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Abstract

Background

GlycA is a nuclear magnetic resonance (NMR) spectroscopy biomarker that predicts risk of

disease from myriad causes. It is heterogeneous; arising from five circulating glycoproteins

with dynamic concentrations: alpha-1 antitrypsin (AAT), alpha-1-acid glycoprotein (AGP),

haptoglobin (HP), transferrin (TF), and alpha-1-antichymotrypsin (AACT). The contributions

of each glycoprotein to the disease and mortality risks predicted by GlycA remain unknown.

Methods

We trained imputation models for AAT, AGP, HP, and TF from NMR metabolite measure-

ments in 626 adults from a population cohort with matched NMR and immunoassay data.

Levels of AAT, AGP, and HP were estimated in 11,861 adults from two population cohorts

with eight years of follow-up, then each biomarker was tested for association with all com-

mon endpoints. Whole blood gene expression data was used to identify cellular processes

associated with elevated AAT.

Results

Accurate imputation models were obtained for AAT, AGP, and HP but not for TF. While

AGP had the strongest correlation with GlycA, our analysis revealed variation in imputed
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AAT levels was the most predictive of morbidity and mortality for the widest range of dis-

eases over the eight year follow-up period, including heart failure (meta-analysis hazard

ratio = 1.60 per standard deviation increase of AAT, P-value = 1×10−10), influenza and pneu-

monia (HR = 1.37, P = 6×10−10), and liver diseases (HR = 1.81, P = 1×10−6). Transcriptional

analyses revealed association of elevated AAT with diverse inflammatory immune

pathways.

Conclusions

This study clarifies the molecular underpinnings of the GlycA biomarker’s associated dis-

ease risk, and indicates a previously unrecognised association between elevated AAT and

severe disease onset and mortality.

Introduction

The identification and characterisation of new predictive biomarkers for disease is fundamen-

tal to precision medicine [1,2]. Biomarkers discovered using systems-level technologies can be

complex and heterogeneous, thus it can be challenging to pinpoint relevant biomolecular path-

ways. Therefore, knowledge of the underlying molecular basis for a biomarker is critical for

identifying potential therapeutic targets and interventions.

Of recent interest is the GlycA biomarker, a serum NMR signal that has been shown to be

highly predictive of morbidity and mortality from diverse diseases [3,4], including cardiovas-

cular diseases [5–8], certain cancers [8–10], type II diabetes [5,11–13], liver diseases [5,14],

chronic inflammatory conditions [5,8], renal failure [5], severe infections [15], and all-cause

mortality [8,10]. Elevated GlycA levels are associated with inflammation arising from recent

infection, injury, or chronic disease [16–21], as well as low-grade chronic inflammation that

may persist for up to a decade in otherwise apparently healthy adults [15]. Interestingly, the

associations between elevated GlycA and disease morbidity and mortality have been largely

independent of C-reactive protein (CRP) [5,6,8–12,14,15], the standard biomarker for inflam-

mation [22], with suggestions that GlycA better captures systemic inflammation due to its

composite nature [3,13,17]. The GlycA signal is an agglomeration of at least five circulating

glycoprotein concentrations: predominantly alpha-1 antitrypsin (AAT), alpha-1-acid glyco-

protein (AGP), haptoglobin (HP), transferrin (TF), and alpha-1-antichymotrypsin (AACT)

[16,17]. The heterogeneous composition of GlycA represents a challenge for further research

towards investigating and developing molecular intervention strategies. This is compounded

by the dynamic nature of each glycoprotein, each of which responds over different time scales,

directions, and magnitudes as part of the inflammatory response [15–17,23]. Thus, two indi-

viduals with the same GlycA levels may have differing concentrations of each glycoprotein

contributing to the NMR spectral signal. Further, high-throughput NMR spectroscopy cannot

measure the concentrations of the individual glycoproteins comprising GlycA, which require

the use of specialised immunoassays. However, such immunoassays are costly and time-con-

suming. Here, we decompose the spectral GlycA biomarker by developing imputation models

for GlycA’s constituent glycoproteins, then utilise these imputed molecular phenotypes to

investigate associations with disease risk. Our findings provide important insights into poten-

tial intervention strategies for GlycA-associated disease and mortality risk and may lead to bet-

ter disease risk stratification.

Alpha-1 antitrypsin is a major component of the GlycA biomaker
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Results

To investigate the relationship between GlycA and its constituent glycoproteins in a popula-

tion setting we utilised matched serum NMR-metabolite measures and immunoassays for

AAT, AGP, HP, and TF in 626 adults previously measured in the population-based DIetary,

Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome 2007 study (DIL-

GOM07) [15,24]. AACT was not available in this cohort as immunoassay measurements were

performed prior to its establishment as a significant contributor to the GlycA signal by refer-

ence [17]. Consistent with our previous analysis of this data [15], all four glycoproteins were

strongly positively correlated with GlycA (Fig 1A). AGP was the strongest correlate of GlycA

(Pearson correlation r = 0.64), followed by HP (r = 0.59), AAT (r = 0.33), and TF (r = 0.26).

There was moderate positive correlation between most glycoproteins, with a Pearson r range

of 0.12 to 0.52, with the exception of the AGP and TF which were not correlated (r = −0.04)

(Fig 1A). Hierarchical clustering revealed distinct clusters of individuals who had similar

GlycA levels but heterogeneity in glycoprotein profiles (Fig 1B), indicating a complex relation-

ship between GlycA and its constituent acute-phase glycoproteins and suggesting the individ-

ual glycoproteins may each differentially predict long term incident disease risk.

We utilised machine learning together with the matched serum NMR-metabolite measures

and immunoassays for AAT, AGP, HP, and TF in 626 DILGOM07 participants to develop

imputation models for the concentrations of each glycoprotein. Lasso regression [25,26] was

used to find the optimal subset of features and corresponding weights that most accurately pre-

dicted each glycoprotein. A 10-fold cross-validation procedure was used to train each lasso

regression model to reduce overfitting and estimate model accuracy (S1 Fig, Methods). In

total, 149 metabolic measurements quantified via NMR (S1 Table) along with participant age,

sex, and body mass index (BMI) were included as features to the model training procedure.

The imputation models for AAT, AGP, HP, and TF explained 43%, 64%, 56% and 18% of their

variation (r2), respectively, (Fig 2A) and comprised 18, 23, 27, and 9 input features, respectively

(S1 Models).

Fig 1. Relationship between GlycA and its constituent glycoproteins. A) Heatmap of the Pearson correlation between GlycA, AAT, AGP, HP, and TF in the 626

DILGOM07 participants with matched NMR metabolite measurements and glycoprotein assay data after log transformation and standardisation. Rows and columns

have been ordered in decreasing order of correlation coefficient with GlycA. B) Heatmap of the log transformed and standardised concentrations of GlycA and each

glycoprotein. Columns correspond to DILGOM07 participants, which have been hierarchically clustered (average linkage) based on their Euclidean distance calculated

on their GlycA and glycoprotein measurements. Rows are ordered as in panel A.

https://doi.org/10.1371/journal.pone.0223692.g001
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Comparison of each imputation model’s predicted levels to the observed immunoassayed

levels in DILGOM07 (Fig 2A) along with cross-validation estimates of the Spearman correla-

tion (ρ) obtained during model training (Fig 2B and S2 Table and S1 Methods) indicated the

imputation models for AAT (Spearman’s ρ = 0.63), AGP (Spearman’s ρ = 0.74), and HP

(Spearman’s ρ = 0.71) were sufficiently accurate for downstream analysis. In contrast, the

imputation model for TF was substantially less accurate (Spearman’s ρ = 0.42 and variation r2

= 0.18; Fig 2 and S2 Table) so was not taken forward for electronic health record association

analyses.

We next imputed AAT, AGP and HP concentrations in 4,540 DILGOM07 participants and

7,321 participants from the population-based FINRISK study 1997 (FINRISK97) [27–29], then

analysed linked electronic hospital records over a matched 8-year follow-up period (Methods).

