brownian motion with H [0,1] (Matlab’s Wavelet

Toolbox) and compared the estimated values of H with the

generated ones. Robustness of each measure was assessed through

introducing spikes by changing values of a random subset of points

within each of 1000 time series generated with H = 0.5. The

magnitude of spikes ranged from zero to six standard deviations of

the simulated time series. Spikes were both positive and negative in

magnitude. The number of spikes varied from zero to five percent

of the time series length. The susceptibility to spikes was estimated

as a t-statistic describing the change in estimated value of the

Hurst exponent as compared to the estimate of H from time series

without spikes.

2.5. Correlation between Measures
Since all of the methods attempt to estimate the same quantity,

we assessed their consistency by applying the measures to the same

time series. Measure precision – the consistency of estimating a

particular Hurst exponent – was estimated by correlating Hurst

estimates for different measures applied to the time series with

H = 0.5 (N = 1000). Measure accuracy – the ability to estimate a

range of Hurst exponents accurately – was assessed by correlating

Hurst estimates for different measures across 1000 time series with

Hurst exponent ranging from zero to one.

2.6. Error Drop-off
The error of the estimates s decreases as the length of the time

series L increases, which can be expressed by the relationship

s!L{a, where a is the error drop-off rate. a was computed for

‘‘brown noise’’ time series of ten lengths ranging from 100 to

10000 points over 100 instances.

2.7. Signal Processing
Various signal processing techniques are applied to fMRI time

series in order to improve signal to noise ratio. For example, it is

commonly accepted that high-pass filtering and inclusion of

motion parameters in the regression model is appropriate for most

GLM analyses. Other techniques involve inclusion of higher order

motion terms to account for nonlinearity of magnetic field

distortion. In resting state connectivity literature, band-pass

filtering is often applied to exclude fluctuations beyond a certain

frequency, since they are believed to be non-physiological. Inter-

subject correlation analyses suggest removal of global signal to

avoid inflation of correlation values [45]. However, to the best of

our knowledge, no comprehensive comparison of effects of signal

processing on complexity of fMRI time series has been performed

to date.

The types of corrections applied to the time series were

detrending (denoted by ‘d’), regressing out motion parameters

(denoted by ‘m’) and their squares (denoted by ‘2’), high-pass

filtering at 0.01 Hz (denoted by ‘fhi’), band-pass filtering in the

0.01–0.1 Hz range (denoted by ‘fbp’), and regression of the global

signal out of the time series (denoted by ‘bcw’), which consisted of

three regressors: mean time series of the whole brain, cerebrospi-

nal fluid, and white matter. The motion parameters were derived

from SPM’s realignment procedure, the filtering was performed

using 10th order Butterworth filter, and global regressors were

obtained using canonical masks for brain, white matter, and

cerebrospinal fluid included in the SPM8. We considered all

reasonable combinations of corrections, excluding higher order

motion correction ‘2’ without the linear term and redundancy of

‘fhi-fbp’ combination, which resulted in 36 combinations that

included the original untouched time series (denoted by ‘o’).

The success of the correction was assessed in two ways: by

comparison of values Hurst estimates within grey and white matter

voxels and by strength of relation to activation measured as the

area under the curve (AUC) of ROC curves constructed using

SPM’s t-map of activation in response to task.rest contrast. The

true positives were voxels with top 1% of the t-values – a criterion

ensuring a constant ratio of true to false positives across subjects,

regardless of strength of the individual response to the task. As an

alternative measure of activation to the task we also computed

Optimizing Complexity Measures for fMRI Data
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cross-subject, or inter-subject, correlations (ISC) that showed

which time series co-varied across subjects throughout the task.

The cross-subject correlations were computed via pairwise

correlations between subjects’ time series (for each voxel, after

detrending, regressing out the motion and global signal, and high-

pass filtering), converting correlations to z-scores using Fisher’s

transformation, and averaging across subjects [46]. The ISC,

designed to pick up activation to GRST-LOST, allowed us to

compare this task to BL-FACES and ER-FACES.

Results

3.1. Measure Error and Susceptibility to Spikes (Simulated
Data)

As Figure 1 illustrates, most measures return the same values of

H that were used to generate the time series. The few exceptions

are HAV, HRS, and power spectrum based measures, HFFT and

HpWelch. For HAV and HRS, a derivative needs to be applied to

transform fractional Brownian motion (fBm) to fractional Gaussian

noise (fGn). HFFT and HpWelch are not intrinsically bounded at 0.5

since there is no natural upper limit on the slope of the log-power-

spectrum: rather the upper bound of the spectrum exists due to the

way wavelet-based fBm time series are generated. We therefore

used the derivative offset by one to obtain H estimates for

simulated data.

