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Abstract: According to specific formulas, the mixing of rubber samples occurs by two methods: open
mixing and internal mixing. The effects of frequency, mixing process, carbon black (CB) content, zinc
oxide (ZnO) content, and stearic acid (SA) content on the dielectric properties of rubber materials
were studied. The results showed that the effects of the mixing process on the dielectric properties
of the rubber samples cannot be ignored, and the appropriate mixing process should be selected
when preparing the required rubber materials. The dielectric constant and loss factor of the rubber
samples vary depending on the frequency. The dielectric constant had a peak and valley value,
while the loss factor only had a peak. The dielectric constant and loss factor of rubber samples were
significantly affected by the content of CB, ZnO, and SA. The peak frequency decreased with the
increase in CB content, however, the dielectric constant increased with an increase in CB content.
The higher the ZnO content, the lower the peak frequency. In addition, the dielectric constant and
loss factor increased with an increase in ZnO content. The higher the SA content, the greater the
peak frequency. In addition, the dielectric constant and loss factor decreased with an increase in SA
content. It is hoped that the experimental results obtained can provide guidance for the study of the
dielectric properties, microwave absorption properties, and microwave heating characteristics of
rubber polymers.

Keywords: rubber; dielectric properties; mixing process; carbon black

1. Introduction

Rubber materials are widely used in important fields such as military defense, aerospace,
and transportation. Raw rubber must undergo a vulcanization process to obtain good
performance in rubber products. Microwave vulcanization technology is favored by rubber
science and technology workers due to its advantages such as fast heating rate, cleanliness,
and convenient control. However, the microwave heating behavior of rubber is affected
by its dielectric properties. Different dielectric properties will lead to different microwave
heating temperature distribution and heating efficiency, in addition, the distribution of the
microwave heating temperature is important to ensure the good performance of rubber
products [1,2]. Therefore, it is extremely important to study the dielectric properties of
rubber materials.

In recent years, the dielectric properties or microwave absorbing properties of rubber
materials have attracted the attention of many scholars. Silicone rubber (SR) is widely
used in dielectric applications due to its excellent chemical resistance, electrical insulation,
and good flexibility. In order to improve the dielectric properties or absorbing properties
of SR, nanofillers such as carbon nanotubes, graphene, clay, and ceramics are added to
SR to prepare dielectric materials that meet the needs of rubber products [3–15]. Carbon
nanotubes have good electrical and microwave absorbing properties, so they have attracted
the attention of materials science and technology workers. Carbon nanotubes are used as
fillers to improve the dielectric properties, electromagnetic shielding performance, and
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wave absorbing properties of polymer materials [16–19]. In addition to carbon nanotubes,
graphene has also attracted the attention of some scholars due to its excellent thermal,
electrical, and microwave absorbing properties, and graphene is also used as a filler
to improve the dielectric properties and microwave absorbing properties of polymer
materials [20–22]. Polymer materials need to undergo a curing process to obtain application
performance. Some scholars have found that curing agents and curing or filling networks
will also have a significant impact on the dielectric behavior or dielectric response of
the cured polymer [23–26]. Dielectric elastomers (DE) can be used as dielectric elastomer
actuators (DEAs), which can induce surprisingly large actuated strain under an electric field
and thus have attracted much attention. However, in order to obtain the good performance
of DEAs, the dielectric properties of polymer composites, especially the dielectric constant,
are not negligible research objects [27,28].

Because tires are thick-section rubber products, traditional vulcanization methods
tend to cause defects such as uneven vulcanization temperature and low vulcanization
efficiency. If microwave vulcanization of large tires can be achieved, production efficiency
and energy consumption can be significantly improved. Therefore, in this work, tire rubber
is the research object. Firstly, rubber samples with different formulas were prepared using
different mixing processes. Secondly, the dielectric constants of the rubber samples within
a certain microwave frequency range were measured, and then the effects of the mixing
processes on the dielectric properties of the rubber samples were studied. Finally, the
effects of the CB content, ZnO content, and SA content on the dielectric constant and loss
factor were studied.

