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Abstract
Immune checkpoint inhibitor blockade has vastly changed 
treatment paradigms and improved outcomes of many 
solid organ malignancies. The achievements of the last 
decade have transformed the outcomes of several tumour 
types, most notably metastatic melanoma. There are, 
however, still large numbers of patients who receive 
checkpoint inhibitor therapy and do not respond. In 
addition to potential lack of efficacy, checkpoint inhibitors 
also come with a unique and sometimes devastating side-
effect profile. There exists a strong need for biomarkers to 
accurately predict response, improve treatment selection 
and avoid exposing patients to toxicity where there is 
minimal likelihood of response. There is a wide range 
of methodologies investigating predictive biomarkers in 
this space; in this review, we address the major putative 
biomarkers of interest. These include conventional 
serum tests such as lymphocyte indices and lactate 
dehydrogenase, and more novel research markers such 
as interleukin-6 and T receptor clonality. We discuss 
tumorous factors that may be of interest in certain tumour 
types, and finally gene expression profiling. Significant 
research continues into many of these potential predictive 
biomarkers in response to the emergent need to better 
select patients who will benefit from treatment.

Immune checkpoint inhibitor (ICI) blockade 
has vastly changed treatment paradigms and 
improved outcomes of many solid organ 
malignancies. The achievements of the last 
decade have transformed the outcomes of 
several tumour types, most notably metastatic 
melanoma. There are still large numbers of 
patients who receive ICI and do not respond, 
however, spending precious time receiving 
ineffective treatment. Even in a cancer, such 
as melanomathat is considered to be highly 
immunogenic, 24% of patients receiving 
combination checkpoint inhibitor as part of 
Checkmate 067 had progressive disease as 
their best response.1 In addition to potential 
lack of efficacy, ICI also come with a unique 
and sometimes devastating side-effect profile. 
Few oncologists would not have experienced 
the disquieting situation of treating a patient, 
particularly in the adjuvant setting, only for 
their patient to experience severe or perma-
nent autoimmune toxicity, which dramat-
ically impairs their quality of life or even 
leads to death. There exists a strong need for 

biomarkers to accurately predict response, 
improve treatment selection and avoid 
exposing patients to toxicity where there is 
minimal likelihood of response. The ideal 
biomarker would be reliably reproducible 
and cost-effective, has minimal interobserver 
variation and correlates strongly with clin-
ical outcomes. In practice, few tests have all 
of these attributes. Despite these challenges, 
the need to develop biomarkers to better 
stratify treatment approaches is more urgent 
than ever. There is a wide range of method-
ologies investigating predictive biomarkers 
in this space; here, we attempt to provide a 
comprehensive overview of those currently of 
interest.

Established biomarkers
PD-L1 expression
PD-L1 testing has been and remains the focus 
of extensive research, due to the coupling 
of PD-L1 biologically to agents targeting this 
pathway and due to some of the intriguing 
clinical data that have been generated. PD-L1 
immunohistochemistry (IHC) emerged as 
the companion diagnostic to PD-1 check-
point blockade largely based on the results 
of the phase III KEYNOTE 024 trial, which 
demonstrated superior outcomes for patients 
with non-small cell lung cancer (NSCLC), 
with tumour PD-L1 expression ≥50% treated 
with pembrolizumab in the first-line setting.2 
The role of PD-L1 as a predictive biomarker 
unfortunately remains complex, with incon-
sistent data between studies. The key issues 
include disparity between biopsy specimens 
and resected tumour, varying significance 
of PDL1 between tumour types and varia-
tions in the assays themselves.3–5 Disparities 
between assays are also of concern, though 
relatively good harmonisation of these has 
been demonstrated, with the exception of the 
SP142 assay.6 Gibney et al7 noted that the nega-
tive predictive value of PD-L1 status in meta-
static melanoma may be as low as 58%, refer-
encing data from the single-agent nivolumab 
arm from Checkmate 067, in PD-L1-negative 
patients.8 Alternative methods of assessing 
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tumour PD-L1 status have been explored in attempts to 
improve accuracy. PD-L1 RNA sequencing was not more 
accurate than IHC in a study of 209 patients.9 A system-
atic review of methods of PD-L1 expression analysis found 
that more sophisticated methods of PD-L1 assessment, 
such as multiplex immunofluorescence, have a greater 
positive predictive value (though comparable negative 
predictive value). Of course the advantage of IHC as a 
time-efficient and cost-efficient test is lost in this case, 
though the rapid evolution of technology may improve 
this.10 While PD-L1 expression (IHC in particular) clearly 
has a place in guiding treatment, its combination with 
other biomarkers may ultimately be needed to improve 
its predictive value. Some of these combinations will be 
discussed later.