The Hurst estimates of the integral and the derivative of the

time series show that the majority of the measures are bounded

from above and below, which means that H-estimates are

artificially squeezed within the theoretically valid range for the

Hurst exponent – a potential loss of sensitivity in case experimental

data exhibits unusually high or low complexity. The unbounded

measures – HFFT, HpWelch, Hdb*(except Hdb1), HDD, HDDW – show an

approximately constant offset as a result of time series integration

and differentiation. The average error on the H-estimates was on

the order of ,0.05 and consistent over the [0,1] range, with HDFA-

L and Hdb* showing the largest errors.

Figure 2 illustrates the susceptibility of the measures to spikes

as a function of their number and magnitude. As expected, all

measures gravitated toward ‘‘white noise’’ values as the number of

spikes and their magnitude increases. HQ2a, the second derivative

estimates (HDD, HDDW) and FFT-based estimates (HFFT, HpWelch)

were most sensitive to small number of spikes, reaching an upper

bound quicker than other measures. HQ*b and HRS showed an

almost uniform increase regardless of spike amplitude. Hdb*

estimates were least susceptible to spikes, but low-order Hdb*

showed slight decreases in H as the number and magnitude of

spikes increased.

Figure 1. Estimates of the Hurst exponent are consistent and monotone for simulated wavelet-based fractional Brownian motion
time series with Hurst exponent ranging from zero to one. Along with estimates for the simulated time series (blue), estimates for the time
series integral (black) and derivative (green) are also shown. The red dotted line represents the theoretical value. Mean error is calculated as the
average of the errors at each point; starred errors were computed for the derivative.
doi:10.1371/journal.pone.0063448.g001
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3.2. Correlation between Measures (Simulated Data)
The correlations between Hurst estimates of the same 1000 time

series with H values distributed uniformly between 0 and 1 were

very high, indicating reliability (Figure 3, values above diagonal).

Among the least correlated measures were Hdb*, HDFA, HDFA-L,

HAV, and HRS. Although most measures produced accurate

estimates of the Hurst exponent, the correlation between the

measures computed over the same data with a specific exponent

were significantly smaller (Figure 3, values below diagonal show

the correlations for H = 0.5). The highest correlations occurred

between HQ*, HFFT, HpWelch, HHFD*, and HDFA-S, and between HAV,

HRS, and HDFA-L. HDD and HDDW were mostly correlated to each

other and Hdb* were only weakly correlated to each other and to

other measures. These groupings reflect similarities in computa-

tion between various measures despite the markedly different

algorithms used to compute the quantity of interest.

3.3. Decrease in Estimation Error with Time-series Length
(Simulated Data)

The error drop-off rate a, which is the rate of decrease in

variance of the H-estimates as the length of the time series

increases, is reported in Figure 4. For most measures, a is ,0.5,

which indicates a standard one over square root relationship,

except for HQ*a, HDFA*, HAV, and HRS, which are less efficient

(Figure 5).

The computation times for time series of varying length are

shown in Figure 4 as well. Although computation times depend

on length and parallelizability of the implemented algorithms, the

measures can roughly be separated into two categories – the ones

whose compute times were within an order of magnitude of the

fastest one and the ones that were not. The most efficient ones

were HQ*a, HDD*, HHFD*, HFFT, HAV, and HRS. The time to

compute Hurst estimate for an entire brain for a single person

varied from minutes to hours depending on the choice of measure,

with the overall computation time of 1.5–2 hours per person for all

measures combined. Most of that time was taken up by the slower

Figure 2. Number of spikes (as a percentage of points in a time series, x-axis) and their magnitude (in units of standard deviation of
original time series, y-axis) affect Hurst estimates differently. The z-axis represents normalized to [0, 1] range one-sample t-test differences
from the H-estimates of time series without spikes (each point on the surface is the t-value difference in H resulting from the introduction of spikes to
the time series; the set of all t-scores for all measures was linearly transformed to [0, 1] range to show relative change due to presence of spikes).
Volume is calculated as the difference between the surface and the plane defined by H-values of unaltered time series (spike magnitude of zero).
doi:10.1371/journal.pone.0063448.g002
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measures (HQ*b, Hdb*, HpWelch, and HDFA*), which renders these

measures less practical for exploratory fMRI analysis.