2. Experiment

In order to carry out the experiment, firstly, the raw materials and equipment for the
experiment were prepared, and then the rubber samples were prepared by the mixing
processes according to the rubber mixing formulas. Finally, the complex permittivity of the
prepared samples was measured by a broadband dielectric and impedance spectrometer.

The expression of complex permittivity is ε = ε′ − ε′′ × j. ε′ is the real part of the
complex permittivity, also called relative permittivity (or the dielectric constant). It indicates
the relative ability of a dielectric to store electrostatic energy in an electric field. ε′′ is the
imaginary part of the complex permittivity, also known as the dielectric loss factor (or
the loss factor). It represents the relative ability of a dielectric to convert electrical energy
into heat.

2.1. Materials

NR was purchased from Shanghai Yanzhong Industrial Co., Ltd., (Shanghai, China).
ZnO was purchased from Shanghai Liangjiang Titanium White Chemical Co., Ltd., (Shanghai,
China). SA was provided by Tianjin Beichen Founder Reagent Factory, (Tianjin , China). CB
was purchased from Suzhou Kabo Fine Chemicals Co., Ltd., (Suzhou, China). In addition,
sulfur (S) was provided by Fengcheng Fuhua Chemical Co., Ltd., (Fengcheng, China). The
technical indicators of ZnO and CB are listed in Table 1.

2.2. Experimental Device

The XQL-160 rubber cutting machine was used to cut natural rubber blocks. The X
(m)-1.7L synchronous rotor internal mixer was used for closed refining of rubber blends.
The XK-160 open mill was used for open refining of the rubber blends and calendering
the rubber blends into sheet samples. The dielectric properties (dielectric constant and
loss factor) of the samples were measured by using broadband dielectric and impedance
spectroscopy (BDIS). The schematic diagram of BDIS is shown in Figure 1. The technol-
ogy parameters of the broadband dielectric and impedance spectroscopy are shown in
Table 2. BDIS measurements were performed on a high resolution dielectric analyzer
(Novocontrol GmbH).
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Table 1. The technical indicators of ZnO and CB.

ZnO

Relative molecular mass 81.39
ZnO content ≥99.0%
Clarity test Qualified
Free base Qualified

Dilute sulfuric acid insoluble matter ≤0.01%
Chloride (Cl) ≤0.001%

Sulfur compounds (calculated as SO4) ≤0.01%
Nitrate (NO3) ≤0.003%

Mn ≤0.0005%
Fe ≤0.0005%
As ≤0.00005%
Pb ≤0.005%

Reduced potassium permanganate substance (calculated as O) ≤0.002%
Ammonium sulfide that does not precipitate (calculated as sulfate) ≤0.10%

CB

Fixed carbon content of graphite powder ≥99.9%
Ash ≤0.36%

Moisture ≤0.36%
pH value 6.2

Mesh 5000
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Figure 1. The schematic diagram of BDIS. Figure 1. The schematic diagram of BDIS.

Table 2. The technology parameters of the broadband dielectric and impedance spectroscopy.

Frequency range/MHz 1–3
Impedance range/Ohm 0.01–105

Capacitance range/F 10−15–1
Temperature range/°C +20–+40

Temperature stability/°C ±0.2
Maximum heating and cooling rate/°C·min−1 50

Phase difference accuracy 2 × 10−3

Loss accuracy: tan δ 3 × 10−5

Measuring voltage/Vrms 0–3
DC bias/V ±40



Polymers 2021, 13, 2908 4 of 17

Experimental steps: (1) Calibration of four standard parts (shown in Figure 2). The
four standard parts were fixed on the extension line of the sample rack in sequence and
calibrated, and then the calibration results were saved. Calibration sequence: 1© Open,
2© Short, 3© 50 Ω, 4© Low loss. (2) Calibration of the dielectric sample cell and saving of the

calibration results. The dielectric sample cell was fixed on the extension line of the sample
holder, and then the prepared rubber sample was placed between the upper electrode and
the lower electrode, the sample cell was sealed, and the experimental results were obtained
by measurement. The experimental rubber sample was a circular film with a diameter of
11 mm and a thickness of about 1.8 mm.
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Figure 2. Four standard parts for calibration.