Tumour mutational burden
The predictive utility of a high number of somatic non-
synonymous mutations, commonly referred to as tumour 
mutational burden (TMB), has also been demonstrated, 
both in the preclinical space and in clinical trial outcomes. 
The most notable of these is Checkmate 227, using a 
diagnostic limit of 10 mutations per mega base (mut/
Mb) in patients in receiving combination ICI blockade 
for NSCLC.11 12 Interestingly, in the subset analyses by 
PD-L1 expression, both of which were statistically signifi-
cant, combination of TMB with PD-L1 status of ≥1% did 
not appear to confer additive progression-free survival 
(PFR) benefit in patients treated with ipilimumab and 
nivolumab (HR 0.62 in patients with PD-L1 ≥1% vs 0.48 
for those PD-L1 negative). This result was consistent with 
the findings of Checkmate 568, where PFS according to 
TMB appeared to be independent of PD-L1 status.13 14

Like PD-L1 expression, TMB is not a binary marker, 
and its predictive capacity differs between tumour types.15 
It should be noted that patients with a low TMB have 
responded favourably to ICI, further confounding the 
predictive value to this individual test.

Many patients will have access to targeted molecular 
profiling of tumour-specific relevant mutations (eg, 
Epidermal Growth Factor Receptor (EGFR) in NSCLC), 
but few patients readily have access to more complex 
testing, such as whole exome sequencing, which is 
required for an accurate assessment of TMB. Commercial 
next-generation sequencing platforms are now well devel-
oped, some of which include algorithms to estimate TMB. 
These represent an attractive option given the scale of 
testing and ability to use archival formalin-fixed paraffin-
embedded tissue, but come at a significant per-patient 
cost that may limit universal availability.

Mismatch repair deficiency
The third established biomarker is mismatch repair defi-
ciency (dMMR). The results of five single-arm studies of 
pembrolizumab in MMR-deficient/microsatellite insta-
bility (MSI)-high cancers led to the first tumour agnostic 
regulatory approval for an anticancer drug worldwide.16 
These studies included 90 patients with dMMR/MSI-high 

colorectal cancer and 59 with other dMMR/MSI-high 
cancers, with an overall response rate (ORR) across 
tumour types of 39.6%. The most impressive outcomes 
for patients with dMMR colorectal cancer are perhaps 
from early results from Checkmate 142, where patients 
receiving ipilimumab and nivolumab had an objective 
response rate of 60% and a 12-month survival rate of 
83%.17 Despite these compelling results, a significant 
number of patients did not respond to ICI in these trials. 
Among multiple possible explanations for this, inaccurate 
interpretation of either MMR IHC or MSI PCR results 
may have actually contributed to the predictive nature of 
the ‘test’, especially where only one method of testing has 
been used.18 MMR deficiency may in fact be a stronger 
predictor than currently thought, in the presence of accu-
rate diagnostic processes.