3.4. Effect of Signal Processing: Detrending; Regressing
Out Motion Parameters and Global Mean; Filtering (fMRI
Data)

We evaluated the effects of signal processing on Hurst estimates

in terms of improvement of sensitivity to tissue type (assessed by

grey-to-white matter contrast) and activation (assessed by AUC of

ROC curves). Since the types of signal processing applied to the

time series are not independent, we looked at the effect of adding a

particular type of processing on top of all others. For example, to

evaluate the effect of detrending, we compared all types of

processing that involved linear detrending (12 types) to the ones

that did not (24 types). Similarly, to evaluate the effect of high-pass

filtering, we compared all types that involved high-pass filtering

(12 types) to ones that were not high- or band-pass filtered (12

types). The results of comparisons are summarized in Figure 6.

In terms of increasing sensitivity to activation for the FACES

tasks, for both t-contrast based and ISC based AUC values were

most improved by high-pass filtering, which was significantly

better than band-pass filtering for event-related design and only

marginally worse than band-pass filtering for blocked design,

suggesting that activation is best captured by dynamics above a

certain frequency. For GRST-LOST, we used a five-minute

segment three minutes into the show (GRST-LOST5) in order to

make comparisons to other, shorter, tasks meaningful. For GRST-

LOST5, both detrending, regressing out the global mean, and

filtering increased AUC, but high-pass filtering still had the

greatest effect. The agreement between t-value and ISC based

results was not surprising, as there was over 60% spatial overlap

for the top 3% of the values at the group level (66.5% for BL-

FACES, 63.2% for ER-FACES). High-pass filtering remained the

dominant effect for these three tasks as well as for RST task in

terms of grey-white matter contrast, although both detrending and

regressing out motion and global signal helped too. Second-order

motion correction did not improve any of the metrics except

GRST-LOST5, where it had the weakest effect.

In order to establish the best combination of processing steps,

we computed contrasts for every combination vs. unprocessed

estimates. For GM.WM contrast the clear winner for BL-

FACES, ER-FACES, GSRT-LOST5, and RST tasks, was the d-

m2-bcw-fbp combination (Wald x2 = 251.5, 208.4, 121.9, 152.3,

respectively, df = 1, p,,0.0001), followed by the d-m-bcw-fbp

combination (Wald x2 = 160.0, 122.6, 74.8, 92.9, respectively,

df = 1, p,,0.0001) and the d-m-bcw-fhi combination (Wald

x2 = 119.4, 107.1, 91.5, 87.8, respectively, df = 1, p,,0.0001).

The contrasts were consistent for all tasks, with minimum

correlation across processing combinations of 0.91. The combi-

nations that gave the biggest improvements in the AUC-T and

AUC-ISC values over the unprocessed time series involved high-

pass and not band-pass filtering for ER-FACES and GRST-

LOST5; the winner combination was d-m2-bcw-fhi (AUC-ISC

Wald x2 = 29.5, 63.6, respectively, df = 1, p,,0.001) followed

closely by d-m-bcw-fhi (AUC-ISC Wald x2 = 26.9, 60.8, respective-

ly, df = 1, p,,0.001). For BL-FACES, unlike other tasks,

including motion regressors seemed to hinder agreement between

complexity and activation, and the best combination involved only

detrending, regressing out global mean, and high-pass filtering (d-

bcw-fhi AUC-T, AUC-ISC Wald x2 = 30.2, 34.1, respectively,

df = 1, p,,0.001).

Since the second order motion correction did not significantly

improve AUC or GM.WM contrast, we chose to focus on the d-

m-bcw-fhi combination for rating the measures. We ranked the

performance of each measure in terms of sensitivity to activation

Figure 3. Correlations between Hurst estimates of simulated time series. Correlations between Hurst parameter estimates show that they
are consistent but not precise. Below Diagonal: correlations between the measures computed over the same 1000 time series with H = 0.5 show that
for most measures, errors on estimating the same exponent are not strongly correlated (light green to white to blue) with the exception of a few
positively correlated (dark green) measures. Above Diagonal: correlations between Hurst estimates of the same 1000 time series with H values
distributed uniformly between 0 and 1 show that measure estimates are consistent across a range of exponents, with some measures showing
stronger correlation (green) than others (yellow).
doi:10.1371/journal.pone.0063448.g003
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measured by AUC and to tissue type measured by GM.WM

contrast (Figure 7). AUC-T and AUC-ISC ranks were averaged

for the FACES tasks to avoid double-counting. For sensitivity to

activation, in order from best to worst, the Hurst estimates ranked:

HpWelch, HFFT, HHFD10, HQ2a, HHFD5, HQ1a, HQ2b, HDFA-S, HQ1b,

Hdb8, HDFA, Hdb4, HDD, HDDW, Hdb16, HRS, Hdb2, HAV, Hdb1, HDFA-L.

Similarly, for sensitivity to tissue type, the estimates ranked:

HpWelch, HFFT, HHFD10, HDFA-S, HQ2b, HDFA, HQ1b, HHFD5, HRS,

HQ2a, Hdb4, HQ1a, HDFA-L, HAV, Hdb2, Hdb8, Hdb1, Hdb16, HDDW, HDD.

The performance of each of the measures is illustrated in

Figure 8, which shows a close relation between activation and

complexity in the BL-FACES task. The ROC curves constructed

using the top 1% of GLM t- or ISC r-values show strong

agreement for HQ*, HFFT, HpWelch, HHFD*, HDFA, HDFA-S, Hdb8 and

Hdb16. The AUC values are the same as those presented in

Figure 7. The middle columns of the left and right panel of the

figure qualitatively illustrate the distribution of complexity values

in the brain, with HpWelch and HFFT showing the most discernible

edges of the brain. The right columns show a cross-section through

the middle slice of the top 10% of the values of the corresponding

image. The top row shows that the bulk of the activation to the

task.rest contrast resides in the visual cortex and that the inter-

subject correlation also picked up the co-activation in the visual

cortex across subjects, though in this case high r-values extended

further into the midbrain. Most of the Hurst estimates picked out

the visual and the prefrontal areas; in fact, the complexity

measures accentuated these areas much more strongly than the

activation maps themselves. For the complexity measures, these

cross-sections also explain the AUC values, especially the low ones:

some measures such as HAV and HDFA-L fail to adequately cover

the visual areas and instead show higher H-values in the prefrontal

regions, some (Hdb*) are grainy, and others (HDDW, HDD, HRS) fall

somewhere in between.

3.5. Relation to Emotional Content (Arousal and Valence)
Not only did the complexity measures show high sensitivity to

activation in tasks in their entirety, but the complexity also

fluctuated with the emotional content of the LOST episode. We

used the inter-subject correlation across the entire GRST-LOST

task to identify regions engaged in passive viewing of the TV-

episode, which, unsurprisingly, were well-associated with audiovi-

sual processing (Figure 9). We then extracted the time series from

Figure 4. Comparison of Hurst estimates of simulated data. Volume under the surface of Figure 2, error drop-off rate alpha of Figure 5, and
computation time (in seconds) for 1000 time series of length 256, 1024, 4096, and 16384 points. The computations, optimized using MATLAB Parallel
Computing Toolbox, were performed on a quad-core Intel i7-960 @ 3.6 GHz.
doi:10.1371/journal.pone.0063448.g004
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Figure 5. The complexity measures sorted by the average error drop-off rate a mostly follow the standard one over square root
relationship (a = 0.5). The error drop-off rate was computed for ‘‘brown noise’’ time series of ten lengths ranging from 100 to 10000 points over
100 instances. The dotted vertical lines indicate which pairs of neighboring measures are significantly different at p,0.001 (uncorrected).
doi:10.1371/journal.pone.0063448.g005

Figure 6. Comparison of combinations of signal processing. Results of an ANOVA of processing by measure (20) by subject (22 for FACES, 11
for GRST-LOST) show significant improvements in sensitivity and grey-white matter contrast of Hurst estimates (df = 1 for each comparison). The AUC-
T values were derived from ROC curves constructed using top 1% of t-values of task vs. rest contrast. The AUC-ISC values were derived from ROC
curves constructed using top 1% of z-transformed inter-subject correlations (ISC). The GM.WM values were derived from differences in Hurst
estimates for grey and white matter voxels. Positive results significant at p,0.05 are highlighted.
doi:10.1371/journal.pone.0063448.g006
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the top 5% of the values in the brain (r.0.15), subdivided them

into fifteen overlapping 10-min segments, and computed both

complexity and average arousal and valence ratings of each

segment. Complexity was strongly associated with the change in

the emotional content for most of the Hurst estimates, with a

slightly stronger association with the valence (Figure 10).

