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Abstract

Motivation: Oxford Nanopore Technologies sequencing devices support adaptive sequencing, in which undesired
reads can be ejected from a pore in real time. This feature allows targeted sequencing aided by computational meth-
ods for mapping partial reads, rather than complex library preparation protocols. However, existing mapping meth-
ods either require a computationally expensive base-calling procedure before using aligners to map partial reads or
work well only on small genomes.

Results: In this work, we present a new streaming method that can map nanopore raw signals for real-time selective
sequencing. Rather than converting read signals to bases, we propose to convert reference genomes to signals and
fully operate in the signal space. Our method features a new way to index reference genomes using k-d trees, a
novel seed selection strategy and a seed chaining algorithm tailored toward the current signal characteristics. We
implemented the method as a tool Sigmap. Then we evaluated it on both simulated and real data and compared it
to the state-of-the-art nanopore raw signal mapper Uncalled. Our results show that Sigmap yields comparable per-
formance on mapping yeast simulated raw signals, and better mapping accuracy on mapping yeast real raw signals
with a 4.4� speedup. Moreover, our method performed well on mapping raw signals to genomes of size >100 Mbp
and correctly mapped 11.49% more real raw signals of green algae, which leads to a significantly higher F1-score
(0.9354 versus 0.8660).

Availability and implementation: Sigmap code is accessible at https://github.com/haowenz/sigmap.

Contact: kinfai.au@osumc.edu or hli@jimmy.harvard.edu or aluru@cc.gatech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Oxford Nanopore Technologies (ONT) sequencers produce millions
of long reads with >10 kbp N50 in a single 48–72 h run. These long
reads can span repetitive regions of a genome that are hard to re-
solve using short reads, thus enabling assemblies with high continu-
ity (Miga et al., 2020). Direct RNA-sequencing through nanopores
can sequence full-length RNA transcripts without amplification,
which can greatly aid in de novo transcriptome analysis (Garalde
et al., 2018). Without the need for additional library preparation,
amplification-free nanopore sequencing also enables detection of nu-
cleotide modifications (Simpson et al., 2017).

Nanopore sequencers work by measuring ionic current as a mol-
ecule passes through a pore. Since different molecules in the pore
modulate the current in specific ways, individual nucleotides can be
inferred by base calling of the raw current signal. For various ONT
pore versions (e.g. R7, R9), the current signal is mainly affected by
five or six nucleotides (i.e. k-mers where k¼5 or 6) occupying the
pore at a given time point. These current readings usually have a
low signal-to-noise ratio, which makes it hard to identify the

corresponding k-mers. To tackle this problem, many base callers
have been developed to ‘translate’ the raw signals to nucleotide
sequences (Rang et al., 2018). State-of-the-art base callers (e.g.
ONT official base caller Guppy) can achieve around 90% accuracy.
However, base calling is computationally expensive and can last
days on a high-end central processing unit (CPU) or hours on a
graphical processing unit (GPU) even for a relatively low throughput
run with only �20 Gbp data.

The ONT MinION is a portable device that typically yields
up to 30 Gbp sequencing data using a single flow cell at a low
cost. Portability of the MinION sequencer allows sequencing to
be performed in the field or the clinic, for example, surveillance
for Ebola virus in West Africa (Quick et al., 2016) and fast de-
tection of SARS-CoV-2 with high sensitivity (Wang et al., 2020).
The MinION device is compatible with recently released Flongle
flow cells with even lower prices while reducing the sequencing
throughput to �2 Gbp for smaller analyses and tests. However,
this throughput is usually too low for many applications that re-
quire high sequencing depth, which makes targeted sequencing
necessary.
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Targeted sequencing allows for enriched coverage of desired gen-
omic regions, which reduces sequencing costs and labor to achieve
high coverage at regions of interest. Typical targeted sequencing
approaches do not work well with nanopore sequencing due to loss
of nucleotide modifications, high input requirements, low through-
put or long protocols (Gilpatrick et al., 2020). On the other hand,
the targeted sequencing protocol designed specifically for nanopore
sequencing (Gilpatrick et al., 2020) addressed some of these issues,
but still requires additional preparation time and is limited by the
maximum size and number of targeted regions.