New biomarkers
Conventional serum indices
Lymphocyte indices
Serum indices are an attractive biomarker, given their 
non-invasive means of sampling. Absolute lymphocyte 
count has been postulated in several retrospective studies 
to be predictive of benefit; as small studies, some with 
no comparator arm, these do not clearly differentiate a 
predictive capacity over a prognostic role as yet.19–21 For 
many years, the value of neutrophil-to-lymphocyte ratio 
(NLR) has been noted as a poor prognostic marker in 
various cancer types. More recently, it has also been 
suggested as a predictor of outcome from immuno-
therapy (see online supplementary table). Saravia et al22 
reported that NLR may complement the use of PD-L1 
status in patients with NSCLC, based on the retrospec-
tive categorisation of cases by PD-L1 status and NLR 
using a cut-off ratio of 5. Patients were categorised into 
good (high PD-L1, low NLR), bad (low PD-L1, high 
NLR) or intermediate (either high PD-L1 or low NLR). 
The authors demonstrated that high PD-L1/low NLR 
predicted for better outcomes, while low PD-L1/high 
NLR was a predictor of lack of response.22 Of note, they 
did not examine NLR independently of PD-L1. Another 
group demonstrated that the prognostic value of NLR 
was significant in patient with a TMB >10 mut/Mb, but 
not in patients with a low TMB, using an alternative NLR 
ratio cut-off of 2.5.23 Other authors suggested a predictive 
capacity independent of other markers.24–26 While these 
results are of interest, care should be taken not to overin-
terpret these retrospective studies until more robust data 
demonstrating a predictive, and not just prognostic, value 
are available.

One study of particular interest used prospectively 
collected data obtained from an ipilimumab access 
programme, with 720 patients with metastatic mela-
noma, and categorised them according to high neutro-
phil count and elevated NLR. In a multivariate analysis, 
they reported a HR of 2.29 (CI 1.86 to 2.82) for risk of 
death, and 2.03 (CI 1.66 to 2.47) for progression, in 
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patients with a NLR of ≥3 (p<0.0001). Patients with both 
an elevated absolute neutrophil count (ANC) (7500 or 
greater) and an elevated NLR had a 1-year survival rate 
of 2% compared with 43% for those without an elevated 
neutrophil count or NLR.26 Although it remains unclear 
whether this represents a predictive in addition to a prog-
nostic benefit, these results warrant further prospective 
investigation.

Lactate dehydrogenase
Elevated lactate dehydrogenase (LDH) is well-documented 
as an adverse prognostic marker in a number of cancers, 
most notably in melanoma.27 It has also been evaluated in 
the same setting as a predictive marker. Kelderman et al28 
demonstrated an inverse relationship between survival 
and elevated LDH in patients treated with ipilimumab. 
Nosrati et al29 reported an OR of 0.48 (CI 0.25 to 0.90) for 
elevated LDH and radiological response to ipilimumab, 
using a ratio derived by dividing the patient’s value by the 
institutional upper limit of normal. They incorporated 
this into a predictive scale for response to PD-1 check-
point blockade, which they subsequently validated.29 In 
the prospective study by Ferrucci described earlier, the 
authors performed a subgroup analysis in patients where 
LDH was available. When patient had all three stratifica-
tion factors of elevated ANC, NLR and LDH, the HR for 
death rose to 13.24 (8.10–21.66<0.0001).26 Mezquita et 
al30 reported similar data using a combination of pretreat-
ment NLR and LDH in patients with NSCLC. Although 
we already know these factors to be prognostic, these 
results perhaps also suggest that we should factor these 
indices into our assessment and counselling of a patient 
who is considering starting ICI therapies.