Baseline cohort characteristics are described in Table 1. We observed strong, consistent, and

replicable associations (False Discovery Rate adjusted P-value < 0.017, additional Bonferroni

correction for the three glycoproteins) between each of AAT, AGP, and HP and increased risk

of morbidity and mortality for a diverse range of disease outcomes (Figs 3 and S2), consistent

with associations seen for GlycA itself [5]. Importantly, hazard ratios calculated from the

imputed measurements were consistent with those from directly assayed glycoproteins in the

630 DILGOM07 participants in which they were measured (S2 Fig), indicating that the impu-

tation models remained similarly accurate in the full DILGOM07 and FINRISK97 cohorts. In

meta-analysis of DILGOM07 and FINRISK97, hazard ratios (HRs) were only slightly attenu-

ated when adjusting for CRP (S3 Fig).

Fig 2. Comparison of imputation models to glycoprotein immunoassays in the 626 DILGOM07 participants with matched glycoprotein assay and metabolite

quantification by NMR metabolomics. A) Comparison of the imputed glycoprotein levels (y-axes) to the immunoassayed glycoprotein levels (x-axes) after log

transformation and standardisation. The r2 value indicates the proportion of variance in the assayed glycoprotein explained by the respective imputation models. B)

Boxplots of the Spearman correlation between the imputed and observed concentrations observed in the 10-fold cross validation procedure used for model training. Red

triangles show the Spearman correlation between the predicted and observed concentrations in panel A (detailed in S2 Table).

https://doi.org/10.1371/journal.pone.0223692.g002
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Consistent with previous studies of GlycA [15–17], AGP was the most strongly correlated

glycoprotein with GlycA (Spearman ρ = 0.65; S4 Table). Despite AGP levels explaining the

most variance in GlycA levels, which would suggest it should consequently be the strongest

biomarker for incident disease, we found that imputed AAT was significantly associated with

risk of hospitalisation or death for substantially more outcomes (Fig 3). Elevated concentra-

tions of imputed AAT were associated with increased 8-year risk from a wide range of disease

classifications, including liver diseases (Hazard Ratio = 1.81 per standard deviation increase in

AAT, 95% Confidence Interval = 1.46–2.25, False Discovery Rate adjusted P-value = 1×10−6),

heart failure (HR = 1.60, 95% CI = 1.41–1.82, FDR = 1×10-10), and chronic obstructive pulmo-

nary disease (HR = 1.54, 95% CI = 1.34–1.77, FDR = 3×10−8) (full list given in Fig 3). In con-

trast, imputed AGP was significantly associated with increased risk from only two outcomes:

heart failure (HR = 1.56, 95% CI = 1.35–1.81, FDR = 1×10−6) and chronic lower respiratory

diseases (HR = 1.31, 95% CI = 1.19–1.43, FDR = 2×10−6) (Fig 3). Together with the complex

relationships between the glycoprotein levels and GlycA (Fig 1B), this indicates that variation

in AAT levels were more predictive of future disease than variation in AGP levels.

Sensitivity analysis showed that the wide range of associations between imputed AAT and

outcomes was robust to the significance threshold (Fig 4A). Furthermore, AAT hazard ratios

tended to have the smallest standard errors across all tested outcomes (Fig 4B). AGP was asso-

ciated with the fewest outcomes regardless of significance threshold (Fig 4). Among the signifi-

cant and replicable associations, AAT was the strongest predictor for all but four outcomes, for

which HP was the strongest predictor (Fig 3). HP was the strongest predictor of chronic lower

respiratory diseases (HR = 1.36, 95% CI = 1.25–1.49, FDR = 4×10−9), inflammatory polyar-

thropathies (HR = 1.42, 95% CI = 1.27–1.59, FDR = 7×10−8), and atherosclerosis (HR = 1.67,

95% CI = 1.43–1.94, FDR = 7×10-9) as well as the broader grouping of all arterial system dis-

eases (HR = 1.49, 95% CI = 1.31–1.69, FDR = 1×10-9).

Table 1. Cohort characteristics.

DILGOM07 (Model training dataset) DILGOM07

(Full dataset)

FINRISK97

Collection year 2007 2007 1997

Number of participants 626 4,540 7,321

Number (and %) of women 328 (53%) 2,387 (53%) 3,644 (50%)

Mean age in years (and range) 53 (25–74) 52 (25–74) 48 (25–74)

Follow-up time 8 years 8 years 8 years

Body mass index (kg/m2) 26.80 ± 4.66 27.2 ± 4.8 26.6 ± 4.5

GlycA (mmol/L) 1.30 ± 0.18 1.30 ± 0.20 1.41 ± 0.25

Glycoprotein assays (# participants)

AAT (mg/L) 1.19 ± 0.20 (N = 615) 1.19 ± 0.20 (N = 626) -

AGP (mg/L) 789 ± 203 (N = 615) 793 ± 205 (N = 626) -

HP (mg/L) 1.09 ± 0.49 (N = 614) 1.10 ± 0.50 (N = 622) -

TF (mg/L) 2.65 ± 0.38 (N = 615) 2.66 ± 0.38 (N = 626) -

Imputed glycoproteins (# participants)

AAT (mg/L) 1.18 ± 0.11 (N = 615) 1.16 ± 0.09 (N = 4,496) 1.29 ± 0.11 (N = 7,246)

AGP (mg/L) 779 ± 145 (N = 615) 786 ± 142 (N = 4,474) 832 ± 178 (N = 7,151)

HP (mg/L) 1.04 ± 0.40 (N = 614) 1.00 ± 0.33 (N = 4,491) 1.14 ± 0.46 (N = 7,194)

TF (mg/L) 2.63 ± 0.10 (N = 615) - -

Data are reported as the mean ± standard deviation (s.d.) unless otherwise indicated.

https://doi.org/10.1371/journal.pone.0223692.t001
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Fig 3. Glycoprotein associated risks of disease and mortality. Comparison of Cox proportional hazard ratios (triangles) for the first diagnosis occurrence

(hospitalisation or mortality) conferred per standard deviation increase of AAT, HP, AGP, or GlycA in inverse-variance weighted fixed effects meta-analysis of

DILGOM07 and FINRISK97. Bars around each hazard ratio indicate the 95% confidence interval. Diagnosis data were analysed for a total of 351 outcomes with>20

events in both DILGOM07 and FINRISK97 over a matched 8-year follow-up period. Models were fit using age as the time scale and adjusting for sex, smoking status,

BMI, blood pressure, alcohol consumption, prevalent disease prior to baseline (Methods), and previously identified biomarkers for 5-year risk of all-cause mortality

(citrate, albumin, and VLDL particle size). Only outcomes with a significant and replicable association with at least one of AAT, HP, or AGP are shown (Storey-

Tibshirani FDR adjusted P-value< 0.05/3, adjusting for the three glycoproteins, in DILGOM07, FINRISK97, and meta-analysis). Associations which were significant

and replicable are shown with solid hazard ratios and 95% confidence intervals. The alphanumeric codes in the square brackets indicate the ICD10 code or ICD10

Alpha-1 antitrypsin is a major component of the GlycA biomaker
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While our focus here is on identifying the molecular glycoprotein associations with disease,

we also performed a comparison with the GlycA NMR signal. Compared to the GlycA bio-

marker itself, imputed AAT was more strongly associated with a wider range of outcomes

regardless of choice of significance threshold (Fig 4A). However, the GlycA HRs tended to be

stronger than those for both AAT and HP, but with larger standard errors (Figs 4 and 3). This

suggests that each glycoprotein predicts different but overlapping components of disease risk,

consistent with the overlapping elevated levels of each glycoprotein observed in Fig 1B, with

GlycA levels capturing this risk in aggregate.

