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Abstract

The non-specific, hyperpolarization activated, Ih current is particularly involved in epilepsy and it exhibits an excitatory or
inhibitory action on synaptic integration in an apparently inconsistent way. It has been suggested that most of the
inconsistencies could be reconciled invoking an indirect interaction with the M-type K+ current, another current involved in
epilepsy. However, here we show that the original experiments, and the simplified model used to explain and support them,
cannot explain in a conclusive way the puzzling Ih actions observed in different experimental preparations. Using a realistic
model, we show instead how and why a shunting current, such as that carried by TASK-like channels, and dependent on Ih

channel is able to explain virtually all experimental findings on Ih up- or down-regulation by modulators or pathological
conditions. The model results suggest several experimentally testable predictions to characterize in more details this elusive
and peculiar interaction, which may be of fundamental importance in the development of new treatments for all those
pathological and cognitive dysfunctions caused, mediated, or affected by Ih.
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Introduction

Experimental findings on the effects of Ih modulation appear to

be inconsistent. Although some results can be explained in terms of

Ih intrinsic properties and dendritic distribution [1], its real nature,

effects, and possible interaction with other membrane mechanisms

are poorly understood (discussed in [2]). The major source of

confusion is that, from its reversal potential around 230 mV, it

can be expected to exert an excitatory action. However, in many

experiments on hippocampal neurons it exhibits a surprising

inhibitory effect, making the underlying mechanism of action and

its possible relevance for therapeutic applications far from clear. A

striking example of the kind of problems faced in interpreting

experimental findings can be found in CA1 pyramidal neurons:

induction of febrile seizures [3] or application of the anticonvul-

sant agent lamotrigine [4] both cause an Ih up-regulation, but

result in opposite effects (excitation and inhibition with respect to

control, respectively) during dendritic current injections. It has

been recently suggested [5] that most of the inconsistencies among

the experimental (and as well as modeling) findings related to Ih

could be explained by an indirect interaction with the M-type

potassium current (KM). The inhibitory (instead of the expected

excitatory) effect, observed during a synaptic stimulation, was thus

interpreted with an increased activation of KM overcompensating

the higher excitability generated by the more depolarized resting

membrane potential (RMP) in the presence of Ih. However, in

CA1 pyramidal neurons the KM is localized in the axo-somatic

region [6–7], and the rare channels found in the dendrites [8] do

not seem to affect synaptic integration [9]. We thus reasoned that

is unlikely for KM to play a significant role in modulating the effects

of Ih, which is instead predominantly involved with synaptic

integration and with a predominant dendritic distribution. This is

an extremely timely and intriguing issue, given the particularly

important functional role that both KM and Ih play in epilepsy

[4,10–11]. Unfortunately, as we discuss in this paper, recent

experiments and the simplified models used to explain and support

them, cannot explain in a conclusive way the puzzling Ih actions

observed in different experimental preparations. Here, using a

realistic model we show instead how and why a shunting current,

such as that carried by TASK-like channels [12–13], dependent

on the Ih peak conductance is able to explain virtually all

experimental findings on Ih up- or down-regulation by modulators

or pathological conditions.

Materials and Methods

All simulations were implemented with the NEURON program

[14], and model files are available for public download under the

ModelDB section of the Senselab database (http://senselab.med.

yale.edu). We started from a morphologically accurate model of a

CA1 neuron with active and passive properties already validated

against a number of different experimental findings [15], including

sodium and delayed rectifier potassium conductances uniformly

distributed throughout the dendrites, an A-type potassium [16]

conductance linearly increasing with distance from the soma, a KM in

theaxosomatic region[7,10,17],and Ih [4,18].Thepassiveproperties
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and Ih parameters were optimized to simultaneously fit both the

somatic and dendritic responses of a CA1 pyramidal neuron to a

dendritic current injection under physiological conditions, as shown

in Fig. 1a [15]. For the purposes of this paper, the Ih current was

modeled with an additional component, Ilk:

Ih xð Þ~gh xð Þl v{vrev hð ÞzIlk,

where gh(x) is the local peak conductance (at x mm from the soma), l is

the activation variable (from [4]), and vrev_h = 230 mV. The Ilk was

implemented as Ilk = gh(x)?lk?(v–vrev_lk), with a voltage- and time-

independent parameter, lk, and a reversal potential of vrev_lk. Unless

explicitly noted otherwise, lk = 0. Note that changes or different

values for gh(x) (e.g. because of a different dendritic location or

ZD7288 application) would also affect this current, and that it will

have a shunting effect for vrev_lk in the range of the resting membrane

potential. It should also be stressed that we used this formulation as a

convenient way to implement the explicit dependence of Ilk from Ih

channels, and it does not imply any change in the conventional Ih

channel kinetic and activation properties. As pointed out later in the

paper (see Discussion), although with our model we can make a few

experimentally testable predictions, the detailed nature and proper-

ties of this current remain to be experimentally investigated.

To take into account the latest available experimental data [19],

the peak Ih conductance was modeled with a sigmoid increase with

distance from the soma as:

gh xð Þ~gh pk
: 1z100= 1ze x0{xð Þ=s

� �h i
,

where gh_pk is the somatic peak density, x is the distance from soma

(in mm), and the constants x0 and s define the midpoint and shape

of the sigmoid, respectively. The values of the fitted parameters

obtained using the Multiple Run Fitter tool of NEURON are

reported in Table 1.

The KM current was added to the soma and axon, using the

same model previously used to study its functional role in CA1

pyramidal neurons [7,10,17]. Currents at rest were not compen-

sated to set the resting potential, and a reversal potential of

275 mV was used for the passive leakage mechanism. To model

the somatic depolarization generated by a stimulating extracellular

electrode in stratum radiatum (as in [5]), 50 excitatory synapses of

up to 0.4 nS were modeled as a double exponential conductance

change (with rise and decay time of 0.5 and 20 ms, respectively,

and reversal potential of 0 mV) and randomly distributed in the

oblique dendrites 100–500 mm from the soma. Test simulations

using different random distributions gave the same qualitative

results.

Results

One of the controversial experimental findings that we will

discuss here is the peak somatic depolarization reached during the

activation of dendritic synaptic inputs on hippocampal CA1

pyramidal neurons, reported by George et al. [5]. The results for a

specific cell, illustrated in Fig. 1b (left), show that the curve for the

peak somatic depolarization under control conditions crossed that

obtained without Ih (i.e. with ZD7288). The crossover effect is

important, because it demonstrates that the Ih can enhance or

inhibit the spike firing for weak or strong inputs, respectively, with

possible consequences on the generation and spreading of seizures.

The inhibitory effect is illustrated in the inset of Fig. 1b (left) for a

Figure 1. Realistic modeling of puzzling experimental findings. a) the 3D reconstruction used in most simulations (left, cell ri06 from the
neuromorpho.org database), and model fitting (green) of simultaneous dendritic and somatic experimental recordings (black); dendritic current
injection (1 nA, 200 ms, ,200 mm from soma); cell’s scale bar is 100 mm; b) (left) Typical peak somatic depolarization reached during dendritic
stimulations in an experiments with (red) or without (blue) Ih; inset shows somatic recordings for a 60 mA stimulus; (right) Peak somatic depolarization
with or without Ih after block of KM. Experimental results in panel b report results observed in different CA1 neurons, and were adapted from Figs. 2b
and 6c of [5] with permission from Macmillan Publishers Ltd, copyright (2009).
doi:10.1371/journal.pone.0036867.g001

Table 1. Parameter values best fitting the experimental traces in Fig. 1a.

gh (mS/cm2) x0 (mm) s (mm) Rm (kV cm2) Cm (mF/cm2) Ra (VNcm) lk (%) vrev_lk (mV) error (mV2)

0.007 340 30 20.0 1.9 80 3.7 265.61 0.44

doi:10.1371/journal.pone.0036867.t001

Ih Current Interaction with a Shunting Current
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particular stimulus strength. Next, in a different experiment (in

different cells) carried out in the presence of the KM blocker

XE991, the authors found that the peak somatic depolarization

with or without Ih never showed a crossover effect, with the Ih

exhibiting an excitatory action over the entire range of input

strength tested (Fig. 1b, right, compare red and blue symbols). This

result was interpreted as caused by the block of KM, and it was thus

suggested that a KM2Ih interaction could be responsible for the

inhibitory effect of Ih on EPSPs.