Tumorous factors
Epstein-Barr virus: gastric cancer
Cancers driven by oncogenic viruses possess a high 
neoantigen load, higher rate of immune signatures and 
high response rates to ICI therapy.31 32 In cancers with an 
extremely high prevalence of an oncogenic virus, it may 
not be relevant to test for this. In cancers only a subset 
is virally driven; however, this may be a useful predictor 
of response. For example, a subset of gastric cancers 
has been shown to respond favourably to ICI blockade. 
Molecular characterisation of gastric cancers via the 
Cancer Genome Atlas revealed a subset of Epstein-Barr 
virus (EBV)-positive gastric cancers, which are character-
ised by immune cell infiltration. They commonly display 
genomic amplification of the genes encoding for the T 
cell signalling ligands PD-L1 and PD-L2.33 A small but 
robust Korean study of 61 patients with gastric cancer 
treated with pembrolizumab highlighted the relevance 
of EBV positivity using EBV DNA sequence profiling. 
Six patients were EBV positive, and they were mutually 
exclusive with the MSI-high cohort. All six patients had a 
partial response to pembrolizumab, with a median dura-
tion of response of 8.5 months.34 Based on these data, this 
approach is being formally tested in a prospective clinical 

trial specifically targeting EBV-positive gastric cancer, irre-
spective of PD-L1 status (NCT03755440).

Tumour infiltrating lymphocytes
The prognostic value of tumorous lymphocytic infiltra-
tion, under various names, has been observed for some 
years across a variety of tumour types.35–37 Biologically it 
seems intuitive that the presence of lymphocytes either 
at the tumour bed or within the tumour itself is indica-
tive of immune recognition and trafficking, and that this 
would therefore increase the likelihood of a favourable 
response to ICI. Tumeh et al38 demonstrated a correla-
tion between pretreatment CD8+ cell infiltrate and radi-
ological response in patients with metastatic melanoma, 
using subset data from the KEYNOTE 001 study. They 
further validated their findings using a small, separate 
blinded data set. Daud et al39 contributed further to this 
picture, reporting a statistically significant correlation 
between an increased fraction of CD8+ lymphocytes 
expressing CTLA-4 and PD-1 in pretreatment samples, 
and response to single-agent PD-1 inhibitor therapy. This 
was achieved using flow cytometry of immune cells rather 
than a morphological approach using IHC, which they 
concluded may be difficult to discern on small biopsy 
specimens, particularly if relation to tumorous margin 
is required.39 These studies, both in melanoma, add 
credence to the hypothesis that the number and location 
of lymphocytes could accurately predict for response, 
perhaps regardless of method of immune infiltrate anal-
ysis. Tumour infiltrating lymphocytes (TILs) may in fact 
be localised to the stroma, tumour or lymph nodes, and 
they require careful, standardised assessment. Other 
immune cells may also be present, and their significance 
and therefore reporting remain undefined.40 Of course, 
H&E staining does not provide more nuanced infor-
mation about functional status or T cell subsets. TILs 
require further validation but hold promise as a reliable 
biomarker of immunotherapy response.

Host factors
Gut microbiome
Several seminal papers examining the influence of gut 
microbiota on response to checkpoint inhibitor therapy 
were concurrently published in 2018. This work indi-
cated that a greater diversity of faecal microbiota, as well 
as specific composition may be associated with response 
to ICI. Matson et al41 demonstrated significant differ-
ences in the composition of commensal organisms in the 
faecal microbiota of patients with metastatic melanoma in 
responders versus non-responders. Specifically, they noted 
that an abundance of certain species was associated with a 
favourable clinical response. Gopalakrishnan et al42 exam-
ined a population of patients with metastatic melanoma, 
finding that responders were characterised by increased 
commensal diversity. Notably, there are two bodies of 
work contrast in that the Matson et al41 reported an abun-
dance of Bifidobacterium longum, Collinsella aerofaciens and 
Enterococcus faecium in the microbiota of responders, and 
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Rumincoccus as abundant in non-responders, whereas 
Gopalakrishnan et al42 reported Ruminococcacae species 
as associated with response. There are methodological 
differences that likely account for this, but this serves as 
a caution for unqualified overinterpretation of signifi-
cance of certain species. Other groups have described 
differing predominant species in responders versus non-
responders, but generally it seems that microbiome diver-
sity is positively associated with a clinical response.43 44 
At this point, the use of this as a predictive biomarker is 
impractical in both sampling analysis and application to 
clinical practice; but the evidence base supporting micro-
biota’s composition in modulating the immune response 
continues to grow, and at least in these authors’ opinions 
it appears compelling.