With the preponderance of AAT-associated incident disease risk and previously observed

associations between GlycA and systemic inflammation [15], we investigated whether, and to

what extent, elevated AAT was associated with inflammatory processes. We used whole blood

transcriptome data with matched serum AAT immunoassay data in 518 DILGOM07 partici-

pants to identify transcriptional signals in circulating immune cells associated with elevated

AAT. We utilised Gene Set Enrichment Analysis (GSEA) [30,31] to identify pathways enriched

for AAT-associated differential expression, and additionally tested for association with AAT

the coordinated summary expression profiles of previously identified transcriptional network

modules (Methods). Two sets of network modules were tested: (1) 20 modules of functionally

coexpressed genes we previously identified in DILGOM07 [15,32–34] and replicated in an

independent cohort [34], and (2) 346 blood transcript modules identified by Li et al. from

30,000 blood samples across 500 studies [35].

disease group for each diagnosis. The number of events in DILGOM07 and FINRISK97 are shown to the left of each hazard ratio for each outcome. Different numbers

of events for the same outcome between biomarkers arise from differences in the number of samples for which each glycoprotein was successfully imputed (Methods).

Hazard ratios fit separately in DILGOM07 and FINRISK97 along with comparison to the hazard ratios calculated from the immunoassayed AAT, HP, and AGP

measurements can be found in S2 Fig. Hazard ratios for all tested outcomes are detailed in S3 Table.

https://doi.org/10.1371/journal.pone.0223692.g003

Fig 4. Comparison of biomarkers across all outcomes in meta-analysis of DILGOM07 and FINRISK97. A) Quantile-Quantile plots of distributions of hazard ratio

estimate P-values (y-axis) compared to distribution of expected P-values under the null hypothesis that the corresponding biomarker is not associated with any outcome

(x-axis). Hazard ratio estimate P-values are shown after adjustment for multiple testing using the Storey-Tibshirani FDR method. The dashed line indicates the location

where p-values would fall if the observed distribution was identical to the null distribution. Points above the red dashed line indicated hazard ratios with FDR adjusted

P< 0.05 in the meta-analysis, while points above the blue dashed line indicate hazard ratios with FDR adjusted P< 0.05/3 in the meta-analysis. B) Density plots

comparing each biomarker’s distribution of hazard ratio standard errors across all outcomes. C) Density plots comparing each biomarker’s distribution of hazard ratios

across all outcomes.

https://doi.org/10.1371/journal.pone.0223692.g004
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GSEA analysis revealed a wide variety of immune response pathways were significantly

enriched for genes upregulated with elevated AAT (FDR<0.05; Tables 2 and S5). Elevated

serum AAT protein levels were associated with increased transcription of genes involved in

reactive oxygen species (FDR adjusted P = 2×10−3), immune response initiation pathways (e.g.

IL6/JAK/STAT signalling, FDR adjusted P = 0.02), innate immune response pathways (e.g.

genes localising to phagocytic vesicles, FDR adjusted P = 8×10−3), adaptive immune response

pathways (e.g. Toll-like receptor signalling pathway, FDR adjusted P = 0.04), and numerous

cytokine regulation pathways (Tables 2 and S5).

Of our replicable DILGOM07 whole blood coexpression modules, three were significantly

associated AAT (P<0.0025; Bonferroni adjusting for the 20 tested modules) (S6 Table). Two

modules previously characterised as general immune function modules [34] had increased

expression with elevated AAT, and one module characterised here (S7 Table) for RNA pro-

cessing function had decreased expression with elevated AAT. Elevated AAT was nominally

associated (P< 0.05) with increased expression the neutrophil antimicrobial peptide module

[15], the viral response module [34], and the general cell signalling response (S7 Table), along

with decreased expression of the B cell activity module [34] and the cytotoxic cell-like module

[34].

Of the 346 blood transcript modules [35], 30 were Bonferroni significant (P < 1.45×10−4)

and 115 were nominally significant (P< 0.05) (S8 Table). All 30 of the Bonferroni significant

modules had elevated expression with elevated AAT. These modules were enriched for activity

of a wide range of immune cells, both innate and adaptive, including neutrophils, myeloid

cells, monocytes, dendritic cells, T-cells, and B-cells, along with cell signalling pathways

Table 2. Highlighted gene sets significantly enriched for genes associated with AAT.

Collection Gene set Size NES FDR

Hallmark Reactive oxygen species pathway 43 2.21 0.002

Hallmark TNFa signaling via NFkB 194 1.92 0.01

Hallmark PI3K/AKT/mTOR signaling 101 1.88 0.02

Hallmark IL6/JAK/STAT3 signaling 81 1.94 0.02

Hallmark Apoptosis 154 1.85 0.02

KEGG Toll-like receptor signaling pathway 96 2.05 0.04

Reactome Toll receptor cascades 102 1.98 0.04

GO:BP Cytokine production involved in immune response 17 2.24 0.006

GO:BP T cell differentiation involved in immune response 28 1.96 0.03

GO:BP Antimicrobial humoral response 43 1.97 0.03

GO:BP Defense response to fungus 35 1.93 0.04

GO:BP Regulation of innate immune response 325 1.86 0.05

GO:BP Phagocytosis engulfment 17 1.87 0.05

GO:BP Antigen processing and presentation of peptide antigen via MHC class I 86 1.86 0.05

GO:BP Negative regulation of viral process 84 1.85 0.05

GO:BP Negative regulation of immune response 113 1.85 0.05

A selection of the gene sets that were significantly enriched for AAT-associated differential expression (Methods). See S5 Table for a full listing of all 139 gene sets

significantly enriched for AAT associated genes. Gene sets shown here were selected to highlight the association between elevated AAT and increase expression of

diverse immune response pathways. A gene set was considered significantly enriched for AAT associated genes if its Benjamini-Hochberg FDR adjusted permutation

test P-value for enrichment was < 0.05 (FDR correction performed within each gene set collection separately). The tested gene set collections included Hallmark

pathways, KEGG pathways, Reactome pathways, GO biological process (GO:BP) terms, GO molecular function (GO:MF) terms, and GO cellular compartments (GO:

CC). Size: number of genes on the Illumina HT-12 array annotated for the corresponding gene set. NES: enrichment score normalized by gene set size in a permutation

procedure (Methods).

https://doi.org/10.1371/journal.pone.0223692.t002
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involved in immune response. The module most strongly associated with serum AAT was

“immune activation–generic cluster” with a 0.23 standard deviation increase in expression per

standard deviation increase in AAT (P = 1×10−7).

Overall the three transcriptional analyses were consistent, pointing toward the increased

expression of overall immune response rather than a specific type of immune response or

inflammatory pathway with elevated serum AAT.

Discussion

GlycA is an NMR-based biomarker predictive of morbidity and mortality from diverse disease

outcomes [3–15]. It is composed of the concentrations of multiple circulating glycoproteins

[15–17], each of which respond to myriad inflammatory stimuli [23]. Using circulating NMR-

metabolite measures, we have developed accurate imputation models for concentrations of

AAT, HP, and AGP; three of the major contributors to the GlycA signal. To investigate the

molecular underpinnings of the GlycA biomarker, we imputed AAT, HP, and AGP concentra-

tions in 11,861 generally healthy individuals from two population-based cohorts and analysed

linked electronic health records over an 8-year follow-up period. Of GlycA’s constituent glyco-

proteins we found that AAT, rather than AGP, best explained overall future disease risk.

AAT represents a promising molecular focus for follow-up studies due to its long and estab-

lished history in research, well-characterised genetic variants with large effects, widely utilised

diagnostic assay, and approved therapeutics. Genetic variants in AAT, such as the Z-allele, are

well-known to cause AAT deficiency, which is characterised by unusually low levels of serum

AAT that cause increased risk of chronic obstructive pulmonary disease/emphysema, and liver

cirrhosis [36–39]. Increased risk of chronic obstructive pulmonary disease/emphysema in

AAT deficient patients is caused by insufficient inhibition of neutrophil elastase in neutrophils

in the lungs [37]. Increased risk of liver cirrhosis is caused by accumulation of AAT in the

liver, where the majority of AAT is produced, due to reduced migration of AAT to circulation

from the liver [37]. Studies have also found AAT deficiency in individuals with rheumatoid

arthritis and type II diabetes [40,41], suggesting AAT deficiency may also predispose individu-

als to a range of inflammation-linked disorders. Interestingly, here we found that increased
AAT levels were predictive of morbidity and mortality for myriad common chronic diseases,

suggesting that there exists a healthy window of serum AAT concentration which denotes

minimal future disease risk.