To investigate in more details these results, we started by

validating and testing the limits of our model simulating many

different experimental findings on Ih under different conditions.

We began by modeling the effect of the Ih blocker ZD7288 (ZD).

During a 900 ms somatic current injection, the Ih was blocked by

resetting its peak conductance to 0 at t = 450 ms (Fig. 2, ZD).

The result was a reduction of the spike frequency, and it is

consistent to what observed in experimental studies using ZD

(e.g. [20–21]). This effect can be interpreted as caused by the

lower resting membrane potential (RMP) induced by the

suppression of the excitatory driving force towards the Ih reversal

potential. We next modeled the Ih up-regulation experimentally

observed following febrile seizures as an overall 36 increase in

the peak Ih conductance. In agreement with experiments (Fig. 2b,

top traces, from ref. [3]), this resulted in a higher RMP (,3 mV)

and an increase (,36) in the number of APs generated by the

same dendritic stimulation (Fig. 2b, bottom traces). Finally, to

show the effect of Ih on synaptic integration, we modeled a classic

experimental protocol activating a train of proximal or distal

synaptic inputs (5 pulses at 50 Hz with and without Ih). Typical

experimental findings are shown in Fig. 1c (top traces, from ref.

[22]). In the model, the proximal or distal train was activated

during the same simulation under three different conditions: 1)

control (Fig. 2c, bottom traces, control), 2) after ZD (Fig. 2c,

bottom traces, ZD) and, 3) after a somatic current injection

added to compensate for the hyperpolarization induced by ZD

application (Fig. 2c, bottom traces, ZD+Iinj). Again as in the

experiments [22], the simulation showed that Ih normalizes the

temporal summation at the soma of a train of dendritic EPSPs

(Fig. 2c, compare black and red traces under control). However,

the overall excitatory or inhibitory effect (in terms of the peak

depolarization reached during the train) depends on the specific

experimental conditions (discussed in [2]) and, in particular, by

the additional current injection routinely used in the experiments

to compensate for the change in RMP after ZD (Fig. 2c,

compare traces under ZD and ZD+Iinj). These results demonstrate

that a ‘‘naive’’ Ih, without any direct or indirect association with

another mechanism, is able to take into account different

experimental findings.

We next considered the peak somatic depolarization reached

during the activation of dendritic synaptic inputs on hippocampal

CA1 pyramidal neurons (Fig. 1b). In order to reproduce the

control conditions of the experiments discussed in George et al [5],

we first adjusted the peak Ih conductance in such a way to match

the RMP and peak depolarization obtained in the experiments

using the KM blocker XE991, with and without Ih (Fig. 3, left,

compare with right panel in Fig. 1b). As in the experiments, the

peak somatic depolarization was higher in the presence of Ih (red

symbols in Fig. 3) over the entire range of input strength tested.

This excitatory effect of Ih was interpreted as caused by the block

of KM. In other words, under control conditions, the KM should be

strong enough to reduce the peak depolarization in such a way to

generate a crossover effect between the curves obtained with or

without Ih. However, our simulation for this case did not show any

crossover effect (Fig. 3, right). The results suggested that a KM

would indeed reduce the peak depolarization. However, this

would occur with or without Ih, preventing in most cases a

crossover effect. These results thus show a possible problem in

interpreting the experimental findings, and in this work we argue

that, under physiological conditions, the suggested interaction

between KM and Ih cannot explain the observed behavior unless

some other (so far missed) mechanism is taken into account.