Genetic polymorphisms
There is a growing body of research into various non-
modifiable host factors. For example, HLA class I geno-
typing has been examined, suggesting improved survival 
in patient with maximal heterozygosity at HLA class I 
loci.45 Other work has examined single nucleotide poly-
morphisms; for example, a more favourable response to 
CTLA-4 therapy was observed in patients with inflamed 
melanoma, with the CD16AV158F polymorphism in the 
gene encoding for the FcγR, which results in increased 
binding affinity of immunoglobulin G.46 Ongoing inves-
tigation of the complex interplay of immune signalling 
may equip us to better understand its biological function, 
but it appears unlikely to be applicable for individual 
patient-centred predictive markers.

Research markers
Interleukin-6
There is an increasing appreciation of the significance 
of the cytokine milieu within the tumour microenviron-
ment. Interleukin-6 (IL-6) plays a role in both T cell traf-
ficking and priming, and it has been considered a barrier 
to effective tumour killing.47 Preclinical studies suggest 
an augmented response to PD-1 inhibition in a murine 
model deficient in IL-6.48 Using the clinical data set from 
Checkmate 064, Weber et al49 described a prognostic 
value of IL-6, with patients with elevated levels at baseline 
having a shorter survival. They also described a correla-
tion between baseline IL-6 level and response in patients 
who received ipilimumab and nivolumab, and addition-
ally noted a correlation with C-reactive protein (CRP) 
in some but not all of their data set. The authors are 
careful to make the distinction that they demonstrated a 
prognostic relationship, but that the predictive capacity 
requires further delineation.49

T cell receptor clonality
The diversity of T cell receptor (TCR) populations 
may alter the response to ICI. Further to their work on 
TILs described earlier, Tumeh et al38 found that a more 
restricted repertoire of TCR beta chain regions in the 
peritumorous lymphocytes of patients responding to 

PD-1 inhibitor therapy versus those who did not. Patients 
who did respond had a greater than 10-fold clonal expan-
sion of their existing TCR sequences, which suggests a 
stronger tumour-antigen-specific T cell response. Inter-
estingly, this did not correlate well with density, perhaps 
suggesting that patients without TILs may still have a 
strong, tumour-specific response. Postow et al50 also 
examined TCR diversity in a pilot study of 12 patients 
with metastatic melanoma who were treated with CTLA-4 
inhibitor therapy. Instead of peritumorous lymphocytes, 
however, they analysed peripheral blood TCR diversity. 
Their results were markedly different, finding that higher 
TCR evenness (indicative of clonality) correlated posi-
tively with PFS (though not overall survival).50 Whether 
this difference reflects the different roles of lymphocytes 
in the periphery versus the tumour, or simply studies of 
small numbers and different methodologies is unclear. It 
seems biologically plausible that increased TCR clonality, 
particularly at the tumour bed, might generate a stronger 
immunological response, but larger confirmatory studies 
correlated with clinical outcomes will be required to 
answer this question.

Peripheral blood PD-1/PD-L1
The idea of peripheral assessment of PD-1 by various 
methods as a type of ‘liquid biopsy’ is very attractive, 
however published data is limited. Arrieta et al51 exam-
ined the peripheral blood lymphocyte subsets in 70 
treatment-naïve patients with NSCLC and found that 
higher PD-1, PD-L1 and PD-L2 expression on lympho-
cytes was negatively associated with prognosis. Gros et 
al52 were able to demonstrate neoantigen-specific PD-1+ 
CD8 T cells in the peripheral blood of patients with mela-
noma. There is inadequate data to date to conclude 
that PD-L1 on peripheral lymphocytes is reliably associ-
ated with response to ICI. Given the interest and value 
provided by peripheral blood-based biomarker testing, 
the evidence base and utility of PDL1 will undoubtedly 
evolve quickly; but at this stage data remain limited and 
focus is still needed on developing the assays to provide 
consistency in interpretation.