Alternatively, Loose et al. (2016) took advantage of the selective
sequencing feature of the MinION sequencer and performed real-
time targeted sequencing for amplicon enrichment. This is achieved
by temporarily reversing the voltage across a nanopore, thereby
rejecting an undesired molecule and making the pore available for
other molecules. Thus, if there is a sufficiently fast computational
method that can identify whether reads come from regions of inter-
est, one can quickly eject undesired reads and leave the pores for
reads of interest so that undesired genomic regions are not sampled
and regions of interest are enriched. In their work, they use dynamic
time warping (DTW) to align raw signals to reference genomes to
decide whether reads are of interest. Since the time complexity of
DTW is quadratic in terms of sequence length, it only works on
small genomes that are kilobase pairs long. To address this issue,
methods based on base calling followed by read mapping were pro-
posed (Edwards et al., 2019; Payne et al., 2020). However, base call-
ers are not optimized to work on small chunks of reads; thus, they
may generate suboptimal read sequences, which makes mapping
challenging (Kovaka et al., 2020). As base calling is a computation-
ally intensive process, enough compute power (e.g. sufficiently
powerful GPUs) to achieve real-time base calling may not always be
available outside laboratories.

To avoid these drawbacks, Uncalled (Kovaka et al., 2020) was
developed to map raw signals in real time without base calling. It
builds an FM-index (Ferragina and Manzini, 2005) for reference
genomes, segments the raw signals into events (collapsed current
readings for each k-mer) and converts the events into possible k-
mers using the ONT pore model. High-probability k-mers are used
to query the index and extended. Since raw signals are noisy,
Uncalled keeps track of all possible positions of each k-mer as the
mapping proceeds. After removing false-positive locations by a seed
clustering method, the final mapping is reported if one of the loca-
tions is sufficiently better than the others. The authors demonstrated
successful use of Uncalled on targeted sequencing of small genomes
(<30 Mbp) and reported that it cannot work properly on mapping
raw signals to large genomes that have high repeat content.

In this work, we present a new streaming method to map raw
signals for real-time adaptive sequencing. In contrast to previous
scalable methods, which convert signals to sequences and then lever-
age existing methods or data structures to map sequences, we con-
vert reference genomes to signals and present a novel streaming
method and tool Sigmap to map raw signals to the reference. We
evaluated the performance of Sigmap and Uncalled on simulated
and real data. Compared with Uncalled, while achieving comparable
performance on mapping yeast simulated raw signals, Sigmap
mapped slightly more yeast real raw signals accurately and provided
4.4� speedup. Moreover, Sigmap correctly mapped 11.49% more
green algae raw signals with significantly higher F1-scores (0.9354
versus 0.8660). This indicates that our method can map raw signals
to genomes of size >100 Mbp, an important advancement over pre-
vious base-calling-free methods.

2 Materials and methods

Seed-and-extend is a widely applied strategy to map erroneous long
reads (Chaisson and Tesler, 2012; Li, 2018; Sedlazeck et al., 2018;
Sovi�c et al., 2016). Typically, exact or approximate word matches
between reads and reference genomes are extracted and then co-lin-
ear matches (a sequence of matches that occur in ascending order in
both reads and reference genomes) are identified to generate final
alignments. Our algorithm also follows the seed-and-extend strategy

(see Fig. 1 for an overview) but is specifically designed to handle
noisy raw signal data. Prior to mapping, the reference genome is
converted to events and an index of the reference is built once
(Section 2.1). In the mapping step, raw current signals are first seg-
mented into events and normalized (Section 2.2). Then seeds that
are less likely to contain segmentation errors are selected from the
processed raw signal and used to query the index (Section 2.3). After
collecting the seed hits (anchors) on the reference, we designed and
implemented a chaining algorithm tailored toward the current signal
characteristics to find co-linear anchors as chains (Section 2.4). The
chains are filtered by their scores to ignore suboptimal mappings.
To do real-time selective sequencing, we presented a streaming ver-
sion of the proposed algorithm (Section 2.5). The details of each
step are as follows.

2.1 Indexing
Different pore models are provided by ONT for various pore ver-
sions since current readings are affected by different number of
nucleotides occupying the pore at each sequencing time point. In
this probabilistic model, current readings for each k-mer are
assumed to follow a Gaussian distribution with known parameters.
Thus using the pore model, one can estimate the probability of a
given event being any of the k-mers, or convert a nucleotide se-
quence to an event sequence by simply substituting k-mers with their
expected current readings.