Considering the KM channel’s properties the results discussed

above are not surprising. It should be easy to realize that any

modulation increasing the total KM current, in the attempt to

obtain a crossover point (e.g. a different activation curve or

dendritic distribution), would just increase the membrane hyper-

polarization towards the K+ reversal potential. It is important to

stress that this effect will occur in all cases, including any

pharmacological manipulations that do not affect the KM, such as a

ZD application. Only under very special circumstances the effect

of KM might result in a range of synaptic strength for which Ih

would have an inhibitory effect. A particular example is an

electrotonically very compact neuron that can be represented as a

single-compartment model, as in [5]. In order to better clarify this

issue, we reproduced all the modeling results by George et al. [5].

The main result in those cases was obtained using a non-spiking

(i.e. without Na+ channels) soma-only configuration, with a

crossover point modulated by the KM and Ih peak conductance,

as shown in Fig. 4a (left). However, using a spiking soma (Fig. 4a,

right, not tested in [5]) reveals that the amount of KM conductance

needed to obtain a crossover point consistent with experiments is

quite unrealistic, since it should be so strong to block any repetitive

spiking activity (Fig. 4a, right, insets), in striking contrast with any

experimental evidence on CA1 neurons. Even worse were the

results using the multi-compartmental, but still electrotonically

very compact, morphology used in [5] (not shown), or our full

CA1 morphology using different KM distributions (Fig. 4b). In all

cases, the KM needed to obtain a reasonable crossover effect was

too high to allow repetitive firing at any input current (Fig. 4b,

insets show typical cases). Thus, it is unlikely that this current can

play a main role. The reason for this failure is that a dendritic

synaptic input reaches a suprathreshold value before any

significant inhibitory Ih effect can be observed at the soma. These

results demonstrate that a simple interaction between KM and Ih

alone cannot explain the experimental findings, and suggest that

some additional mechanism is missing.

Using an additional current proportional to the Ih peak

conductance, Ilk, we were able to model the excitatory and

inhibitory effect of Ih in very good agreement with the

experiments, as shown in Fig. 5a: Ih increases the peak

depolarization for weak inputs and reduces it for stronger inputs

(a typical case of somatic potential for a strong input is shown in

the inset). Blocking the KM did not change much the result (Fig. 5b).

Instead, using different values of lk and Ilk reversal potential we

were able to generate a crossover point between excitation and

inhibition practically anywhere over the entire range of synaptic

strength (Fig. 5c), just as observed in the experiments [5]. These

results thus suggest that the puzzling excitatory/inhibitory effect of

Ih can be explained in terms of a shunting current dependent on Ih

channels.

We finally tested our model against one of the clearest

experimental findings on the different effect at the soma and

dendrites caused by Ih upregulation, i.e. during application of the

anticonvulsant drug lamotrigine [4]. In the experiments, lamo-

trigine caused +10 mV shift of Ih activation and a consequent

,3 mV depolarization of the resting membrane potential. These

changes should produce an overall increase in cell’s excitability.

However, they instead resulted in a negligible effect at the soma

Ih Current Interaction with a Shunting Current
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Figure 2. Typical experimental and model findings on Ih. a) simulation of ZD7288 application during a 0.33 nA somatic current injection: at
t = 500 the Ih was blocked by resetting the peak conductance to 0; b) (top) increase in the dendritic firing rate after Ih upregulation following febrile
seizures induction (adapted from Fig. 2A of [3]); (bottom) simulation of Ih upregulation in febrile seizures; traces are dendritic recordings during a
500 ms current injection (0.4 nA at ,280 mm), using a 36 increase in gh_pk (from 0.01 mS/cm2) to obtain about the same depolarization (,3 mV) and
the same increase (,36) in the number of APs observed in the experiments; c) (top) experimental recordings demonstrating an increase in temporal

Ih Current Interaction with a Shunting Current
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and a strong inhibitory action in the dendrites, as shown in Fig. 6

(left). With our model, these results can be straightforwardly

explained by modeling LTG application with a 60% increase of lk,

as shown in Fig. 6 (right). Similar results were obtained using

different dendritic Ih distributions (not shown). It may be

questioned that LTG may also affect Na+ current, suggesting an

alternative explanation for the reduced excitability after its

application. This possibility, however, can be excluded by noting

that in the experiments somatic traces were unaffected by LTG

application (see somatic recordings in Fig. 6 left, from ref [4]).