Cell-free DNA
As discussed earlier, the difficulty in accessing tissue 
biopsy for some patients has compelled exploration of 
established biomarker testing using peripheral blood. 
Gandara et al53 reported a positive correlation of a cell-
free DNA (cfDNA) next-generation sequencing method 
compared with tissue TMB, using a novel assay. While 
there appeared to be some variations depending on the 
tissue TMB assays used, they were able to demonstrate a 
positive predictive value of cfDNA (compared with tissue 
TMB) of 93.5%.53 Using data from the POPLAR and OAK 
studies they were able to demonstrate that blood TMB 
may have utility as a predictive marker in their validation 
cohort, using a cut-off of ≥16 mut/Mb. Wang et al54 have 
demonstrated superior outcomes (ORR and PFS) using 
a targeted cancer gene panel with a TMB cut-off of 6 
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mut/Mb in a NSCLC cohort. In contrast, however, early 
results of the NEPTUNE trial did not indicate a predictive 
capacity, and this was using a higher cut-off of 20 mut/
Mb. Whether this is due to the utility of the therapies 
themselves, the platforms or methodology used to calcu-
late TMB is unclear.55 These results are interesting and 
warrant further investigation, but methodology is varied 
and a lack of consensus on definitions limits immediate 
clinical applicability. Incorporating cfDNA collection into 
clinical trials may allow further validation of this, as well 
as ascertainment of optimal cut-offs as is already being 
done.56

Gene expression profiling
PTEN inactivation
Loss of function of the tumour suppressor gene PTEN can 
occur by several genomic mechanisms, and it results in 
increased activation of the PI3K-AKT pathway, which is 
involved in cellular proliferation and survival processes. 
PTEN inactivation results in increased VEGF and other 
immune suppressive cytokines, leading to recruitment of 
immune suppressing cells, particularly T regulatory cells, 
to the tumour microenvironment.57 58 Miao et al59 demon-
strated the relevance of inactivating PTEN mutations in 
their study of whole exome sequencing of 249 solid organ 
tumours. They observed clustering of patients with inacti-
vating PTEN mutations in patients with primary resistance 
to ICI, confirming prior preclinical observations.58–60 It 
seems premature to consider targeted sequencing for 
PTEN alterations alone as a negative predictor of immuno-
therapy response, however in patients where sequencing 
has occurred either within research projects or via self-
funded commercial testing, this finding might influence 
the recommendation for ICI therapy.

POLE mutations
Certain genomic mutations are uncommon but are highly 
significant for the small cohort of patients in whom these 
are present. Mutations within the DNA proofreading poly-
merase ɛ gene, POLE, most notably found in endometrial 
cancer, are one such example. Tumours with mutated 
POLE exhibit an ultramutated phenotype (232×10−⁶ 
mut/Mb) with a high neoantigen load. The number of 
mutations far exceed those found even in other hypermu-
tated cancers, including microsatellite instable tumours 
(18×10−⁶ mut/Mb). There is accumulating evidence that 
they appear to have a more favourable prognosis.61–63 
Limited available data also suggest a favourable response 
to ICI.64 65 They are rarer in other tumour types, but have 
been observed in NSCLC and colorectal cancer, with 
similar favourable outcomes.11 66–68 While the biological 
rationale is compelling for the predictive value of POLE 
mutations, robust clinical data are lacking at present to 
conclusively affirm this.