2.3. Preparation of Rubber Samples
2.3.1. The Formula for Mixing Rubber

ZnO and SA are indispensable additives for making tire rubber. ZnO can be used as a
vulcanization activator to accelerate the vulcanization of natural rubber. It can not only
strengthen the vulcanization process but also has the effect of strengthening and anti-aging.
The amount used in the formula was about 1–5%. In the tire manufacturing process, SA
can be used as an external lubricant to soften and plasticize natural rubber, and it can also
be used as a vulcanization accelerator to accelerate the rubber vulcanization process. The
amount used in the formula was about 0.5–3%. Therefore, in order to study the dielectric
properties of rubber, the effect of the content of ZnO and SA also needed to be explored.
According to the foregoing, the formulas of mixing rubber are shown in Table 3.

2.3.2. The Mixing Process of the Rubber Sample

At present, dry mixing technology mainly includes open mixing and internal mixing.
An open mill and an internal mixer are used in the two mixing methods, respectively. In
order to explore whether the dielectric properties of rubber are affected by the mixing
method, open mixing and internal mixing methods were selected for the preparation of
natural rubber samples. For plasticizing and mixing, the natural rubber was cut into small
pieces by a rubber cutter, and then the small pieces of natural rubber underwent an open
mixing process and an internal mixing process to obtain rubber samples. The open mixing
conditions and internal mixing conditions are listed in Table 4. The mixing process flows
are shown in Figures 3 and 4. In the open mixing process, all the processes were completed
by the open mill. These processes included the plasticizing of natural rubber, the uniform
mixing of the plasticized rubber and additives, and the calendering of the rubber blends.
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However, the preparation of the internal mixing rubber sample was not entirely completed
by the internal mixer. The main reason was that the temperature of the internal mixing
process can reach 130 ◦C or more, and the vulcanization reaction of the natural rubber and
S will cause the rubber to crosslink. Therefore, S could not be added to the internal mixer,
and the mixing of S and the natural rubber were completed by the open mixer. No matter
what kind of mixing method, all the rubber blends must be calendered by an open mill.
The calendered rubber sheet was cut into a circular test sample with a diameter of 11 mm
for the experimental measurement of dielectric properties.

Table 3. The rubber mixing formulas.

Raw
Material

Mass/g

Formula 1 Formula 2

1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 2-5

NR 100 100 100 100 100 100 100 100 100 100
ZnO 1 1 1 1 1 2 2 2 2 2
SA 1 1 1 1 1 2 2 2 2 2
CB 5 10 15 20 25 5 10 15 20 25

Formula 3 Formula 4

3-1 3-2 3-3 3-4 3-5 4-1 4-2 4-3 4-4 4-5

NR 100 100 100 100 100 100 100 100 100 100
ZnO 3 3 3 3 3 3 3 3 3 3
SA 3 3 3 3 3 2 2 2 2 2
CB 5 10 15 20 25 5 10 15 20 25

Table 4. The mixing conditions.

The Open Mixing Conditions

Roller speed 20 r/min
Mixing time 9–10 min

Roller temperature ≤50 ◦C
Roll distance of calendering sheet 1.8 mm

The Internal Mixing Conditions

Rotating speed 90 r/min
Mixing time 10 min

Feed temperature 70 ◦C
Rubber discharging temperature 130–140 ◦C
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3. Results and Discussion
3.1. Effect of the Mixing Process

According to the rubber mixing formula four, the rubber samples containing different
mass CB were prepared by using the open mill and internal mixer. The codes of the
experimental rubber samples corresponding to formula four are shown in Table 5.

Table 5. The codes of the rubber mixing.

Code D4-1 D4-2 D4-3 D4-4 D4-5

NR 100 100 100 100 100
ZnO 3 3 3 3 3
SA 2 2 2 2 2
CB 5 10 15 20 25

The dielectric constant vs. frequency plots of open mixing rubber and internal mixing
rubber are shown in Figure 5.