Although HAV, HDFA-L, and Hdb* preserved the overall shape of

the response, their relation to self-report measures was either

marginally or non significant. The second-derivative based

estimates HDD* showed large variance in estimates across subjects,

deeming these measures less robust.

In addition to reflecting emotional content, Hurst estimates also

varied with the average inter-subject correlation computed over

the same 10-min segments (Figure 10) within the areas identified

as active (Figure 9). The majority of measures showed strong

correlation between H and ISC, with HAV and Hdb* being least

responsive in this context as well.

3.6. Optimal Task Length
One of the most often raised concerns regarding the compu-

tation of complexity measures is the number of points in a time

series necessary for a robust estimate of the Hurst exponent. The

unusually long for fMRI GRST-LOST task was designed, in part,

to address this issue. Figure 11 shows the increase in grey-to-

white matter contrast and AUC for time series from five to forty

minutes in length, starting from the beginning and the end of the

task. For the majority of measures, both GM.WM contrast and

AUC increase monotonically with the number of points. Most of

the measures plateau past the 20-min mark, suggesting that

increasing time series length past a certain point ceases to improve

estimation of complexity. The largest yield in performance per

length of task occurs around the 10-minute mark, which means

that in order to properly estimate H, the fMRI task has to be at

least that long.

Figure 7. Sensitivity of Hurst estimates to activation and tissue type. The presented measures of sensitivity of Hurst estimates to activation
and tissue type show that power-spectrum based measures are the most sensitive. The AUC-T values were derived from ROC curves constructed
using top 1% of t-values of task.rest contrast. The AUC-ISC values were derived from ROC curves constructed using top 1% of z-transformed inter-
subject correlations (ISC). The GM.WM values were derived from differences in Hurst estimates for grey and white matter voxels. The signal
processing pipeline applied to the time series was d-m-bcw-fhi (see text). The values presented are averages across subjects (FACES: N = 22, RST &
GRST-LOST: N = 11).
doi:10.1371/journal.pone.0063448.g007

Optimizing Complexity Measures for fMRI Data

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e63448



3.7. Scanner Differences (fMRI data)
Given the increasing interest in shared, multi-institutional, data

sets, as well as the development of neurodiagnostics, the degree to

which complexity measures are sensitive to scanner differences is

important. The BL-ANT task was run on two 3T scanners at the

same institution – N = 22 on a Siemens and N = 12 on a Philips –

Figure 8. Hurst parameter estimates for the block faces task closely follow activation shown in the top row of the figure. The top left
pane reflects activation (t-scores) for the contrast of task.rest, which in this case is presentation of emotionally valent faces vs. a fixation cross. The
top right pane illustrates inter-subject correlations; scores presented as r-values for illustrative purposes. Rows below the first one show, for each
measure: the ROC curves for agreement between complexity and activation with corresponding AUC values, the sagittal middle slice showing the
distribution of H-values within and outside the brain, and the same slice overlaid with the heat map of highest H-values. All heat maps present the
top 10% of the values in the entire image.
doi:10.1371/journal.pone.0063448.g008
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using the same acquisition parameters. Activation areas and levels

were equivalent across scanners [26]. Although we used indepen-

dent populations for the different scanners, the groups were

equivalent in terms of age (t = 1.98, p = 0.06, df = 32, mean age

diff = 4.5 yrs), sex (t = 1.17, p = 0.25, df = 32), handedness (t = 0.64,

p = 0.53, df = 32), or trait anxiety (t = 0.62, p = 0.54, df = 32).

Despite this, principal component analysis (PCA) of Hurst

exponents clearly separated the two groups across the first

principal component (Figure 12, x-axis). The differences were

highly significant for all estimates except HAV. The principal

components contained information about Hurst estimates derived

from average time series from every region of the WFU pickAtlas

[47,48] for each participant.

Discussion

4.1. Relation to Activation
One of the claims made in the past was that the fractal nature of

the fMRI signal is connected to activation [20], but the question

remains as to whether results obtained from complexity versus

statistical measures are different only in sensitivity or also in kind.