KRAS/STK11 co-mutation
Another example of rare but significant genomic 
mutations are the specific subset of patients with lung 

adenocarcinoma whose tumour harbours both a KRAS 
mutation and an STK11/LKB1 mutation, the latter being 
a tumour suppressor gene that modulates the mTOR 
pathway. Using a cohort of 174 patients with KRAS mutant 
lung adenocarcinoma, most treated with PD-1 inhibitor 
monotherapy, Skoulidis et al69 described a poor ORR in 
patients with co-mutations of just 7.4%, compared with 
those co-mutated with p53 or alone (35.7% and 28.6%, 
respectively), as well as superior survival. A study moni-
toring cfDNA on checkpoint inhibitor therapy also noted 
a poorer response in patients with STK11 mutations 
without specifically looking at the co-mutation, though 
these observations are not confirmed to be meaningfully 
predictive in isolation.70 71

Mutational signatures
Whole exome sequencing may reveal patterns of somatic 
mutations causing base changes, which generate a char-
acteristic transcriptional signature. These signatures have 
been validated in large reference libraries and they are 
observed to occur in response to certain carcinogenic 
processes such as environmental exposures. In some 
cases, they may also provide information about likelihood 
of response to treatment.72 73

The search for unique gene signatures that are highly 
predictive for response to immunotherapy has been 
published by multiple researchers. Ock et al32 described 
a unique immune signature, using 105 genes that were 
significantly associated with treatment response in a 
phase II immunotherapy trial, and demonstrated that 
this signature could differentiate responders versus non-
responders to CTLA-4 inhibitor therapy in melanoma 
specimens. This also appeared to be correlated with PFS 
and overall survival.32 74

Interferon-gamma (IFN-ɣ) is an important mediator 
of the tumour microenvironment, as a determinant of 
PD-L1 expression and other immune suppressive mole-
cules. It appears that IFN-related gene expression may be 
a robust marker of immunotherapy response. Ayers et al75 
identified and validated an IFN-ɣ gene expression profile 
across nine cancer types, which was necessary but not 
always sufficient for response to PD-1 inhibitor therapy. 
Clinical proof of this concept is demonstrated in the 
phase II POPLAR trial, where patients with an elevated 
T-cell effector–IFN-ɣ signature had superior overall 
survival (HR of 0.43 (CI 0·24 to 0·77)).76

Conclusions
Due to the rapid pace of discovery and wide breadth of 
medical literature, covering all putative biomarkers is not 
possible. A diverse selection of potential biomarkers are 
being studied which have not been covered here, from 
widely available tests such as CRP, to research markers 
such as B7-H4 IHC and to extremely novel factors such 
as CT-assessed macroangiopathy and morphomics.49 77–79 
It should be acknowledged that many of the suggested 
biomarkers are factors that correlate indirectly with levels 
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of inflammation and performance status, which have 
stood the test of time as robust markers both determining 
prognosis and predicting for response to any anticancer 
therapy, not just ICI.

While significant research effort continues into predic-
tors of response, the majority of newer biomarkers are far 
from validation in prospective cohorts, let alone appro-
priate for use in clinical practice to determine whether 
to use ICI in an individual patient. Our understanding of 
the incredible complexity of the dynamic processes medi-
ating the immune response to cancer remains limited, 
at least as far as application of simple assessments of 
individual biomarkers in clinical practice. That said, the 
translational interface between laboratory and clinical 
medicine is closer than ever before, due to the exponen-
tial pace of technological discovery carefully applied to 
more coordinated and strategic approaches. Inclusion of 
translational substudies within prospective clinical trials 
to validate suspected biomarkers will also add greatly to 
our current knowledge.

In the meantime, judicious selection of patients for ICI 
based on our current knowledge remains appropriate. 
Established biomarkers, such as PD-L1 status, TMB and 
MMR status, along with patient factors, and consider-
ation to some of the exploratory biomarkers discussed 
here, should inform patient selection until we have more 
refined predictors to guide practice.
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