Figure 5 indicates that no matter what kind of mixing method, the trend of the
dielectric constant with the frequency is consistent. At lower frequencies, the dielectric
constant gradually increased with the frequency, when the frequency increased to a certain
value, the dielectric constant rapidly increased to a peak, then rapidly dropped to a valley
value, and then, the dielectric constant gradually increased to a stable value with the
frequency. The peak of the dielectric constant and the corresponding frequency are shown
in Figure 6. The results showed that the peak and peak frequency of the dielectric constant
were obviously affected by the mixing process. For the same formula, the peak dielectric
constants of rubber samples obtained by different mixing methods had obvious differences.
For rubber samples with codes D4-1, D4-2, D4-3, D4-4, and D4-5, the relative percentages of
the peak dielectric constant difference were 0.9%, 5.2%, 6.0%, 9.2%, and 27.2%, respectively.
At the same time, the frequencies corresponding to different peak dielectric constants were
also significantly different. The relative percentages of the peak frequency difference were
1.0%, 1.6%, 2.3%, 1.8%, and 2.0%, respectively.

By observing Figure 5, it can be seen that the dielectric constants fluctuated signifi-
cantly in the frequency range of 1 GHz to 2 GHz. In other frequency ranges, the dielectric
constant was almost unaffected by the mixing process. In order to explore whether the
dielectric constant was affected by the mixing process in other frequency ranges, the di-
electric constants in the frequency range of 0.1 GHz to 1 GHz were selected as the research
focus. In the frequency range of 0.1 GHz to 1 GHz, the dielectric constant vs. frequency
plots of two kinds of rubber mixing are shown in Figure 7.



Polymers 2021, 13, 2908 7 of 17

Polymers 2021, 13, 2908 6 of 18 
 

 

 

Figure 3. The process flow diagram of the open mixing technology. 

 

Figure 4. The process flow diagram of the internal mixing technology. 

3. Results and Discussion 

3.1. Effect of the Mixing Process 

According to the rubber mixing formula four, the rubber samples containing differ-

ent mass CB were prepared by using the open mill and internal mixer. The codes of the 

experimental rubber samples corresponding to formula four are shown in Table 5. 

Table 5. The codes of the rubber mixing. 

Code D4-1 D4-2 D4-3 D4-4 D4-5 

NR 100 100 100 100 100 

ZnO 3 3 3 3 3 

SA 2 2 2 2 2 

CB 5 10 15 20 25 

The dielectric constant vs. frequency plots of open mixing rubber and internal mixing 

rubber are shown in Figure 5. 

-40

-20

0

20

40

3×1092×109

 

 

D
ie

le
ct

ri
c 

co
n

st
an

t 

Frequency / Hz

 Open mixing rubber
 Internal mixing rubber

D4-1

0 1×109

 

-40

-20

0

20

40

 

 

D
ie

le
ct

ri
c 

co
n

st
a

n
t

Frequency / Hz

  Open mixing rubber
 Internal mixing rubber

D4-2

3×1092×1090 1×109

 

(a) Corresponding to code D4-1 (b) Corresponding to code D4-2 

Polymers 2021, 13, 2908 7 of 18 
 

 

-40

-20

0

20

40

 

 

D
ie

le
ct

ri
c 

co
n

st
an

t

  Open mixing rubber
 Internal mixing rubber

D4-3

3×1092×109

Frequency / Hz

0 1×109

 

-60

-40

-20

0

20

40

60

80

100

120

 

 

D
ie

le
ct

ri
c 

co
n

st
an

t

  Open mixing rubber
 Internal mixing rubber

D4-4

3×1092×109

Frequency / Hz

0 1×109

 
(c) Corresponding to code D4-3 (d) Corresponding to code D4-4 

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

 

 

D
ie

le
ct

ri
c 

co
n

st
an

t

  Open mixing
 Internal mixing

D4-5

3×1092×109

Frequency / Hz

0 1×109

 
(e) Corresponding to code D4-5 

Figure 5. The dielectric constant vs. frequency plots of the rubber mixing. 