Uncalled uses the prior strategy to generate high-probability k-
mers from read events, while our method leverages the latter to con-
vert the reference to events. Note that in the first case, a full iteration
on all the distributions is usually required to identify high-probabil-
ity k-mers that an event may correspond to, which can be slow
when many events in the read are processed simultaneously. But
converting a k-mer to its expected current reading is a direct transla-
tion once a hash table is built for the pore model using k-mers as
keys and expected current as values. Since the conversion is only
done once for reference genomes, we can save the overhead of
applying pore models to read events to find high-probability k-mers
during the mapping stage.

Formally, let s ¼ s1s2 . . . sn be a nucleotide sequence of length n
over alphabet R and its corresponding sequence of k-mers be
KðsÞ ¼ k1k2 . . . kn�kþ1, where ki ¼ sisiþ1 . . . siþk�1. The pore model
is defined as f : Rk

R, which gives the expected current correspond-
ing to a k-mer. We create the corresponding event sequence as
EðsÞ ¼ es

1es
2 . . . es

n�kþ1, where es
i ¼ f ðkiÞ. This is translated to a set of

points PðsÞ ¼ fps
i ¼ ðes

i ; e
s
iþ1; . . . ; es

iþd�1Þ; 1 � i � n� k� d þ 2g in
d-dimensional space. Similarly, for each raw signal sequence r, we
generate its events EðrÞ ¼ er

1er
2 . . . er

m (described in Section 2.2). The

Fig. 1. Overview of the proposed algorithm. The reference genome is first converted

to a sequence of events es
1; e

s
2; . . . (red lines) using the expected current value of each

k-mer in the pore model. For simplicity of illustration, we use 2-mers in this ex-

ample. Now every pair of consecutive events ðes
i ; e

s
iþ1Þ is a point in 2D space, thus a

spatial index for these points (red triangles) can be created. For visualization pur-

pose, we set dimension to 2, but higher dimensions may be used. In the mapping

stage, raw signals (blue dots) are first segmented into events er
1; e

r
2; . . . (red lines).

Then seeds are selected to query the index with range search and hits on the refer-

ence are chained to get the mapping (in the blue rectangle)
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reads are also translated to points PðrÞ ¼
fpr

i ¼ ðer
i ; e

r
iþ1; . . . ; er

iþd�1Þ; 1 � i � m� d þ 1g in d-dimensional
space, some of which are used as seeds in the mapping step.
Therefore, we need a data structure to organize points of the refer-
ence sequence in d-dimensional space so that given a query point pr

of the read, we can efficiently retrieve points ps
i1
; ps

i2
; . . . of the se-

quence near pr, i.e. kpr � ps
ij
k2 � � where � is the threshold for this

range search.
The k-d tree (Bentley, 1975) is a data structure designed for par-

titioning space and organizing points with a binary tree. The leaf
nodes of the tree are points while every non-leaf node implicitly
divides a subspace into two parts by a hyperplane within that sub-
space. The points on either side of this hyperplane are associated
with the left/right subtrees, respectively. In a balanced k-d tree, the
time complexity of range search is Oðdn1�1

dÞ in worst case for a fixed
range size (Lee and Wong, 1977). But in practice, this typically takes
Oðlog nþ 2dÞ time, where logarithmic time is spent in finding the
nodes ‘near’ the query point and Oð2dÞ time is spent to explore their
neighborhoods. Therefore, we use the k-d tree to organize points
generated from the reference to handle large number of queries effi-
ciently during mapping process. Note that construction of the index
requires Oðn log nÞ time when using an O(n) median of medians al-
gorithm (Cormen et al., 2009), and the index only needs to be built
once prior to mapping. In the implementation, we used the highly
optimized k-d tree package nanoflann (https://github.com/jlblancoc/
nanoflann), which supports k-d tree construction and queries.

2.2 Signal pre-processing
There are two signal pre-processing steps: signal segmentation and
normalization. For R9.4 pore, the DNA molecule transits through
the pore with an average speed of 450 bp/s and the electric current is
sampled at 4 kHz, which means on average each k-mer has around
eight current samples. The purpose of signal segmentation is to col-
lapse the current readings of the same k-mer into an event.
However, speed of the molecule passing through the pore varies sig-
nificantly. As a result, some k-mers may stay longer in the pore and
generate more current readings (stay errors) while some k-mers may
have no recorded current as the time they reside in the pore is too
short (skip errors), which makes it hard to segment signals accurate-
ly. Moreover, to process signals in real time, we need a fast segmen-
tation method.