Although genetically-reduced AAT levels have been shown to be causal for disease risk, the

aetiological mechanisms (insufficient inhibition of neutrophil elastase and reduced migration

of AAT from the liver to circulation) are unlikely to be present in individuals with increased

imputed AAT. AAT is an acute-phase reactant with concentrations rising 3–4x above basal lev-

els with inflammation due to tissue injury, infection or other exogenous insult, and may not

return to normal levels for up to 6 days [23,36,42]. AAT has been found to have immunomo-

dulating effects, and its role in regulating inflammation is being increasingly understood [43].

GlycA itself also exhibits acute-phase characteristics, although fold-increases in concentrations

are rarely observed, and we have previously found that increased GlycA levels in population-

based cohorts are associated with a low-grade inflammatory state in otherwise apparently

healthy adults that likely persists for up to a decade [15]. Our transcriptional analysis showed a

systemic increase in gene expression for inflammatory immune processes correlated with ele-

vated AAT. Since the cohort analysed here was population-based, this systemic increase in

immune system activity is unlikely to reflect acute inflammation but rather is consistent with

the presence of low-grade inflammation in individuals with elevated AAT.

Alpha-1 antitrypsin is a major component of the GlycA biomaker

PLOS ONE | https://doi.org/10.1371/journal.pone.0223692 October 23, 2019 9 / 23

https://doi.org/10.1371/journal.pone.0223692


Chronic inflammation itself contributes to the pathophysiology of common chronic dis-

eases and development of anti-inflammatory therapies have been of interest for reducing

inflammation in order to slow disease progression [44–48]. For example, recent clinical trials

found an anti-inflammatory Canakinumab, a monoclonal antibody for IL-1β, significantly

reduced incidence of recurrent cardiovascular events as well as lung cancer in patients with

previous myocardial infarction and elevated CRP [47,48]. Therapeutic administration of AAT

(e.g. prolastin) is being trialled to reduce chronic inflammation for preventing the develop-

ment and progression of type I diabetes, rheumatoid arthritis, and allograft rejection [49].

While we cannot make inferences about causality, our findings suggest that, if these trials are

successful, an AAT therapy may have wide applicability across a range of diseases, including

cardiovascular diseases. On the other hand, our results also suggest that AAT therapy may lead

to increased adverse infection events as observed in the Canakinumab trial [47,48] and dosages

would need to be carefully tuned.

Our study has several limitations. Although our results suggest that alpha-1 antitrypsin is a

major predictive component of the GlycA biomarker, these results are based on imputed

molecular measures, and thus regression dilution (bias towards the null as measurement noise

increases) may be affecting our results. However, since the imputation model for AAT had

greater noise than those for AGP and HP and we observed no difference in overfitting between

the three models, we do not expect that regression dilution is substantially affecting our con-

clusions. In addition, we cannot preclude significant associations between elevated TF or

AACT and morbidity and mortality risk, for which we were unable to develop accurate impu-

tation models. We were unable to determine whether elevated AAT was causal of either the

associated disease outcomes or the upregulation of inflammatory processes in the transcrip-

tional analyses. We sought to use Mendelian Randomisation to help clarify whether any causal

relationship exists, however, we were unable to find any suitable variants to use as instruments.

We could find only two studies reporting protein QTLs for elevated serum AAT levels. A

GWAS study of two Japanese populations totalling 9,359 people reported three trans-pQTLs

for AAT; all missense variants in genes upstream of AAT [50]. A proteomics study of 1,000

Germans from the KORA cohort, identified a single cis-pQTL for increased serum AAT, but

this did not replicate in the study replication cohorts [51]. Due to lack of replication of all four

variants we concluded there was insufficient evidence for their use as instruments in a Mende-

lian Randomisation analysis. We could not find any reports of cis-eQTLs for upregulation of

SERPINA1 expression in the liver (the source of the majority of serum AAT). GWAS with

larger sample sizes of serum AAT levels or liver gene expression will be needed to properly

investigate causality through Mendelian Randomisation analysis.

The results of our study suggest several fruitful avenues for follow-up. The widespread

availability of robust and cost effective clinical assays measuring serum AAT concentrations

for diagnosis of AAT deficiency offer a potential avenue for biomarker translation. For this

further studies for each individual disease would be necessary to investigate the risk prediction

of the clinical assays for serum AAT and determine appropriate thresholds for clinical decision

making in the context of any existing clinical risk prediction scores. The question of whether

elevated serum AAT plays a causal role in future morbidity or mortality also remains to be

resolved. One avenue to do so is through GWAS of assayed serum AAT levels or liver gene

expression, which would enable Mendelian Randomisation analyses if genetic variants leading

to elevated AAT levels are discovered. Experimental studies could also investigate the role and

potential molecular mechanisms of elevated serum AAT in chronic inflammation and disease

aetiopathogenesis.

This study demonstrates the power of machine learning for imputation of biomolecules for

electronic health record-driven association analysis. Our results uncover a previously

Alpha-1 antitrypsin is a major component of the GlycA biomaker

PLOS ONE | https://doi.org/10.1371/journal.pone.0223692 October 23, 2019 10 / 23

https://doi.org/10.1371/journal.pone.0223692


unrecognised relationship between elevated AAT, increased inflammation, and the risk of

morbidity and mortality across a wide spectrum of common chronic diseases.

Methods

Study cohorts

In this study, we analysed data from two population-based cohorts. All cohort participants

provided written informed consent. Protocols were designed and performed according to the

principles of the Helsinki Declaration. Data protection, anonymity, and confidentiality have

been assured. Ethics for the DILGOM07 and FINRISK97 cohort studies were approved by the

Coordinating Ethical Committee of the Helsinki and Uusimaa Hospital District.

The 2007 collection of the Dietary, Lifestyle, and Genetic determinants of Obesity and Met-

abolic syndrome study (DILGOM07) cohort is an extension of the 2007 collection of FINRISK:

a cross-sectional survey of the working age population in Finland conducted every 5 years

[27,28]. In DILGOM07, a detailed follow-up of 5,024 individuals was conducted to collect

blood samples for omic profiling, physiological measurements, and detailed surveys of lifestyle,

psycho-social, and clinical questions to study the factors leading to obesity and metabolic syn-

drome [24]. Serum NMR profiling was conducted for 4,816 participants; AAT, AGP, HP, and

TF were measured by immunoassays for 630 participants [15]; and whole blood microarray

profiling was available for 518 participants [32,33]. A total of 626 participants had matched gly-

coprotein assay and NMR data, and 518 participants had matched glycoprotein assay and gene

expression data.

The 1997 collection of the National FINRISK study (FINRISK97) cohort contains 8,446

individuals who responded of 11,500 randomly recruited from the five major regional and

metropolitan areas in Finland to monitor the health of the adult population (aged 25–74)

[27,28]. Serum NMR profiling was conducted for 7,602 participants with adequate serum sam-

ple available [29]. Importantly, each FINRISK collection is an independent survey; the DIL-

GOM07 and FINRISK97 cohorts are independent of one another.

Data quantification, processing, and quality control

Venous blood samples were collected from participants in both cohorts. For DILGOM07

venous blood was drawn after an overnight fast. For FINRISK97 the median fasting time was

five hours. Serum samples were subsequently aliquoted and stored at –70C.

Concentrations of circulating AAT, AGP, HP, and TF were quantified from serum samples

from 630 DILGOM07 participants (626 for HP) as previously described [15] using module

analysers and Roche Tina-quant turbidimetric immunoassays. The intra-individual coefficient

of variation was <3% for all four assays.