Taken together, these results further demonstrate that an

additional current coupled to Ih channels is able to take into

account practically all experimental findings on the effects of Ih

under different conditions.

Discussion

The kinetic, activation properties, and dendritic distribution of

Ih cannot explain, alone, the different experimental findings

obtained by different manipulations/modulations of this current,

suggesting that an additional interaction with another mechanism

must be in effect, especially to explain results involving dendritic or

synaptic inputs. This was originally recognized for neocortical

pyramidal neurons [23], another neuronal population with a non

uniform dendritic distribution of Ih [24]. In this case, the best fit

between model and experiments was found assuming a non

uniform distribution of both Ih and passive properties. Most (but

not all) of the experimental findings, on the effects of Ih

manipulation/regulation in neocortical and hippocampal CA1

pyramidal neurons, can thus be conveniently reproduced in

computational models by modifying the passive properties (i.e. the

leak current). This method, however, in some cases may

exaggerate the effects of Ih regulation [2,25].

Accumulating experimental evidence now demonstrates that

the action of Ih on synaptic integration can be more complex

than previously thought [1–2]. In other types of neuron, a

dynamic indirect interaction of Ih with K+ channels has been

reported in principal neurons of the Medial Superior Olive [26]

and in the rod photoreceptors [27], whereas a bidirectional

interaction with colocalized Na+2K+ pumps has been found to

modulate excitability in mesencephalic trigeminal neurons [28].

None of these mechanisms seem to be able to take into account

the experimental results discussed here, and an interaction/

interplay between Ih and other active or passive currents has

been suggested as one of the factors that can potentially

influence the role of Ih in epilepsy [29]. However, this aspect

has never been experimentally investigated. In this work, we

showed that a shunting current that depends on Ih channels can

take into account virtually all experimental findings on the

effects of modulators or pathological conditions that result in Ih

regulation. We propose that, in any given neuron, the Ih may

be excitatory or inhibitory according to the strength of this

current. Its detailed nature, properties, distribution and,

especially, the kind of interaction with Ih, remain to be

determined. We cannot exclude the possibility that the puzzling

experimental findings discussed here are simply caused by

unknown non-specific effects of the pharmacological or exper-

imental manipulations, or non trivial (and rather arbitrary at

this stage) combinations of effects from other main channels.

The model results indicated the simplest solution, and more

unambiguous experiments are required to characterize in more

details this elusive and peculiar mechanism, which may be of

fundamental importance in the development of new treatments

for all those pathological and cognitive dysfunctions caused,

mediated, or affected by Ih. From this point of view, the model

suggests several experimentally testable characteristics for Ilk:

summation at the soma during distal dendritic EPSPs after ZD2288 application (taken and redrawn from Fig. 1b of [22], with permission by Macmillan
Publishers Ltd, copyright (1999)); simulation of EPSPs temporal summation during a 50 Hz train of 5 dendritic EPSPs activated under different
conditions; the bars above the plots represent the timing of Ih block (modeling ZD7288 application), and a somatic current injection (0.11 nA)
modeling the experimental protocol to restore the original membrane resting potential after ZD7288 [22]; traces are somatic recordings during
proximal (24 mm) or distal (500 mm) stimulation of the main trunk; peak synaptic conductances (1.7 and 5 nS for proximal and distal stimulations,
respectively) were adjusted to obtain the same peak somatic depolarization during the first EPSP under control conditions; gh_pk = 0.01 mS/cm2.
doi:10.1371/journal.pone.0036867.g002

Figure 3. A dynamic interaction between Ih and KM in a realistic model cannot reproduce the experimental findings. Peak somatic
membrane potential as a function of synaptic input strength, without (left) or with (right) KM, and with (red) or without (blue) Ih. Insets show somatic
traces for a 7.5 nS (left) or a 10 nS (right) synaptic input.
doi:10.1371/journal.pone.0036867.g003