Figure 5 indicates that no matter what kind of mixing method, the trend of the die-

lectric constant with the frequency is consistent. At lower frequencies, the dielectric con-

stant gradually increased with the frequency, when the frequency increased to a certain 

value, the dielectric constant rapidly increased to a peak, then rapidly dropped to a valley 

value, and then, the dielectric constant gradually increased to a stable value with the fre-

quency. The peak of the dielectric constant and the corresponding frequency are shown 

in Figure 6. The results showed that the peak and peak frequency of the dielectric constant 

were obviously affected by the mixing process. For the same formula, the peak dielectric 

constants of rubber samples obtained by different mixing methods had obvious differ-

ences. For rubber samples with codes D4-1, D4-2, D4-3, D4-4, and D4-5, the relative per-

centages of the peak dielectric constant difference were 0.9%, 5.2%, 6.0%, 9.2%, and 27.2%, 

respectively. At the same time, the frequencies corresponding to different peak dielectric 

constants were also significantly different. The relative percentages of the peak frequency 

difference were 1.0%, 1.6%, 2.3%, 1.8%, and 2.0%, respectively.  

Figure 5. The dielectric constant vs. frequency plots of the rubber mixing.



Polymers 2021, 13, 2908 8 of 17

Polymers 2021, 13, 2908 8 of 18 
 

 

 

Figure 6. The peaks of the dielectric constant and frequency of the rubber samples. 

By observing Figure 5, it can be seen that the dielectric constants fluctuated signifi-

cantly in the frequency range of 1 GHz to 2 GHz. In other frequency ranges, the dielectric 

constant was almost unaffected by the mixing process. In order to explore whether the 

dielectric constant was affected by the mixing process in other frequency ranges, the die-

lectric constants in the frequency range of 0.1 GHz to 1 GHz were selected as the research 

focus. In the frequency range of 0.1 GHz to 1 GHz, the dielectric constant vs. frequency 

plots of two kinds of rubber mixing are shown in Figure 7. 

2.7

3.0

3.3

3.6

 

 

D
ie

le
ct

ri
c 

co
n

st
an

t Open mixing rubber

Internal mixing rubber

D4-1

1×1098×1086×1084×1082×108

Frequency / Hz

0

 

3.0

3.5

4.0

4.5

 

 

D
ie

le
ct

ri
c 

co
n

st
an

t

Open mixing rubber
Internal mixing rubber

D4-2

1×1098×1086×1084×1082×108

Frequency / Hz

0

 
(a) Corresponding to code D4-1 (b) Corresponding to code D4-2 

D4-1 D4-2 D4-3 D4-4 D4-5
0

10

20

30

40

50

60

70

80

90

N
u

m
e
ri

c
a
l 

v
a
lu

e

Code of mixing rubber

 The peak frequency of open mixing rubber(GHz)
 The peak of dielectric constant of open mixing rubber
 The peak frequency of internal mixing rubber(GHz)
 The peak of dielectric constant of internal mixing rubber

Figure 6. The peaks of the dielectric constant and frequency of the rubber samples.

Figure 7 indicates that the effect of the mixing process on the dielectric constant of
mixing rubber was also remarkable in the frequency range of 0.1GHz to 1GHz. In the
frequency range of 0.1GHz to 1GHz, the comparison of the maximum dielectric constants
of rubber samples obtained by different mixing processes is shown in Figure 8. For rubber
samples with codes D4-1, D4-2, D4-3, D4-4, and D4-5, the relative percentages of the
maximum dielectric constant difference were 1.6%, 4.9%, 4.3%, 8.7%, and 3.8%, respectively.
So, the effect of the mixing process on the dielectric properties of rubber materials cannot
be ignored.
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3.2. Effects of CB, ZnO, and SA

CB can not only be used as a rubber reinforcing agent but also can improve the
microwave absorption properties of rubber materials. However, the absorbing properties
of rubber materials are controlled by their dielectric properties. The research results in
Section 3.1 also showed that the dielectric constant of rubber materials was affected by the
CB content. Therefore, it is necessary to study the effect of the CB content on the dielectric
properties of rubber materials.

The ultimate goal of preparing the mixing rubber is to vulcanize it into rubber prod-
ucts, so sulfur is essential as a vulcanizing agent. Based on formula one, formula two,
formula three, and formula four, the same amount of S was added to the natural rubber
in the process of preparing the rubber compounds. The codes for the rubber compounds
containing S are listed in Table 6.
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Figure 8. The maximum dielectric constants of the rubber samples obtained by different
mixing processes.

Table 6. The codes for the rubber compounds containing S.