Concentrations of 228 circulating metabolites, proteins, amino acids, lipids, lipoproteins,

lipoprotein subclasses and constituents, and relevant ratios were quantified by NMR metabo-

lomics from serum samples for 4,816 DILGOM07 participants and 7,602 FINRISK97 partici-

pants. Experimental protocols including sample preparation and spectroscopy are described in

reference [52]. NMR experimentation and metabolite quantification of serum samples were

processed by the 2016 version of the Nightingale platform (Nightingale Health Ltd; https://

nightingalehealth.com/) using a Bruker AVANCE III 500 MHz 1H-NMR spectrometer and

proprietary biomarker quantification libraries. NMR measurements with irregular concentra-

tions were removed and concentrations below lower detection limits set to zero by the Night-

ingale quality control pipeline. To facilitate log transformation, we set all zero NMR

measurements to the minimum value of their respective molecular species in each cohort to

approximate their lower detection limits.
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Concentrations of high-sensitivity C-reactive protein (CRP) were quantified from serum

samples for 4,816 DILGOM07 participants and 7,599 FINRISK97 participants using a latex

turbidimetric immunoassay kit with an automated analyser.

Genome-wide gene expression profiling of whole blood for 518 DILGOM07 participants

was performed as previously described [15,32,33]. Briefly, stabilised total RNA was obtained

using the PAXgene Blood RNA system using the manufacturer recommended protocol. RNA

integrity and quantity was evaluated for each sample using an Agilent 2100 Bioanalyser. RNA

was then hybridised to Illumina HT-12 version 3 BeadChip arrays. Biotinylated cRNA prepa-

ration and BeadChip hybridisation were performed in duplicate for each sample. Microarrays

were background corrected using the Illumina BeadStudio software. Probes mapping to eryth-

rocyte globin components, non-autosomal chromosomes, or which hybridised to multiple

genomic positions >10Kb apart were excluded from the analysis. Probe expression levels were

obtained by taking a weighted bead-count average of their technical replicates then taking a

log2 transform. Finally, expression levels for each sample were quantile normalised.

Glycoprotein composition of GlycA in a population setting

Concentrations of AAT, AGP, HP, TF, and GlycA were natural log transformed and standard-

ized in the 626 DILGOM participants with matched glycoprotein assay and NMR-metabolite

data, then the Pearson correlation coefficients were calculated between all five measurements

(Fig 1A). The 626 DILGOM participants were hierarchically clustered using the complete link-

age method based on the Euclidean distance measured on their natural log transformed and

standardized AAT, AGP, HP, TF, and GlycA levels (Fig 1B) using the hclust function and the

pheatmap package version 1.0.10 in R version 3.4.2.

Imputation model training

Lasso regression models were fit in the DILGOM07 participants to determine the contribu-

tions of the NMR-based biomarkers, participant age, sex, and BMI that best predicted the con-

centrations of each glycoprotein. Samples with any missing NMR data (N = 11, 1.8%) were

excluded. Consequently, all derived ratios in the NMR data were excluded from the analysis

due to increased missingness arising from low concentration measurements in their numera-

tor or denominator. In total, 149 NMR measurements (S1 Table) were included in each lasso

regression. In total, 615 individuals had matched glycoprotein and completed NMR metabolite

data (N = 611 for HP). Age was standardised, and each glycoprotein, NMR-metabolite mea-

sure, and BMI were log transformed and standardised when fitting the lasso regression mod-

els. The models were fit using the glmnet package [53] version 2.0–2 in R version 3.1.3.

To reduce overfitting of the models to the 615 DILGOM07 participants (hereby “training

cohort”), a 10-fold cross-validation procedure was used to tune the lasso regression λ penalty,

which determined how many variables were included in the final imputation models for each

glycoprotein (S1 Fig). In this procedure, the training cohort was randomly split into 10 groups,

and a sequence of 100 λ values was generated by the cv.glmnet function in the glmnet R pack-

age. For each of these 100 λs a lasso regression was fit to each possible 9/10ths of the data and

the resulting model used to predict the glycoprotein concentration in the remaining 1/10th of

the data. To compare the accuracy of the model fit by each λ, the mean-square error (MSE)

was calculated as the mean of squared difference between the predicted and observed glyco-

protein in each test-fold (S1 Fig). To obtain the final imputation models (S1 Models; R package

at https://github.com/sritchie73/imputegp) a lasso regression model was fit to the NMR-

metabolite measures, age, sex, and BMI, for the full training cohort using the largest λ penalty

with an average MSE within one standard error of the smallest average MSE in the cross-

Alpha-1 antitrypsin is a major component of the GlycA biomaker

PLOS ONE | https://doi.org/10.1371/journal.pone.0223692 October 23, 2019 12 / 23

https://github.com/sritchie73/imputegp
https://doi.org/10.1371/journal.pone.0223692


validation procedure. This λ was selected as it produced the simplest possible model for each

glycoprotein with a comparable average MSE to the smallest average MSE given the uncer-

tainty in the average MSE estimate, thus further reducing model overfitting [53].

To evaluate imputation model accuracy, the Spearman’s rank correlation coefficient

(hereby Spearman correlation) was used to quantify the similarity of the imputed and immu-

noassayed levels of each glycoprotein (Fig 2B and S2 Table). The Spearman correlation pro-

vides an indicator of how well the imputation models are likely to distinguish between many

individuals with different glycoprotein concentrations after the standard statistical treatment

of normalisation and standardisation when imputing each glycoprotein in another dataset.

Estimates of the Spearman correlation given in the text were obtained by taking their averages

across the 10-fold cross-validation procedure in which the Spearman correlation were calcu-

lated by comparing the imputed and immunoassayed glycoprotein levels in each 1/10th of the

data (shown by the boxplots in Fig 2B). The Spearman correlation was also calculated between

the imputed and immunoassayed glycoprotein levels shown in Fig 2A after using the final

imputation models to predict the concentration of each glycoprotein in all 626 DILGOM07

participants with serum NMR and matched glycoprotein assay data (point estimates shown in

Fig 2B). The difference between this point estimate and the average Spearman correlation in

model training (Fig 2B and S2 Table) indicates the amount of overfitting of each model to the

training cohort.

The strong correlation structure in the NMR-metabolite measurements meant that the

imputation models in S1 Models were not necessarily unique. Re-running the model training

procedure led to imputation models comprising different features but with similar accuracy to

that shown in Fig 2 and similar hazard ratio estimates as shown in S2 Fig.

Electronic health record analysis

Electronic health records were obtained and collated for individuals participating in the DIL-

GOM07 and FINRISK97 studies as described in reference [5]. Briefly, electronic health records

were obtained from the Finnish National Hospital Discharge Register and the Finnish

National Causes-of-Death Register for individuals in DILGOM07 and FINRISK97 from 1987–

2015. Electronic health records from 1987–1995 were encoded according to the International

Classification of Diseases (ICD) 9th revision (ICD-9) format, and converted to the 10th revision

format (ICD10) to match the encoding of records from 1996–2015 using the scheme provided

by the Diagnosis Code Set General Equivalence Mappings from the Center for Disease Control

in the United States of America (ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/

ICD10CM/2011/), and were verified using the National Data Policy Group mapping scheme

from the New Zealand Ministry of Health (http://www.health.govt.nz/system/files/documents/

pages/masterf4.xls). Diagnoses with a mismatch of the first 3 digits in the ICD10 code between

the two conversion protocols were verified manually.

Electronic health records were aggregated into distinct disease outcomes for each individ-

ual, each comprising an ICD10 disease grouping or ICD10 code at three-digit accuracy. Rec-

ords were aggregated into incident and prevalent cases for each outcome for each individual.