Scrappie (https://github.com/nanoporetech/scrappie) is a base
caller from ONT, which has a segmentation step prior to fine-
grained base calling. It uses t-test over rolling window on the raw
signal to detect where the current changes significantly, thereby seg-
menting the signal. Similar to this method, we also use the Welch’s
t-test to segment the signal. We choose a fixed window size w and
for raw current samples in every two adjacent windows we compute

the t-statistics t ¼ ðx1 � x2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2

1 þ y2
2Þ=w

q
where xi is the current

sample mean and yi is the current sample standard deviation in the
window. Then all the local maxima and minima are identified
among the computed t-statistics along the sequence. When a local
extremum passes a significance threshold, its position is selected to
segment the signal. Due to the various molecule transiting speeds, t-
statistics should be computed using multiple window sizes. Local ex-
trema are chosen as segmentation positions using the smallest pos-
sible window size if the local extrema reach the significance
threshold of that window size. After the signal is segmented, the
detected events are normalized to account for the shift or drift dur-
ing sequencing.

2.3 Seeding
After reference genomes and raw signals are converted into events,
the mapping problem is as follows: given read events E(r) and refer-
ence events E(s), find consecutive events Ei;jðsÞ ¼ es

i e
s
iþ1 . . . es

j in E(s)
such that E(r) can be aligned to Ei;jðsÞ with high confidence. Note
that the mapping can be found by using subsequence dynamic time
warping (sDTW) (Han et al., 2020). But the time to compute DTW
distance is quadratic in the length of event sequences, which is too

slow to compute for long reads in real time. Since the reads are long,
though they are erroneous, there are still many subsequences shared
in a high confidence mapping region of the read and the reference.
Taking advantage of this fact, long-read aligners such as minimap2
(Li, 2018) can efficiently map reads using the seed-and-extend strat-
egy and so does our method.

As the reference points are indexed for fast queries, we can use
read points PðrÞ ¼ fpr

i ¼ ðer
i ; e

r
iþ1; . . . ; er

iþd�1Þ;1 � i � m� d þ 1g
as the seeds. Note that the number of seeds (or points) needed to
query the index is roughly the length of the event sequence. For real-
time mapping, the reads have to be mapped within their first few
hundreds of base pairs (events). Thankfully, searching for all the
seeds can be completed in reasonable time. However, more seeds
also lead to more hits on the reference, thereby potentially increas-
ing the time spent in chaining the hits. For organisms like yeast, the
number of hits is limited by the small genome size and fewer repeti-
tive regions. But for larger genomes with more repetitive structures,
the number of hits can increase significantly, which makes the chain-
ing step time-consuming.

To address this problem, one can select seeds with a fixed step
size l and only use a subset of all the read points P(r) as seeds,
PlðrÞ ¼ fpr

i ¼ ðer
i ; e

r
iþ1; . . . ; er

iþd�1Þ; 1 � i � m� d þ 1; i mod l ¼ 0g.
However, raw signals are noisy, which also makes the events errone-
ous. Simply picking seeds with a fixed step size could miss some
‘error free’ seeds (query points that have true hits in the index within
a certain range) and reduce mapping accuracy. This problem is even
more serious when mapping reads in a streaming manner, where the
read is supposed to be mapped with only its first few hundreds of
base pairs sequenced.

As an alternative, if the quality of the seed can be measured by a
score, then error-free seeds can be preferred during seed selection
procedure. Formally, we define a scoring function g : Rd

R, which
computes the score for a given point in d-dimensional space. Note
that during sequencing, stay errors happen more frequently than
skip errors. Affected by the noise during sequencing, stay errors re-
sult in many current samples for the same k-mer with large variance,
which leads to over segmentation of the raw signal. If a seed con-
tains stay errors, range search can fail to find true hits of the seed.