CB Content 5 10 15 20 25

Corresponding formula Code

Formula 1 (group one) A1-1 A1-2 A1-3 A1-4 A1-5
Formula 2 (group two) A2-1 A2-2 A2-3 A2-4 A2-5

Formula 3 (group three) A3-1 A3-2 A3-3 A3-4 A3-5
Formula 4 (group four) A4-1 A4-2 A4-3 A4-4 A4-5

3.2.1. Effects of CB, ZnO, and SA on the Dielectric Constant

The dielectric constant vs. frequency plots of the rubber samples are shown in Figure 9.
The results demonstrated that the dielectric constant of the rubber sample also changed

with the frequency. The dielectric constant of each rubber sample also had a peak and
valley value. The peak of the dielectric constant and the corresponding frequency are
shown in Figure 10. Figure 10 shows that the dielectric constant of the rubber sample
was significantly affected by the CB content. According to the grouping in Table 6, when
other additives were added in the same amount, the maximum relative percentages of the
dielectric constant difference of rubber samples with different CB contents were 71.9%,
35.7%, 48.4%, and 92.4%, respectively. The peak frequency decreased with the increase in
CB content, that is, the higher the CB content, the lower the peak frequency. By observing
and analyzing Figure 6, a similar influence law can also be obtained. Comparing the results
of group two and group four, it can be seen that the dielectric constant of the rubber sample
was also significantly affected by the ZnO content. When other additives were added in the
same amount, the relative percentage of the dielectric constant difference of rubber samples
with different ZnO contents reached 59.5%. The peak frequency of the rubber sample
containing more ZnO was less than the peak frequency of the rubber sample containing
less ZnO. The maximum relative percentage of peak frequency reached 24.7%. Comparing
the results of group three and group four, it can be seen that the dielectric constant of the
rubber sample was also affected by the SA content. When other additives were added in
the same amount, the relative percentage of the dielectric constant difference of the rubber
samples with different SA contents reached 55.7%. Contrary to the effect of ZnO content,
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the peak frequency of the rubber sample containing more SA was greater than the peak
frequency of the rubber sample containing less SA. The maximum relative percentage of
peak frequency reached 22.6%.
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3.2.2. Effects of CB, ZnO, and SA on the Loss Factor

The loss factor vs. frequency plots of rubber samples are shown in Figure 11.
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The results demonstrated that the loss factor of the rubber sample also changed with
the frequency. The loss factor of each rubber sample also had a peak. The peak of the
loss factor and the corresponding frequency are shown in Figure 12. Figure 12 shows
that the loss factor of the rubber sample was also significantly affected by the CB content.
According to the grouping in Table 6, when other additives were added in the same
amount, the maximum relative percentages of the loss factor difference of rubber samples
with different CB contents were 73.3%, 82.4%, 62.1%, and 79.6%, respectively. The peak
frequency decreased with the increase in CB content, that is, the higher the CB content, the
lower the peak frequency. Comparing the results of group two and group four, it was found
that the loss factor of the rubber sample was also significantly affected by the ZnO content.
When other additives were added in the same amount, the relative percentage of the loss
factor difference of rubber samples with different ZnO contents reached 74.6%. Similarly,
the peak frequency of the rubber sample containing more ZnO was less than the peak
frequency of the rubber sample containing less ZnO. The maximum relative percentage of
peak frequency reached 23.5%. Comparing the results of group three and group four, it
was found that the loss factor of the rubber sample was also affected by the SA content.
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When other additives were added in the same amount, the relative percentage of the loss
factor difference of rubber samples with different SA contents reached 78.9%. Contrary to
the effect of ZnO content, the peak frequency of the rubber sample containing more SA was
greater than the peak frequency of the rubber sample containing less SA. The maximum
relative percentage of peak frequency reached 25.9%.
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3.2.3. Dielectric Parameters in the Frequency Range of 0.1 GHz–1 GHz

By observing Figures 9 and 11, similarly, it was found that the dielectric constant and
loss factor fluctuated significantly in the frequency range of 1GHz to 2GHz, however, the
difference was not obvious in other frequency ranges. Therefore, the dielectric constant
and loss factor in the frequency range of 0.1 GHz to 1 GHz were selected as the research
focus to explore the effect of CB, ZnO, and SA.