Ih Current Interaction with a Shunting Current
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i) Its reversal potential must be lower than the resting

potential, and it must not inactivate with depolarization

in the subthreshold range (otherwise there will be no

inhibitory effect in the presence of Ih, especially during

dendritic stimulations);

ii) it must be coupled in some way to the local Ih channels (to

explain the experiments by George et al. [5]) and

unaffected by ZD (to explain the results with LTG [4]

and pilocarpine [30]);

iii) its dendritic distribution should follow that of Ih channels

(otherwise experiments showing differential effects for

somatic and dendritic stimulations, such as those with

LTG, cannot be explained);

iv) in principle, it can be a non-inactivating K+ current, such as

that carried by TASK-like channels [31], but it is unlikely

to be the KM since it does not depend on Ih channels;

v) it might be blocked or altered by XE991 (to take into

account the consistent effect of this drug in George et al.

experiments [5]).

Conclusions for Modelers
In order to model experimental findings involving the role and

effects of Ih, we suggest the use of Ilk as discussed in Methods,

rather than adjustment of the leak current at rest. In some cases it

will result in the same effect (e.g. for lk = 1 and vrev_lk = RMP), but

the experimental findings discussed here demonstrated that this

may not always be the case (i.e. lk and vrev_lk may be different under

different cells/conditions). Also, the interaction between Ih and the

Ilk (through the gh(x), see Methods) appears to be a necessary

condition to correctly model any Ih regulation/manipulation.

Conclusions for Experimentalists
The results discussed in this paper suggest that any experiment

studying the effects of Ih should involve a careful assessment of Ilk

(in terms of lk and vrev_lk) for the specific set of cells used in the

experiment. Cell-to-cell variability caused by cell specific activity-

dependent changes in dendritic Ih distribution [32] can shift the

crossover point. Without an estimation of this effect, it will be

problematic to analyze the experimental findings, especially those

involving synaptic integration.

Figure 4. A dynamic interaction between Ih and KM can show a crossover effect only in special cases. a) (left) peak somatic membrane
potential as a function of stimulus strength in a non spiking single-compartmental model, with (red traces) or without Ih (black traces) and different
values for the KM peak conductance, gKM; note the large depolarization with gKM = 0; (right) same as in the left panel but using a spiking single-
compartmental model; insets show somatic potential during a current clamp of 0.5 or 0.05 nA with or without KM, respectively. b) peak somatic
membrane potential as a function of stimulus strength using the full realistic morphology with (red traces) or without Ih (black traces) and two
different KM channel distributions; insets show somatic potential during a current clamp in the two cases, respectively.
doi:10.1371/journal.pone.0036867.g004

Figure 5. A shunting current proportional to Ih takes into account all experimental findings. a) (left) peak somatic membrane potential as
a function of synaptic stimulation strength using Ilk with lk = 0.7, i.e. 70% of the peak Ih conductance) under control (red) and no Ih (blue); inset shows
somatic recordings during a 10 nS stimulus; gKM = 10 ms/cm2; b) same as in panel a but without KM; c) peak somatic membrane potential as a
function of synaptic input strength without Ih (blue), with Ih and different values of lk (green and orange), or with vrev_lk = 290 mV.
doi:10.1371/journal.pone.0036867.g005

Ih Current Interaction with a Shunting Current
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Conclusions for the General Reader
In investigating the possible mechanisms leading to the develop-

ment of new drugs that may reduce the burden related to mental

disorders, it is becoming increasingly evident that targeting specific

channels may confer a new level of efficacy and specificity to drug

actions, with important advances for the development of ion channel

based therapies. The Ih is particularly involved in epilepsy, and thus

any informationonthe intricaciesof its regulationmayadd important

clues on the possible ways to take advantage of its properties and

distribution to develop new selective drugs. Here we have shown one

additional factor to exploit.
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