We present a method to avoid seeds that are likely to contain
stay errors. For a seed (query point) pr

i ¼ ðer
i ; e

r
iþ1; . . . ; er

iþd�1Þ, we

define the seed scoring function as gðpr
i Þ ¼

Piþd�1
j¼iþ1 jer

j � er
j�1j, which

is the sum of the differences between every pair of consecutive events
in the seed. Then with step size l, top dðm� d þ 1Þ=le seeds are
selected based on their scores. Note that seeds with more abrupt
changes in their events are considered better since the segmentation
is more reliable in that case.

2.4 Chaining
The time for computing an optimal alignment between two sequen-
ces is quadratic in the length of the sequences. To avoid this compu-
tational bottleneck for aligning long sequences, chaining approaches
(Li, 2018) have been proposed and used to efficiently find mapping
positions of long reads in large reference genomes.

Inspired by the chaining method of minimap2, we present a dy-
namic programming algorithm to identify a set of co-linear anchor-
ing point matches. Formally, each seed hit (anchor) is a triple (u, v,
h), which represents a read point pr

u matching a reference point ps
v

with distance h, i.e. kpr
u � ps

vk2 ¼ h. Given a list of anchors sorted
by their positions on the reference, the best chaining score up to the
ith anchor can be computed using the recurrence
Di ¼ maxfmax1� j< ifDj þ aji � bjig; ð1� hi=�Þdg, where aji ¼
ð1� hi=�Þ �minfui � uj; vi � vj;dg is the bonus for the seed hit and
bji is the gap penalty. Let aji ¼ jðui � ujÞ � ðvi � vjÞj denote the gap
length and bji ¼ jðui � ujÞ=ðvi � vjÞj denote the gap scale. The gap
penalty bji is set to 1 when vi < vj (ith anchor is not co-linear with
the jth anchor), or gap length aji or gap scale bji is too large. Due to
stay and skip errors, the gap length and scale are usually unpredict-
able. Hence, we do not penalize the gap as long as its length and
scale are below certain thresholds. Instead, when computing the
bonus aji for seed hits, we scale it down by the factor ð1� hi=�Þ.
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Note that the time of the chaining algorithm is quadratic in the
number of anchors, which is slow. In practice, we use similar heuris-
tics as in minimap2 chaining to reduce the number of anchors to
examine. When computing Di, we start the iteration from j ¼ i� 1
and stop when no better chaining score is found after c iterations.
For na anchors, this heuristic reduces the average time to OðcnaÞ.
The default c is set to the same value used in minimap2 since it led
to reasonable speed and accuracy on mapping reads to various
genomes empirically. There are theoretically faster chaining algo-
rithms (Abouelhoda and Ohlebusch, 2005) but they are usually not
adapted to generic gap functions, or have large hidden constants in
their time complexity.

2.5 Streaming mapping
In nanopore real-time sequencing, the signal is returned in chunks,
and each chunk by default is one second’s worth of signal and con-
tains 4000 current samples or roughly 450 bp. We developed a
streaming method to map raw signals by chunks. The signal prepro-
cessing and seeding are performed on each chunk individually. As
for chaining, the anchors in the good chains (chaining scores are at
least half of the best score) generated using previous chunks are kept
and used in the chaining together with the anchors in the current
chunk. Each time after a chunk is processed, we compute the ratio
between the best chaining score and the second best chaining score.
If the ratio exceeds a certain threshold, we stop mapping more
chunks and report the best chain as the mapping. By default, we set
this ratio to 1.4. If this ratio cannot exceed this threshold after map-
ping the first 30 chunks of the read, the mapping process of this read
will be stopped and the read will be reported as unmapped. These
parameters can be adjusted by users to increase mapping speed or
lower false-positive rate based on the applications if necessary.

3 Experimental results

We demonstrate empirically the advantages of our method on both
simulated and real datasets on two different genomes. The imple-
mentation of our proposed method is termed Sigmap, which is avail-
able at https://github.com/haowenz/sigmap. We compare Sigmap
with Uncalled (v2.1).