In the frequency range of 0.1GHz to 1GHz, the dielectric constant vs. frequency plots
of rubber sample are shown in Figure 13. The maximum dielectric constant of each rubber
sample is shown in Figure 14.

Figures 13 and 14 show that the dielectric constant of the rubber sample increased with
increasing CB content. The increased percentages of the maximum dielectric constant were
83.7%, 53.3%, 59.7%, and 142.9%, respectively. Comparing Figure 13b,d, and combined
with Figure 14, it can be seen that the dielectric constant increased with the increase in
ZnO content, the increased percentage of the maximum dielectric constant reached 47.8%,
and the higher the ZnO content, the higher the rate of dielectric constant increased with
frequency. Especially when the CB content exceeded 15, this phenomenon became more
obvious. However, comparing Figure 13c,d, combined with Figure 14, it can be seen that
the dielectric constant decreased with the increase in SA content, the reduction percentage
of the maximum dielectric constant reached 32.4%, and the lower the SA content, the higher
the rate of dielectric constant increasing with the frequency.

In the frequency range of 0.1GHz to 1GHz, the loss factor vs. frequency plots of rubber
samples are shown in Figure 15. The maximum loss factor of each rubber sample is shown
in Figure 16.

Figures 15 and 16 show that the loss factor of the rubber sample was significantly
affected by the CB content in the frequency range of 0.1GHz–1GHz. When the CB content
was 15 or 20, the loss factor had a maximum value. For the four groups of samples coded
A1, A2, A3, and A4, the increased percentages of the maximum loss factor were 430.3%,
581.8%, 281.8%, and 420%, respectively. Similarly, the loss factor increased with the increase
in ZnO content, the increased percentage of the maximum loss factor reached 188.9%. The
loss factor decreased with the increase in SA content, the reduction percentage of the
maximum loss factor reached 67.7%.
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Figure 14. The maximum dielectric constant of the rubber sample. 
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Figure 16. The maximum loss factor of the rubber samples. 
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4. Conclusions

The dielectric constant and loss factor of the rubber sample vary depending on the
frequency. No matter what kind of mixing method, the trend of the dielectric constant with
the frequency is consistent. The effect of the mixing process on the dielectric constant of
rubber samples is remarkable. For rubber samples prepared by two methods, open mixing
and internal mixing, the relative percentages of the peak dielectric constant difference are
0.9%, 5.2%, 6.0%, 9.2%, and 27.2%, respectively. In addition, in the frequency range of
0.1GHz to 1GHz, the relative percentages of the maximum dielectric constant difference
are 1.6%, 4.9%, 4.3%, 8.7%, and 3.8%, respectively. Hence, the effect of the mixing process
on the dielectric properties of rubber materials cannot be ignored.

The dielectric constant and loss factor fluctuate drastically in the frequency range
of 1GHz to 2GHz. The dielectric constant has a peak and valley value, while the loss
factor only has a peak. The peak frequency decreases with the increase in CB content or
ZnO content, but increases with the increase in SA content. The dielectric constant of the
rubber sample is significantly affected by the content of CB, ZnO, and SA. When other
additives are added in the same amount, the maximum relative percentages of the dielectric
constant difference of rubber samples with different CB contents are 71.9%, 35.7%, 48.4%,
and 92.4%, respectively. The relative percentage of the dielectric constant difference of the
rubber samples with different ZnO contents reached 59.5%. The relative percentage of the
dielectric constant difference of the rubber samples with different SA contents reached
55.7%. The dielectric constant of the rubber sample increases with CB content or ZnO
content, but decreases with the increase in SA content.

The loss factor of the rubber sample is also obviously affected by the content of CB,
ZnO, and SA. When other additives are added in the same amount, the maximum relative
percentages of the loss factor difference of the rubber samples with different CB contents
are 73.3%, 82.4%, 62.1%, and 79.6%, respectively. The relative percentage of the loss factor
difference of rubber samples with different ZnO contents reached 74.6%. The relative
percentage of the loss factor difference of the rubber samples with different SA contents
reached 78.9%. The loss factor increases with the increase in ZnO content but decreases
with the increase in SA content.
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