Incident cases comprised the first event (either hospital discharge diagnosis or mortality) in an

8-year follow-up from cohort baseline, chosen to match the maximum follow-up time for DIL-

GOM07. Prevalent cases indicated whether an individual had any event for that outcome from

1987 to baseline (20 years for DILGOM07 and 10 years for FINRISK97), the maximum retro-

spective period available for the analysis. Main and side diagnoses were treated equally when

aggregating electronic health records into incident and prevalent cases of each outcome.
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Imputed AAT, imputed AGP, imputed HP, and GlycA were separately tested as biomarkers

for incidence of each outcome in 4,540 DILGOM07 participants and 7,321 FINRISK97 partici-

pants with all model covariates and excluding pregnant women over the 8-year follow-up, and

meta-analysed with an inverse-variance weighted fixed-effects model using the metafor R

package [54] version 2.0.0 (Figs 3 and 4 and S2–S4 and S3 Table). Imputation of AAT was suc-

cessful for 4,496 DILGOM07 participants and 7,246 FINRISK97 participants. Imputation of

AGP was successful for 4,474 DILGOM07 participants and 7,151 FINRISK97 participants.

Imputation of HP was successful for 4,491 DILGOM07 participants and 7,194 FINRISK97 par-

ticipants. Any imputed glycoprotein measurements that were outside the range of measure-

ments observed in the glycoprotein assays were excluded (0.64–2.58 mg/L for AAT, 362–1,880

mg/L for AGP, and 0.14–3.95 mg/L for HP), and were not imputed for participants where any

of the imputation model inputs were missing. Cox proportional hazards models were fit using

age as the time scale and adjusting for sex, smoking status, BMI, systolic blood pressure, alco-

hol consumption, and prevalent disease, as well as citrate, albumin, and VLDL particle size,

which were previously identified as biomarkers for 5-year risk of all-cause mortality alongside

GlycA levels in FINRISK97 [10]. Each imputed glycoprotein, GlycA, albumin, citrate, BMI,

systolic blood pressure, alcohol consumption and the diameter of VLDL particles were log

transformed, and standardised (s.d. = 1) in the statistical analyses while current smoking and

sex were coded as categorical covariates. Association analyses were performed for all outcomes

with� 20 incident cases in both DILGOM07 and FINRISK97 in the subsets of individuals

with successfully imputed concentrations of each glycoprotein. Adjustment for prevalent cases

was performed where there were� 10 prevalent cases in the respective subsets of individuals

prior to baseline. Hazard Ratios were similar when excluding prevalent cases (S4 Fig). In total,

AAT, AGP, HP, and GlycA were tested as biomarkers for 351, 347, 350, and 356 outcomes,

respectively (S3 Table).

To control for the many related and unrelated hypothesis tests, P-values were adjusted

across all outcomes for each biomarker and cohort separately using the Storey-Tibshirani posi-

tive False Discovery Rate method [55] using the qvalue package version 2.4.2 in R version

3.2.3. This method is designed to control for multiple correlated tests such as the nested diag-

noses and diagnosis categories tested in this study. We considered any glycoprotein–outcome

association to be significant and replicable where its FDR adjusted P-value was < 0.05/3 (Bon-

ferroni correcting the significance threshold of 0.05 for the three glycoproteins) in DIL-

GOM07, FINRISK97, and in the meta-analysis (Figs 3 and S2).

Sensitivity analysis to CRP was performed by fitting Cox proportional hazard models with

CRP as an additional covariate (S3 Fig). Hazard ratios were combined in inverse-variance

weighted meta-analysis. Sensitivity analysis to prevalent disease adjustment was performed by

fitting Cox proportional hazards models in the subset of individuals without any prevalent cases

of each outcome using the same model parameters and covariates as described above (S4 Fig).

To assess consistency of hazard ratios calculated from the imputed glycoproteins with those

from the immunoassayed glycoproteins (S2 Fig), Cox proportional models were fit for all DIL-

GOM07 participants with immunoassayed glycoproteins (N = 630 for AAT and AGP, N = 626

for HP), and also for the predicted glycoprotein concentrations in the 615 DILGOM07 partici-

pants used to train the imputation models. In each case, analyses were restricted to the 46 out-

comes with 20 or more events in the respective subsets of DILGOM07.

Gene expression analysis

To identify pathways associated with AAT levels we used GSEA [30,31] (Java application ver-

sion 2.2.4) to identify pathways enriched for genes differentially expressed with respect to AAT
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levels in DILGOM07. We tested enrichment for AAT-associated differential expression in col-

lections of curated gene sets available from the Molecular Signatures Database (MSigDB)

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp, accessed May 25th 2017). Spe-

cifically, we tested enrichment in the MSigDB Hallmark gene sets [56]; GO biological process,

molecular function, and cellular compartment ontologies [57,58]; Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways [59]; and Reactome pathways [60]. Gene sets were

tested for enrichment in each collection separately. The Pearson correlation metric was used

within GSEA to rank genes by their association with AAT. Age and sex adjusted probe expres-

sion levels and age- and sex- adjusted log-transformed AAT levels were provided as input

since GSEA does not allow for adjustment of covariates. Expression levels for genes with multi-

ple probes were obtained by taking the highest probe expression in each sample (performed by

the GSEA software). After collapsing multiple probes, there were 30,281 genes in total. GSEA

calculated an enrichment score for each gene set by taking the maximum of a running-sum

statistic [30,31]. This running-sum statistic was calculated by iterating through all genes in

descending order by AAT correlation, incrementing the running-sum statistic by a gene’s cor-

relation with AAT if it appears in the gene set of interest, and decrementing the running-sum

statistic by 1/30,281 otherwise. Normalised enrichment scores and enrichment score p-values

were obtained through a permutation test procedure [30,31] in which samples were shuffled

1,000 times. Normalised enrichment scores were calculated as the enrichment score divided by

the average enrichment score for the corresponding gene set across the 1,000 permutations.

Permutation test P-values were Benjamini-Hochberg FDR adjusted for multiple testing in

each gene set collection separately. We considered any gene set to be significantly enriched for

genes either up- or down-regulated with respect to increasing AAT levels where the enrich-

ment FDR adjusted P<0.05 (S5 Table).

To identify functionally related gene sets in whole blood associated with AAT, linear regres-

sion models were fit between immunoassayed AAT levels and summary expression profiles of

20 replicable gene coexpression network modules that we previously identified in DILGOM07

[15,32–34] and replicated in an independent cohort [34] (S6 Table) and 346 blood transcrip-

tome modules identified by Li et al. using 30,000 blood transcriptomes across 500 studies [35]

(S8 Table). Summary expression profiles for each module were calculated as the eigenvector of

the first principle component of each module’s expression [61] in DILGOM07. In DIL-

GOM07, 518 participants had matched AAT immunoassay data and transcriptome-wide gene

expression profiling. Regression models were adjusted for age and sex. An association between

our replicable whole blood modules [15,32–34] and AAT was considered significant where

P<0.0025 (Bonferroni adjusted significance threshold for the 20 tested coexpression modules).

Associations between Li et al.’s blood transcriptome modules and AAT were considered signif-

icant where P< 1.44×10−4 (Bonferroni adjusted significance threshold for the 346 tested

modules).

Identification of our 20 replicable gene coexpression network modules in DILGOM07 was

performed using the WGCNA R package [62] and their network topology tested for replica-

tion in an independent cohort using the NetRep R package [61], described in full in reference

[34]. Here, we also report biological function for 12 of these modules we had not yet character-

ised for previous publications (S7 Table). Characterisation of each module’s biological func-

tion was performed as previously described [34]. First, a core set of genes for each module was

defined through a permutation test of module membership. For each module, each probe’s

correlation with the module’s summary expression profile was compared to a null distribution

of membership scores obtained by calculating the correlation between the module’s summary

expression profile and all microarray probes that did not cluster into that module. The mem-

bership permutation test p-values were Benjamini-Hochberg FDR adjusted across all probes
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within the module, and probes with FDR adjusted P<0.05 were considered core module

probes robust to the network-discovery clustering parameters. Over-representation analysis of

Gene Ontology (GO) biological process terms [57,58] in each module’s gene set was performed

using GOrilla [63], and all nominally significant GO terms are reported in S7 Table. REVIGO

[64] was used to measure the semantic similarity of these GO terms, ranked by P-value, seman-

tic uniqueness, and dispensability (redundancy).