3.1 Experimental setup
3.1.1 Benchmarking datasets

We used one simulated and two real datasets to test the methods.
The number of reads, N50 values, genome sizes and average cover-
age for these datasets are shown in Table 1. Simulated raw signals of
Saccharomyces cerevisiae (yeast) were generated using
DeepSimulator (Li et al., 2020) with its context-dependent model (-
M 0) and sequencing coverage set to 20� (-K 20). For real datasets,
100 000 raw reads were randomly selected from nanopore sequenc-
ing of S.cerevisiae using ONT R9.4 chemistry (available at NCBI
under the study PRJNA510813). The first run of Chlamydomonas
reinhardtii (green algae) nanopore sequencing using ONT R9.4
chemistry was also used (under study PRJEB31789 on EMBL-EBI)
in the evaluation. Note that in real-time targeted sequencing appli-
cations, the regions of interest are usually from �10 to �100 Mbp
and the coverage of target regions is around 20� (Kovaka et al.,
2020; Miller et al., 2020). Thus in the evaluation, the yeast and
green algae sequencing data were used as their genome sizes are ap-
propriate and their whole-genome sequencing data are subsampled
to the proper coverage for real-time targeted sequencing

applications. Besides, since Uncalled only supports R9.4 chemistry
so far, we used R9.4 data in our evaluation. But with some param-
eter tuning for both methods, they might also be able to work on
R10 data with the R10 pore model (https://github.com/jts/nanopol
ish/tree/r10/etc/r10-models) trained using Nanopolish (Simpson
et al., 2017).

3.1.2 Hardware and software

For all experiments, we used a compute node with dual Intel Xeon
Gold 6226 CPU (2.70 GHz) processors equipped with a total of 24
cores and 128 GB main memory. We run Sigmap and Uncalled with
all the available cores.

The k-d tree index constructed by Sigmap has two important
parameters: dimension d and the maximum number of points associ-
ated with a leaf node, np. The empirical performance of k-d trees is
usually good in low-dimensional spaces (e.g. 2D or 3D) but degrades
in high-dimensional spaces as more tree branches need to be visited
for each query. For this application, a low d such as 2 or 3 cannot be
chosen, as querying points in low-dimensional spaces usually results
in too many hits, which can slow down mapping. Thus, we set d to
6 by default. Since the ONT R9.4 pore model lists the expected cur-
rent reading for each 6-mer, a point in the 6-dimensional space is
analogous to an 11-mer, which is also a reasonable k-mer size for
read mapping on genomes from tens of Mbp to several hundred
Mbp. As for the other parameter, np controls the maximum number
of points associated with a leaf node (points are stored in leaf nodes
of k-d trees). A larger np can make the tree smaller but may cause
more explorations of points during the search process and increase
the query time. On the other hand, a smaller np may reduce the
number of points to inspect for a query but increase the tree size. By
default, we set np to 20 and studied how it can affect memory usage
and mapping time on D2. Moreover, to study the effect of seeding
step size on mapping time, we evaluated Sigmap with various seed-
ing step sizes l from 2 to 6 on D3 while other parameters are set to
the default. We set the maximum amount of chunks to use for map-
ping a raw signal as 30 and the search radius � to 0.08 by default
since they led to proper mapping accuracy and time. These parame-
ters can be adjusted by users according to their data and applications
in practice.

To test Uncalled, we used default parameters for indexing refer-
ence genomes and mapping raw signals. Kovaka et al. (2020)
showed that masking repeats in genomes improved the mapping
speed and accuracy of Uncalled. In the evaluation, we used recom-
mended parameters and procedures stated in the Uncalled’s user
documentation for C.reinhardtii genome repeat masking.

3.1.3 Evaluation criteria

We followed a similar evaluation criteria previously used by Kovaka
et al. (2020). Raw reads that are mapped to their true mapping loca-
tions are true positives (TP). Reads that are mapped by their raw sig-
nals but not to the correct locations are false positives (FP). Reads
that have true mapping locations but are not mapped by their raw
signals are false negatives (FN). Precision equals TP=ðTPþ FPÞ, re-
call equals TP=ðTPþ FNÞ and F1-score is calculated by
2 � precision � recall=ðprecisionþ recallÞ. The percent of correctly
mapped reads is the portion of reads that are mapped to their true
mapping locations.

For simulated dataset D1, we evaluated the mapping accuracy
against the ground truth output by the simulator. For real datasets,
we mapped the base-called read sequences with the well-established
long-read aligner minimap2 (Li, 2018) and used the read alignments

Table 1. List of benchmarking datasets

Dataset Type Number of reads N50 (bp) Reference genome Genome size (Mbp) Avg. coverage

D1 Simulated 30 385 11 984 S.cerevisiae S288c 12.2 20�
D2 Real 100 000 8348 S.cerevisiae S288c 12.2 58�
D3 Real 63 215 32 025 C.reinhardtii v5.5 111.1 12�
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as ground truth to validate Sigmap and Uncalled. We excluded reads
that are not mapped by minimap2 in the evaluation.