Task designs are usually optimized to elicit maximal activation as

determined by applying a general linear model to the data. This

means that regions of the brain that are active irrespective of the

task are ignored (e.g. maintenance of homeostasis). Because scale-

invariance measures require hundreds of points, deriving condi-

tion-specific assessments of scale-invariance in fMRI is currently

not viable. This discrepancy in the approach makes conceptual-

izing the relationship between the two types of analysis nontrivial.

However, there are several avenues we can take in order to make

inferences about this relation.

We chose to validate against a simple paradigm that used well-

established stimuli (i.e. Ekman and Karolinska faces), so that the

activated brain areas would be previously established. For these

tasks (BL-FACES and ER-FACES), the bulk of activity is

associated with processing of a cohort of emotional faces picked

out by the task.rest contrast that compares it to a null condition

that simply shows a fixation cross. To identify active voxels

common to every subject, we correlated time series across pairs of

subjects (Figure 8; results for ER-FACES very similar, not

shown). These heat maps give different weighting to brain activity,

stressing the voxels that fluctuated together more than those

showing greatest difference in response to the stimuli.

The heat maps of the Hurst estimates accentuate activity in the

visual cortex much more strongly than the activation maps

themselves, indicating that they are, in a sense, more sensitive.

This is consistent with the previous publications [19,20] that

imaged four slices along the calcarine sulcus and showed that

active voxels exhibit distinctly different behavior across nonlinear

measures (such as Hurst exponent and its multifractal counterpart)

even when applied to the residuals of GLM regression. However,

the Hurst estimate maps extend beyond activation maps into the

medial surfaces of precuneus, posterior parietal cortex, and

posterior cingulate gyrus and also show a distinct ‘‘hot spot’’ in

the medial prefrontal cortex. This indicates that although Hurst

measures may be more sensitive to some aspects of brain activity,

they certainly do not show one-to-one correspondence to

‘‘activation’’ defined by the GLM, as referred to by most of the

fMRI literature.

4.2. Relation to Emotional Content (Arousal and Valence)
Given the nature of the show, the participants’ ratings of arousal

and valence of the content were highly correlated. Across the

fifteen windows, the correlation between arousal and inverted

valence was very high (r = 0.92, p,,0.001), which meant that

most exciting clips were unpleasant and the less exciting ones were

found to be pleasant. The positive correlation to complexity

suggests that active regions had higher complexity when process-

ing the more calm/pleasant content rather than the exciting/

unpleasant one. Given the positive correlation to ISC, periods of

higher complexity also had higher synchronized (across subjects)

activity.

Figure 9. Inter-subject correlation across eleven participants for GRST-LOST task shows that most activation is restricted to areas
involved in audiovisual processing. The glass brain (left) shows distribution of ISCs throughout the brain, while the heat map (right) outlines the
areas deemed active at r.0.15. Though the activation appears symmetric, the maximally activated voxel is located on the left (MNI = 264, 220, 2).
doi:10.1371/journal.pone.0063448.g009
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Although both self-report measures correlated with ISC-based

activation (r = 20.73, p = 0.002 for arousal; r = 20.70, p = 0.004

for inverted valence), they showed less variation with complexity

than ISC potentially due to the fact that they are discrete, limited

in range, and prone to inaccurate representation of the true nature

of emotional content of the show as the scenes are separated by a

considerable amount of time and other emotional content.

4.3. Scanner Differences
Because the first principal component contained information

about the whole brain divided into regions according to the WFU

PickAtlas [47,48] for each person, it is unlikely that group

differences arose due to local differences in brain activity.

Furthermore, the differences in Hurst exponents between groups

are very strong, arguably much stronger than between any two

random samples of healthy human participants. This serves as an

indication that the main variable driving the effect is the choice of

scanner. Although the scan parameters were the same (TR, TE,

flip angle, number of slices, gap, FOV, reconstruction matrix), the

implicit differences between scanners contributing to background

noise were strong enough to be picked up by the Hurst estimates

and clearly separate a uniform group of people. The exact causes

that give rise to differences in properties of time series across

scanners require a more rigorous investigation, but overall, this

comparison shows that while combining datasets across scanners

may in some cases be acceptable for standard linear model

analyses, it is not for complexity investigations, unless the scanner

differences are explicitly modeled or corrected for.