Supporting information

S1 Fig. Glycoprotein imputation model training and selection in the 615 DILGOM07 par-

ticipants with complete NMR metabolite measurements and matched glycoprotein data

(N = 611 for HP). Each plot shows the lasso model tuning in the 10-fold cross validation

model training procedure (Methods). Grey bars show the range and red points show the aver-

age of the mean-square error (MSE) across the 10 test folds for each of the 100 lasso regression

λ penalties (x axes). Numbers on the top axes correspond to the number of features selected

for inclusion given the corresponding λ penalty. Age, sex, BMI, and 149 metabolic measures

by NMR (S1 Table) were considered as candidate features for each imputation model. For

each glycoprotein, the black dashed line indicates the imputation model with smallest average

MSE across the 10 test folds during model training. The coloured dashed line indicates the

selected model (detailed in S1 Models); the simplest model within 1 standard error of the

model with the smallest average MSE. Note the MSE cannot be compared between the differ-

ent glycoproteins since their range of concentrations differ.

(TIF)

S2 Fig. Forest plots for glycoprotein associated risks of disease and mortality from Fig 3

comparing hazard ratios from meta-analysis (green) to hazard ratios calculated in each of

DILGOM07 (blue) and FINRISK97 (purple) (Methods). For comparison, hazard ratios cal-

culated from the immunoassayed glycoprotein concentrations (red) and calculated from the

predicted glycoprotein concentrations in the 615 DILGOM07 participants used to train the

imputation models (yellow; labelled “Training”) are also shown provided there were>20 inci-

dent events in the diagnosis category (Methods). The number of incident events for each out-

come in each cohort are shown to the left of each hazard ratio. FDR-adjusted p-values

(Methods) are shown to the right of each hazard ratio. Solid hazard ratios and 95% confidence

intervals indicate a significant association (FDR < 0.05/3). Significant and replicable associa-

tions (FDR < 0.05/3 in DILGOM07, FINRISK97 and meta-analysis) have highlighted back-

grounds. The alphanumeric codes in the square brackets indicate the ICD10 codes or disease

categories for each diagnosis. Hazard ratios for all outcomes and all cohorts are provided in S3

Table.

(TIF)

S3 Fig. Sensitivity analysis of glycoprotein biomarker associations to CRP adjustment for A)

outcomes with significant replicable and replicable associations for each biomarker, and B)

across all outcomes with� 20 events in both DILGOM07 and FINRISK97. In both A) and B)

each plot compares the hazard ratios conferred per standard deviation increase of the glyco-

protein (x-axes) to hazard ratios conferred per standard deviation increase of the glycoprotein

adjusted for CRP (y-axes) in meta-analysis of DILGOM07 and FINRISK97 (Methods). Data

are shown on a square root scale. The grey dashed diagonal line indicates the location where a

hazard ratio would fall if it was unchanged after CRP adjustment. Light grey crosses centred

on each hazard ratio represent the 95% confidence intervals for the hazard ratio (horizontal

bars) and for the hazard ratio adjusted for CRP (vertical bars). In A) hazard ratios are coloured
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according to the legend. The coloured line in each plot in B) shows the line of best fit (linear

regression) of the CRP-adjusted hazard ratios on the hazard ratios without CRP adjustment,

indicating the overall attenuation by CRP across all outcomes. In B) 95% confidence intervals

with an upper limit� 2.5 or a lower limit� 0.5 are truncated on the plot.

(TIF)

S4 Fig. Sensitivity analysis of glycoprotein biomarker associations to prevalent disease.

Each plot compares the hazard ratios (diamonds) calculated when adjusting for prevalent case

status as a covariate (x-axes) to hazard ratios calculated excluding individuals with any preva-

lent cases for each outcome (y-axes) in meta-analysis of DILGOM07 and FINRISK97. Light

grey crosses centred on each hazard ratio represent the 95% confidence intervals for the hazard

ratio calculated when adjusting for prevalent cases as a covariate (horizontal bars) and for the

hazard ratio calculated excluding prevalent cases of each outcome (vertical bars). The grey

dashed diagonal line indicates the location where hazard ratios should fall if their estimates are

identical in the different models. Red diamonds indicate outcomes significantly associated

with each biomarker in Fig 3.

(TIF)

S1 Table. Serum NMR measurements that were included as inputs to the lasso regression

models used to identify the glycoprotein imputation models. Derived ratios were excluded

from the analyses (Methods).

(XLSX)

S2 Table. Glycoprotein imputation model accuracy assessed in the 626 DILGOM07 partici-

pants with matched glycoprotein assay, serum NMR-metabolite measures, age, sex, and

BMI. The first row shows the Spearman’s rank correlation coefficient (ρ) calculated between

the predicted and observed glycoprotein measurements in Fig 2A. The second row shows its

mean ± standard deviation in the 10-fold cross-validation procedure used to train each impu-

tation model (Fig 2B).

(XLSX)

S3 Table. Hazard ratios for all tested outcomes. Rows are organised by biomarker, then by

ICD10 diagnosis, then by the cohort the association between the biomarker and ICD10 diag-

nosis was tested in. ICD10: The code for the diagnosis or range of codes for the diagnosis cate-

gory. Diagnosis: name of the ICD10 diagnosis or diagnosis category. Cohort: association test

cohort; “Meta-analysis”: meta-analysis of the hazard ratios calculated in the DILGOM07 and

FINRISK97 cohorts; “FINRISK97”: samples in FINRISK97 for which each glycoprotein was

successfully imputed (or for GlycA all samples with NMR metabolite measurements); “DIL-

GOM07”: samples in DILGOM07 for which each glycoprotein was successfully imputed (or

for GlycA all samples with NMR metabolite measurements); “Immunoassay”: association

between the glycoprotein measured by immunoassay in the subset of DILGOM07 with immu-

noassay measurements; “Training”: association between the imputed glycoprotein in the sub-

set of DILGOM07 used to train each imputation model (i.e. with complete NMR data and

immunoassay measurements). Samples: the number of samples in each cohort for that bio-

marker. Events: the number of people diagnosed with that ICD10 code in the 8-year follow-up

period. ICD10 diagnoses with< 20 events in each sub-cohort could not be analysed. Prevalent:

the number of people diagnosed with that ICD10 code in the 10-year follow-up period; Cox

proportional hazard models were adjusted for prevalent cases where there were > 10 prevalent

cases. HR: Cox proportional hazard ratio between the biomarker and the ICD10 diagnosis in

the corresponding sub-cohort. Models were fit using age as the time scale and adjusting for

sex, smoking status, BMI, blood pressure, alcohol consumption, prevalent cases, and
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previously identified biomarkers for 5-year risk of all-cause mortality (citrate, albumin, and

VLDL particle size). SE: standard error of the hazard ratio. 95% CI: 95% confidence interval. P:

P-value. FDR: Storery-Tibshirani adjusted P-value. FDR correction was performed across P-

values for each biomarker and cohort separately. Benjamini-Hochberg FDR correction was

performed for AGP in the “Training” cohort due to errors arising from the qvalue function for

Storery-Tibshirani FDR correction. Sig: FDR corrected P-value is significant at the designated

cut-off FDR< 0.05/3 (0.0167). SigRep: Association between the biomarker and ICD10 diagno-

sis was significant and replicable: FDR < 0.05/3 in the DILGOM07 and FINRISK97 cohorts

and in their meta-analysis.