Moreover, we measured the mean mapping time of each read
and the number of chunks used to map a read. In practical applica-
tions, mapping results are needed in real time to decide whether to
eject a pore. Therefore, instead of cumulative mapping time, time
spent on individual reads is an important metric to show whether
most of the reads can be mapped fast enough for real-time decisions.
To accurately measure the mapping time for individual reads, the
mapping start time and end time of each read were recorded and the
wall time for mapping each read was computed as the difference be-
tween these two values and then reported. This way of timing the
mapping process for individual reads avoids the effect of loading
index or the scalability of multithread implementation on measuring
mapping time, which is a fair way to compare the two methods.

3.2 Comparison with Uncalled
We evaluated the performance of Sigmap and Uncalled on datasets
D1–D3. The results on yeast genome are shown in Table 2. On the
simulated dataset D1, Sigmap achieved higher percentage of correct-
ly mapped reads, precision and F1-score while Uncalled has higher
recall and faster speed. Since simulated data might not be as noisy as
real data, the events were likely to be detected and converted to cor-
responding k-mers more reliably, which reduced the number of
high-probability k-mers to explore in Uncalled and made it faster.
On yeast real dataset D2, 93 544 of the 100 000 reads were mapped
by minimap2 and used in the evaluation. Sigmap achieved higher
percent of correctly mapped reads, precision, recall and F1-score.
Notably, its speed of mapping a raw signal on average was 4.4 times
faster than Uncalled.

Next, we tested Sigmap and Uncalled on the green algae real
dataset D3, where minimap2 mapped 60 313 out of 63 215 reads.
Table 3 shows the evaluation results. We denote Sigmap run with
seeding step size 3 by Sigmap (l3), etc. Since the green algae genome
is much larger than the yeast genome and has more repetitive
regions, genome repeat masking was performed as suggested when
using Uncalled to map raw signals. After repeat masking, both map-
ping accuracy and mean time to map a read improved. But Sigmap
significantly outperformed Uncalled with or without repeat masking
on the percentage of correctly mapped reads, recall and F1-score,
while achieving comparable precision. Moreover, compared with
Uncalled with and without masking, respectively, Sigmap using

default parameters was 1.3 and 1.2 times faster on mapping reads,
and Sigmap using seeding step size 6 was 2.6 and 2.3 times faster.
Though the mapping accuracy of Sigmap degraded when increasing
the seeding step size, it was overall better compared to Uncalled.
The reason for this observation is that using larger seeding step size
reduces the number of picked seeds that go into chaining, which
would reduce chaining time and thereby reducing mapping time.
But picking fewer seeds also reduced the mapping accuracy since the
true mapping location would have fewer supported seeds making it
harder to distinguish from other false mapping locations.

The mapping time distributions of Uncalled and Sigmap on D2
and D3 are shown in Figure 2. We observed that overall Sigmap
achieved much shorter mapping time on mapping yeast real raw
reads compared with Uncalled. We noticed the speedup of mapping
reads on green algae genome is not as significant as the speedup of
mapping yeast reads. One reason is that the size of green algae gen-
ome is as around nine times larger as the size of yeast genome.
Given the fact that in practice the time of k-d tree queries is usually
logarithmic in the number of points (explained in Section 2.1),
which is roughly the size of the genome, the query time is supposed
to increase accordingly. In addition, the green algae genome has
more repetitive regions than the yeast genome and thus the number
of signal chunks needed to map algae reads confidently on average is
expected to be greater than that to map yeast reads. In the evalu-
ation, we studied the number of chunks needed for Sigmap to map
yeast and green algae reads correctly and present the results in
Figure 3. We observe that using the same number of chunks, a
smaller fraction of green algae reads were correctly mapped com-
pared with yeast reads. This also indicates overall more chunks were
needed to map green algae reads confidently, which increased the
mapping time.