Conclusions

5.1
The comparisons based on simulated and experimental data

show that complexity measures are highly correlated to each other

and indeed measure the same quantity, but with differing

sensitivity and susceptibility to artifacts (Figure 13). The poorest

performing measures overall were Hdb*, HDFA* (except HDFA-S),

HAV, and HRS. Daubechies wavelet based computations (Hdb*) have

long computation times, are not sensitive to spikes, and show poor

sensitivity to activation, tissue type, and emotional content; for

these Daubechies wavelet based estimates the overall performance

increases with the wavelet order up to a point (Hdb8), and then

deteriorates. HRS and HAV, performed poorly across the board. In

terms of image contrast, overlap with activation, and group

differences, HDFA* performed poorly as well, with HDFA-S

outperforming HDFA and HDFA-L, suggesting that the bulk of

useful information is found at shorter lags. The computation times

Figure 10. Variation in Hurst exponent estimates (black) correlates with arousal (red), valence (blue), and ISC-derived activation
(green) throughout the GRST-LOST task. All estimates were computed over fifteen 10-minute windows evenly distributed throughout the task
with 77% overlap, with the window centers plotted on the x-axis and z-scores of normalized variables on the y-axis. Error bars represent standard
errors across the 11 participants. For arousal and valence, the positive values represent segments of the show rated as more calm and pleasant, while
negative ones represent excited and unpleasant. The self-report measures were highly correlated (r = 0.92, p,,0.001). Highlighted plots represent
complexity measures that correlated with either valence, arousal, or activation at p,0.01 level.
doi:10.1371/journal.pone.0063448.g010
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were also very high for this set of measures. The HQ*b measures are

naturally very similar to HQ*a, but are the longest to compute, with

the error drop-off rate as the only distinguishable characteristic.

The most consistently successful measures were the power-

spectrum based measures HFFT and HpWelch, with the latter slightly

outperforming the former while taking much longer to compute.

HHFD* did not stand out in either a positive or a negative way, but

performed consistently well across all the comparisons, ranking

second overall behind the power-spectrum based measures, with

HHFD-10 being slightly better than HHFD-5. HQ*a took the third

place, having failed only one comparison.

5.2. The Bottom Line
The results outlined above recommend certain steps for

estimating complexity of fMRI time series. First, it is crucial to

either collect data using a single scanner or control for this effect.

Second, it appears that detrending, regressing out the global mean,

and excluding low frequencies improves agreement between

complexity and activation. First order motion correction also has

a small, but significant improvement on tissue contrast. Third,

given the typical two-second acquisition time for fMRI, the tasks

should last about 20 and definitely more than 10 minutes. Finally,

the best measures to use are either the power-spectrum based ones

(HFFT or HpWelch) on a restricted frequency range (above

,0.01 Hz), or HHFD* or HQ*a on filtered data.

Although the comparisons of numerical implementations of

various algorithms over the simulated data give a ‘‘clean’’

comparison, the real usefulness of Hurst estimates is, however,

assessed by their relation to an interpretable quantity, such as

activation or tissue type. The better estimates, as outlined in this

paper, are more sensitive to some aspects of brain activity than

linear regression and correlation approaches. Despite the potential

utility of complexity in neuroimaging, the underlying neuronal and

BOLD features that give rise to the differences in Hurst estimates

are not mechanistically well understood, and future investigation

will be necessary to address this important question.

Figure 11. Mean (and standard error across 11 subjects) (A) GM.WM contrast (T-values on y-axis) and (B) overlap with activation
for top 10% of the values (AUC on y-axis) increase for most of the Hurst estimates as the length of the time series (x-axis, minutes)
increases. The two lines represent windows that start at the beginning (red) and the end (blue) of the task. Vertical lines between pairs of window
sizes indicate that the subsequently larger window size significantly improves GM.WM contrast (A) or AUC (B) as compared to the smaller one for
both forward and backward counting windows (p,0.025 each). The highlighted plots in (B) indicate measures that attained an AUC of 0.85 or more.
doi:10.1371/journal.pone.0063448.g011

Figure 12. Strong scanner differences illustrated through principal components analysis. The red and blue points correspond to sets of
subjects scanned on different scanners with the same task (BL-ANT). Each of the plots show the distribution of subjects along the first (x-axis, arbitrary
units) and second (y-axis, arbitrary units) principal components of a matrix of Hurst region averages by subject. Each of the Hurst estimates was
computed for the d-m-bcw-fhi processed average time series of every region of WFU pickAtlas. The t- and p-values represent differences between
scanners along the first principal component (x-axis).
doi:10.1371/journal.pone.0063448.g012
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