(XLSX)

S4 Table. Spearman correlation between GlycA and each glycoprotein. Immunoassayed:

Spearman correlation between GlycA and each immunoassayed glycoprotein in the 626 DIL-

GOM07 participants with matched immunoassay and NMR-metabolite measures. Training:

Spearman correlation between GlycA and the imputed glycoprotein levels in the 615 DIL-

GOM07 participants used for model training. DILGOM07: Spearman correlation between

GlycA and the imputed glycoprotein levels in all 4,540 DILGOM07 participants. FINRISK97:

Spearman correlation between GlycA and the imputed glycoprotein levels in all 7,321 FIN-

RISK97 participants.

(XLSX)

S5 Table. Curated gene sets significantly enriched for genes associated with AAT. Each

sheet corresponds to one of the following collection of pathways or gene sets: Hallmark path-

ways, KEGG pathways, Reactome pathways, GO biological process terms, GO molecular func-

tion terms, and GO cellular compartment terms significantly enriched for AAT-associated

differential expression (Methods). Size: number of genes on the Illumina HT-12 array anno-

tated for the corresponding gene set. NES: enrichment score normalised by the average enrich-

ment score for the respective gene set in a permutation procedure with 1,000 permutations

(Methods). A positive NES indicates the gene set is enriched for genes upregulated with ele-

vated AAT while a negative NES indicates the gene set is enriched for genes downregulated

with elevated AAT. FDR: Benjamini-Hochberg FDR adjusted permutation test P-value for

enrichment. FDR correction was performed within each collection separately. Gene sets with

FDR<0.05 are shown.

(XLSX)

S6 Table. Association between AAT and replicable gene coexpression network modules in

DILGOM07. The tested gene coexpression network modules are those that were previously

identified in DILGOM07 and found to topologically replicate in an independent cohort study

in reference [34]. References are given next to module names referring to the study in which

they were first characterised. Modules without references are those first characterised here

based on GO term enrichment shown in S7 Table. Linear regression models were fit between

log-transformed AAT and each modules summary expression profile (first principal compo-

nent) adjusting for participant age and sex. Modules were given numeric labels in descending

order of module size (40 modules were identified, 20 were found to be topologically replica-

ble). Effect size indicates the change in standard deviations of immunoassayed AAT conferred

per standard deviation increase of each module’s coordinated expression adjusting for partici-

pant age and sex. 95% CI indicates the 95% confidence interval for the effect size. An associa-

tion was considered significant (top three modules) where its P-value < 0.0025 (0.05/20,

Bonferroni correcting for the total number of modules tested).

(XLSX)
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S7 Table. Enrichment analysis for reproducible DILGOM07 gene coexpression modules.

Gene Ontology (GO) biological process terms significantly over-represented in the core gene

set for each gene coexpression module (one sheet per module) along with REVIGO ranking of

nominally significant GO terms by information content (Methods). “GO Term”: GO ID for

the GO term. “P-value”: P-value from a hypergeometric test. “FDR q-value”: Benjamini-Hoch-

berg FDR adjusted P-value. All GO terms with P< 0.05 are displayed. “N”: number of genes

on the Illumina HT-12 array with any GO annotation. “B”: number of genes in the GO term.

“n”: number of genes in the module. “b”: number of genes in the module annotated for the

corresponding GO term. “frequency”: percentage of array annotated for the corresponding

GO term. “uniqueness”: REVIGO measure of semantic uniqueness when compared to all

other GO terms. “dispensability”: REVIGO measure of semantic redundancy when compared

to its most similar GO term. “eliminated”: 1 or 0 depending on whether the GO Term was con-

sidered redundant by the REVIGO analysis. Rows in each sheet are organised by the “elimi-

nated” column, then by P-value.

(XLSX)

S8 Table. Association between AAT and 346 blood transcript modules in DILGOM07. The

tested network modules are those identified by Li et al. in reference [35]. “size”: number of

genes in the module. “in array”: number of genes that could be mapped to the Illumina HT12

array used in DILGOM07. Linear regression models were fit between log-transformed AAT

and each modules summary expression profile (first principal component) adjusting for par-

ticipant age and sex in the 518 DILGOM07 participants with matched gene expression and

AAT immunoassay data. “beta”: change in standard deviations of immunoassayed AAT con-

ferred per standard deviation increase of each module’s coordinated expression adjusting for

participant age and sex. L95 and U95: lower and upper bounds of the 95% confidence interval.

(XLSX)

S1 Models. Summary of imputation models for AAT, AGP, HP, and TF. A) Here, coeffi-

cients are rounded to two significant figures. Full precision models are made available through

the imputegp R package which can be downloaded and installed from https://github.com/

sritchie73/imputegp. Each model predicts the concentration of each glycoprotein on a natural

logarithm scale. Concentrations in mg/L are obtained by exponentiating the result. Variables

in the imputation models are also required on a natural logarithm scale, with the exceptions of

participant Age and Sex. The coding for the Sex variable was 1 for men and 2 for women. The

NMR-metabolite measures are described in S1 Table. B) Model coefficients are given after log

transformation of each variable and standardisation to their mean and standard deviation in

DILGOM07, i.e. coefficients indicate relative contribution to determining the concentration of

the glycoprotein. Variables are listed from left to right in descending order of their relative

contribution in both A) and B).

(DOCX)
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15. Ritchie SC, Würtz P, Nath AP, Abraham G, Havulinna AS, Fearnley LG, et al. The Biomarker GlycA is

Associated with Chronic Inflammation and Predicts Long-Term Risk of Severe Infection. Cell Syst.

2015 Oct; 1(4): 293–301. https://doi.org/10.1016/j.cels.2015.09.007 PMID: 27136058

16. Bell JD, Brown JC, Nicholson JK, Sadler PJ. Assignment of resonances for “acute-phase” glycoproteins

in high resolution proton NMR spectra of human blood plasma. FEBS Lett. 1987; 215(2): 311–315.

https://doi.org/10.1016/0014-5793(87)80168-0 PMID: 2438159

17. Otvos JD, Shalaurova I, Wolak-Dinsmore J, Connelly MA, Mackey RH, Stein JH, et al. GlycA: A com-

posite nuclear magnetic resonance biomarker of systemic inflammation. Clin Chem. 2015; 61(5): 714–

723. https://doi.org/10.1373/clinchem.2014.232918 PMID: 25779987

18. Lauridsen MB, Bliddal H, Christensen R, Danneskiold-Samsøe B, Bennett R, Keun H, et al. 1H

NMR spectroscopy-based interventional metabolic phenotyping: A cohort study of rheumatoid

arthritis patients. J Proteome Res. 2010; 9(9): 4545–4553. https://doi.org/10.1021/pr1002774

PMID: 20701312

19. Bartlett DB, Connelly MA, AbouAssi H, Bateman LA, Tune KN, Huebner JL, et al. A novel inflammatory

biomarker, GlycA, associates with disease activity in rheumatoid arthritis and cardio-metabolic risk in

BMI-matched controls. Arthritis Res Ther. 2016; 18: 86. https://doi.org/10.1186/s13075-016-0982-5

PMID: 27067270

20. Chung CP, Ormseth MJ, Connelly MA, Oeser A, Solus JF, Otvos JD, et al. GlycA, a novel marker of

inflammation, is elevated in systemic lupus erythematosus. Lupus. 2016 Mar; 25(3): 296–300. https://

doi.org/10.1177/0961203315617842 PMID: 26637290

21. Gruppen EG, Connelly MA, Otvos JD, Bakker SJL, Dullaart RPF. A novel protein glycan biomarker and

LCAT activity in metabolic syndrome. Eur J Clin Invest. 2015 Aug; 45(8): 850–859. https://doi.org/10.

1111/eci.12481 PMID: 26081900

22. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, et al. Markers of

inflammation and cardiovascular disease: application to clinical and public health practice: A statement

for healthcare professionals from the Centers for Disease Control and Prevention and the American

Heart Association. Circulation. 2003 Jan; 107(3): 499–511. https://doi.org/10.1161/01.cir.0000052939.

59093.45 PMID: 12551878

23. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J

Med. 1999; 340(6): 448–454. https://doi.org/10.1056/NEJM199902113400607 PMID: 9971870
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