Besides mapping speed, we investigated the index size of Sigmap
and Uncalled, which contributes to most of the memory usage in
real-time signal mapping. Note that Uncalled mainly relies on an
FM-index of the reference sequence, which is a compressed full-text
index, hence expected to be space-efficient. The index size of the
yeast genome and the green algae genome built by Uncalled is 21
and 186 MB, respectively. Using default parameters, Sigmap built a
417 MB index for the yeast genome and a 3.2 GB index for the green
algae genome, which are larger than the indices built by Uncalled
but can still be accommodated on typically used computing systems.

As discussed in Section 3.1.2, increasing the maximum number
of points associated with a leaf node, np, can trade off mapping

Table 3. Performance comparison between Sigmap and Uncalled on green algae genome

Dataset Method Correctly mapped

reads (%)

TP FP FN Precision (%) Recall (%) F1-score Mean time

per read (ms)

D3 Sigmap 87:86 52989 1694 5628 96.90 90:40 0:9354 509.1

Sigmap (l3) 86.21 51998 1973 6338 96.34 89.14 0.9260 373

Sigmap (l4) 83.51 50370 2542 7397 95.20 87.20 0.9102 314.8

Sigmap (l5) 80.69 48669 3107 8532 94.00 85.08 0.8932 279.6

Sigmap (l6) 77.20 46564 3781 9962 92.49 82.38 0.8714 261:2

Uncalled 72.18 43534 883 15896 98.01 73.25 0.8384 677

Uncalled (mask) 76.37 46060 881 13372 98:12 77.50 0.8660 596.5

The best numbers are highlighted in bold.

Table 2. Performance comparison between Sigmap and Uncalled on yeast genome

Dataset Method Correctly mapped

reads (%)

TP FP FN Precision (%) Recall (%) F1-score Mean time

per read (ms)

D1 Sigmap 97:66 29675 7 661 99:98 97.82 0:9889 59

Uncalled 97.47 29615 722 47 97.62 99:84 0.9872 18:3

D2 Sigmap 87:54 81892 964 10683 98:84 88:46 0:9336 68:3

Uncalled 87.37 81725 1054 10765 98.73 88.36 0.9326 303.1

The best numbers are highlighted in bold.
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speed for smaller index. We studied how mean time to map reads
and index size vary with different np ¼ 10;20;50; 100; 200 on D2
and showed the results in Figure 4. We observed that the mean map-
ping time increased and the index size decreased as np increased and
when np ¼ 200, the index size can be reduced by a half while the
average time to map a read increased by about two times. Similarly,

the index size of green algae genome can be reduced to 1.8 GB when
setting np ¼ 200.

Note that the space complexity of the k-d tree is linear in the
number of points and the reason that Sigmap index size is large can
be partly attributed to the implementation. Therefore, another pos-
sible way to reduce the index size without sacrificing mapping speed
is to implement a memory efficient k-d tree customized for this ap-
plication rather than using a generic k-d tree library, which is a use-
ful direction for future work.

4 Conclusions

Mapping nanopore raw signals in real time is challenging under lim-
ited computing resources. Most mapping methods require base call-
ing, which is computationally expensive. Uncalled is an efficient
method that does not require base calling, but hits performance limi-
tations on large genomes with higher repeat content. In this work,
we introduced a new nanopore raw signal mapping method and
implemented it as a tool Sigmap. On small genomes like yeast, while
Sigmap has comparable performance with Uncalled on mapping
simulated data, Sigmap is 4.4� faster than Uncalled on mapping
yeast real raw signals and has the potential to support real-time sig-
nal mapping for high-yield run ONT sequencing devices with more
pores (e.g. GridION), which previous mapping methods without
base calling might not be able to achieve. Sigmap also has good per-
formance on genomes of size >100 Mbp such as green algae, where
Uncalled could not identify many correct mappings. The method
avoids any conversion of signals to sequences and fully works in sig-
nal space, which holds promise for completely base-calling-free
nanopore sequencing data analysis.

We envision two directions for future research. First, we intend
to accelerate Sigmap by utilizing CPU SIMD instruction sets or
GPUs so that it can scale to support real-time sequencing on
GridION or PromethION, which has even more pores. Second, we
plan to study whether Sigmap can be adapted to map RNA nano-
pore raw signals. This may require the development of new seeding
and chaining methods that are suitable to the characteristics of dir-
ect RNA-sequencing.
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